ﬁ EasyChair Preprint

Ne 1689

Kuksa: A Cloud-Native Architecture for Enabling
Continuous Delivery in the Automotive Domain

Ahmad Banijamali, Pooyan Jamshidi, Pasi Kuvaja and
Markku Oivo

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 16, 2019

Kuksa: A Cloud-Native Architecture for
Enabling Continuous Delivery in the
Automotive Domain

Ahmad Banijamalil [O[)O[)70()()2762837142X]’ Pooyan

Jamshid12 [0000700027934270703], Pasi Kuvajal[[0000700027148876928}’ and Markku
OiVOl [0000—0002—1698—2323]

1 M3S Research Unit, ITEE Faculty, University of Oulu, Finland
{firstname.lastname}@oulu.fi
2 Computer Science and Engineering Department, University of South Carolina, USA
pjamshid@cse.sc.edu

Abstract. Connecting vehicles to cloud platforms has enabled innova-
tive business scenarios while raising new quality concerns, such as relia-
bility and scalability, which must be addressed by research. Cloud-native
architectures based on microservices are a recent approach to enable con-
tinuous delivery and to improve service reliability and scalability. We
propose an approach for restructuring cloud platform architectures in
the automotive domain into a microservices architecture. To this end,
we adopted and implemented microservices patterns from literature to
design the cloud-native automotive architecture and conducted a labora-
tory experiment to evaluate the reliability and scalability of microservices
in the context of a real-world project in the automotive domain called
Eclipse Kuksa. Findings indicated that the proposed architecture could
handle the continuous software delivery over-the-air by sending auto-
matic control messages to a vehicular setting. Different patterns enabled
us to make changes or interrupt services without extending the impact
to others. The results of this study provide evidences that microservices
are a potential design solution when dealing with service failures and
high payload on cloud-based services in the automotive domain.

Keywords: Microservices - Cloud-native architecture - Cloud comput-
ing - Automotive.

1 Introduction

In recent years, there has been an increased focus from industry and academia to
investigate cloud platform architectures that enable continuous software delivery
(CD) in vehicles [10]. Many industries have started to look for CD solutions as
they need to release quality software more frequently, better respond to auto-
motive market changes, avoid vehicle recalls, improve productivity, and increase
customer satisfaction [28]. For this purpose, vehicular software and information
resources are being virtualised and designed as services in the cloud [17]. Cloud
platforms in the automotive domain (ACPs) provide the possibilities to exchange
data beyond vehicles [19], connect vehicles to other objects in the environment,

2 Banijamali et al.

Identity & access

Dormain-spedficservices
management @ management

Device-to-doud

Third-party
communication

Device representation Bigdataanalytics
& visualisation services
e

Devics mabgement
Message Gateways |

Fig. 1. Cloud platforms in the automotive domain

update automotive software using wireless communications systems (over-the-
air) [33], and enable many more business services in the cloud (Figure 1).

Nevertheless, the migration of software delivery to ACPs has raised new
research challenges. For example, vehicle-to-cloud (V2C) data transmission re-
quires low latency and high reliability to satisfy the requirements of real-time
systems [21]. Scalability is another challenge that demands the decomposition of
functionalities and efficient data management [15]. Furthermore, the resiliency
configuration explains runtime behaviour and faulty components [15], and secu-
rity is a major requirement for protecting vehicles from malicious attacks [34].

In addition, as for the migration process towards distributed systems, such
as cloud-native architectures, many architecture designs fail as long as their goal
is to only replace the existing legacy architecture with a virtualised environment
in the cloud [3]. The reasons may include but are not limited to a lack of solid
business cases for cloud migration, neglecting adequate support teams, migrating
at once to the cloud, and not considering applications’ architecture refactoring
[4, 5]. Consequently, the benefits from migration to the cloud platforms could be
trivial, as the failure can happen anytime [3].

Despite the importance of CD and the mentioned quality challenges in ACPs,
there has been insufficient focus from research that provides practical insights
into designing software architectures that address those quality concerns [6].
Due to the impact of microservices on cloud-native architectures with respect
to quality requirements, such as reliability, scalability, availability, and fault-
tolerance [4, 5], microservices can be a potential solution for the existing chal-
lenges in ACPs. In relation to this, the ultimate objective of our paper is to
investigate whether microservices can enable over-the-air (OTA) continuous de-
livery in ACPs while improving reliability and scalability in this domain. We
have proposed a microservices architecture based on a real-world project in the
automotive domain called Eclipse Kuksa and conducted a laboratory experiment
to evaluate the architecture with respect to the mentioned quality attributes.

The results of this study can benefit industrial practitioners and academic
researchers in the domains of automotive software engineering and cloud plat-
form design. The study is aimed at researchers who would like to gain insight

Kuksa: a cloud-native architecture 3

into the application of microservices in the domain of ACPs. From the practi-
tioners’ perspective, the findings provide experimental results for the reliability
and scalability of microservices in a real-world industrial case in the automotive
domain. The key contributions of the study are: (1) assessing the relative extent
to which cloud-native architecture can enable continuous delivery in the automo-
tive domain and (2) evaluating the role of microservices patterns in improving
the reliability and scalability of services in this context.

2 Background
2.1 Microservices

Monolithic architectures are usually successful when the whole system is small
and the number of functions is low [9]. Increasingly, the number of end users re-
quires more deployment in the cloud [9], as every time that we apply a change to
a small part of an application, we need to build and deploy the whole monolithic
system again [3]. Furthermore, scalability means scaling the whole application
rather than a part of the components that requires more resources [13]. As a
consequence, many companies, such as Netflix, Amazon, and Atlassian, have
migrated to more scalable and reliable architectures like microservices.

As for distributed systems, microservices are used to design fine-grained,
modular services that have different life cycles but work together [23]. Each ser-
vice deploys independently [2] using a potentially different deployment frame-
work typically in the cloud [25], scales independently [31], is tested individu-
ally, and accomplishes responsibilities independently [31] while communicating
through lightweight mechanisms, such as RESTful APIs [13]. The relevant ar-
chitecture breaks down a system into services, each as a business capability [13].

Microservices promote a DevOps philosophy about separated small teams
working together to meet the objectives of a large mission-critical system [5].
On the other hand, DevOps provides the framework for developing, deploying,
and managing the microservices container ecosystem [11]. In this architecture, a
microservice is developed and maintained by one small team while coordination
among the teams is minimised [35]. It is noted that the largest size of the teams
usually follows Amazon’s notion of the “Two Pizza Team”, meaning not a large
group of people [13].

Despite all the advantages that microservices bring to the architecture de-
signs, they have several challenges that should carefully be addressed. For exam-
ple, replacing a monolithic architecture with a large number of inter-connected
microservices can increase latency and other performance issues [5]. Having a
system that is currently being used in production, it is necessary to make the
migration incrementally [35] without data loss and interruption [5], during which
we need adequate frameworks and experience in how to proceed [35]. Eventually,
inconsistencies among microservices is another relevant challenge [13].

2.2 Software Architectures of Automoitve Cloud Platforms

Convergence of the internet of things and cloud computing has enabled innova-
tive business use cases, ecosystems, and players in the automotive domain [17].

4 Banijamali et al.

ACPs’ application includes but is not limited to advanced vehicle connectivity,
infotainment applications, voice and video data streaming, fleet management
services, remote diagnostics and maintenance, and telematics services [14, 18].

Due to the increasing number of connected vehicles, the security, reliability,
availability, robustness, and scalability of services are becoming new quality re-
quirements in ACPs [16]. The extent of architectures in ACPs ranges from multi-
layered architectures [7] to service-oriented architectures (SOA) [22,32]. Datta
et al. [8] designed a framework for connected vehicles to offer consumer-centric
services and a uniform mechanism for describing and collecting vehicular sen-
sors’ data. The designed architecture applies technologies such as road side units
(RSUs) and machine-to-machine (M2M) gateways, including the fog computing
platform [8]. The authors argued that using fog computing technologies can im-
prove the fault tolerance, reliability, and scalability of the system [8]. Scalability
and interoperability have been addressed in another study [26] in a modular
architecture built upon DevOps practices to enable vehicle-to-everything (V2X)
applications. The authors divided real-time applications for managing traffic into
small modules to validate the functionality of the architecture [26].

A scalable and fault-tolerant data-processing design for real-time traffic-
based routing was proposed by another study [27]. It argued that the designed
architecture can serve a wide range of workloads and use cases with low-latency
requirements [27]. Real-world scenarios of intelligent traffic system applications
demonstrated the need for scalable big data analysis, service encapsulation, dy-
namic configuration, and optimisation strategies in this context [12]. Due to the
technological variety in ACPs, architecture designs must assure stakeholders [5]
that provisional services will meet the quality requirements at a specific level of
cost and risk that is enforced by service level agreements (SLAs) [24].

3 Research Questions and Method

This section describes the study’s objective, research questions, and research
method.

3.1 Objective and Research Questions

The main objective of our study was to evaluate whether microservices can
address CD in the context of ACPs and whether they can improve the reliability
and scalability of services in this context. The research questions (RQs) for this
study were as follows:

— RQ1: Can the microservices architecture design enable over-the-air
continuous delivery from cloud platforms in the automotive domain?

— RQ2: How can the microservices architecture design improve the reli-
ability and scalability of services in cloud platforms in the automotive
domain?

3.2 Research Method

To design the target microservices architecture, we adopted a software architec-
ture from a real-world project in the context of ACPs called Eclipse Kuksa (see

Kuksa: a cloud-native architecture 5

Section 4). It was important to initiate the migration process based on an exist-
ing project to review how the new architecture design could improve reliability
and scalability in this domain. For the migration and refactoring process of the
current architecture of Eclipse Kuksa, we applied microservices patterns from
literature (e.g., [4]). Each refactoring represented a small and controlled change,
so it was possible to identify how the quality attributes changed. The codes are
available on GitHub3.

Recent research [29] has explained that although it is critical to evaluate the
requirements of a new software system to ensure system acceptance by users, real
context evaluations are often complex. Before operating newly designed systems
in real dynamic and complex environments, it is reasonable to assess them in
laboratory setting experiments [29]. Thus, to evaluate the designed microservices
architecture, we used laboratory experiments as the research method to answer
the RQs of this study.

To date, there are several domain-specific services designed in Eclipse Kuksa.
Among them, this study selected a service that is used for the purpose of mo-
tion control. Previous studies [4, 5, 20, 23, 30] have proposed frameworks and pa-
rameters in which architecture designers select microservices for migration, for
example, according to their value to end users (e.g., improved user experience re-
garding the availability of services) or the project organisation (i.e., information
exchange scalability and resiliency support) [5]. We selected the motion control
service because of its value to end users and applicability in different scenarios.
Furthermore, it demonstrates how end users can send control commands to ve-
hicles from the cloud platform in Eclipse Kuksa using different user interfaces.
It is a general service that can be part of many scenarios in this domain. The
primary business driver for this service is to demonstrate OTA updates and
messaging from the cloud to vehicles. This creates suitable grounds for future
studies, e.g., on driver behaviour optimisation, natural language processing in
vehicles, or OTA driver authentication.

Section 5 provides more details of our evaluation setting and the technology
stacks used in our experiment.

4 Eclipse Kuksa

The Eclipse Kuksa®* utilises open, vehicle-independent protocols, ensuring life-
time value for vehicles through upgradable applications. It addresses application
systems, software solutions, and services for the mass differentiation of vehicles.
The ecosystem of Eclipse Kuksa is comprised of three main platforms, including
the (1) in-vehicle platform, (2) cloud platform, and (3) an app IDE. The Eclipse
Kuksa is supported by a wide range of integrated open source software tech-
nologies and development environments, such as automotive grade Linux (AGL)
and Eclipse Paho for the in-vehicle platform and Eclipse-Hono, Eclipse Hawkbit,
Eclipse MosQuitto, Keycloak, and InfluxDB in the cloud back-end.

3 https: //github.com/ahmadbanijamali/Rover-Control-Experiment.git
* https://projects.eclipse.org/projects/iot.kuksa

6 Banijamali et al.

4.1 The Existing Architecture of Eclipse Kuksa

Figure 2 shows the components and services in the Eclipse Kuksa architecture.
The architecture only provides information about the necessary components and
services that we needed in our experiment in the scope of this paper. It neglects
other parts of Eclipse Kuksa ecosystem, such as device management and repre-
sentation, authentication and authorisation, and the app store.

Kuksa cloud platform)

<<service>> <<component>>

Domain-specific services Visualisation & big data
analytics

<<component>> T—) <<component>>
Device representation Data management

<<service>>

Message gateway

r){ MQTT/LWM2M/... client h

<<component>> <<component>>
[«
API & comm. services App-runtime

Fig. 2. Software architecture of Eclipse Kuksa

Message Gateway. The Eclipse Kuksa cloud platform (EKCP) sends and
receives different types of messages from and to various sources, such as vehi-
cles, devices, and third-party services. In general, messages include “telemetry
messages” that depict data stemming from vehicles, devices, and sensors and
“commands and controls messages” that are dedicated to the vehicles and de-
vice management components. The message gateway provides remote service
interfaces for connecting vehicles and devices to the cloud back-end.

Data Storage and Management. An important part of the realisation of the
EKCP is the storage and management of vehicles’ and IoT devices’ data in the
appropriate database management system (DBMS). Although data management
is a central aspect of every cloud platform architecture, due to the wide range
of vehicles and devices connected to ACPs, it is necessary to establish a well-
defined data management system that can handle complexities related to big
data, consistency, performance, scalability, and security.

Visualisation and Big Data Analytics. The advances in the digitisation of the
automotive domain have created a large amount of heterogeneous data coming
from various sources. This has also yielded new requirements in terms of volume,
variety, and velocity that are commonly called big data. The EKCP includes
components and services to visualise and manage the big data in this domain.

Device Representation. To realise the distinct functionality of domain-specific
services, a digital representation is important. Digital twin offers the possibility
to access and alter the state of a vehicle’s functionality in a controlled manner.

Kuksa: a cloud-native architecture 7

Domain-specific Services. The domain-specific services are developed accord-
ing to different use cases and business scenarios on top of the in-vehicle platform.
They can handle different functions and tasks in vehicles and beyond them.

In-vehicle Platform. The communication protocols such as MQTT and LWM2M
have enabled sending different messages from vehicles to the cloud and vice versa.
The in-vehicle platform in Eclipse Kuksa includes an app runtime environment
that is connected to an in-vehicle gateway, enabling software delivery and de-
ployment in vehicles.

4.2 The Proposed Microservices Architecture for the Eclipse Kuksa
Cloud Platform

Connected vehicles have high demands on the exchange of data between vehicles
and a variety of services in the cloud. Due to the importance of the domain-
specific services in ACPs, we selected a sample telemetry service that communi-
cates with vehicles through sending command and control messages to vehicles
(see Section 3.2). Figure 3 shows our proposal for the refactored architecture of
EKCP that is described in greater detail in this section.

Kuksa cloud platform)

<<service>>

Intelligent routing

<<service>>

Domai -

<<component>> Pt
P services <<service>>
Configuration server : - N
9 LB/CB Visualisation & big
'y data analytics
<<component>> J
<<service>> LB/ CB

Service discovery and| . . A
registry Device rep
<<component>> LB/CB

Monitoring 1 1

<<service>> <<service>>
sccomponent>> Data management

Cloud and storage

Logging & reporting

LB/ CB LB/ CB

In-vehicle platform)

r){ MQTT/LWM2M/... client h

<<component>> <<component>>

API & comm. services App-runtime

Fig. 3. The microservices architecture in Eclipse Kuksa

The migration to a microservices architecture in EKCP is a step-by-step pro-
cess including new components and modules and modifying the existing compo-
nents (Figure 4). We started the process by creating a better understanding of
the existing architecture (Section 4.1) and introducing the CD pipeline.

Configuration Server. According to previous research [4], we required two
individual and separate repositories as source code storage and software con-
figurations storage. The configuration server is a central place to support the
externalised configuration and changes without rebuilding or restarting the ser-
vices. The Spring cloud configuration server is a potential technology that stores

8 Banijamali et al.

CD pipeline Containerization

2 Constructing pipeline to 4 Creating the service
enable continuous images as an isolated
integration. containers.

— : Service discovery

Logging and Load balancer 6 Enabling service
reporting

instances to find network

Balancing the payload locations.

among service instances.

Aggregated log and
system reporting.

Fig. 4. The migration process to a microservices architecture

each microservice property based on the service-ID. The properties can be stored
in the cloud or in other repositories, such as in GitHub.

Containerisation. The next step before establishing an intelligent routing
(edge server) component was the containerisation of each service. This step is a
part of the CD pipeline for building the container image for each service. The
Docker and Docker Hub are the technology stacks used for this purpose.

Intelligent Routing (Edge Server). This is the layer right after the user inter-
face (UT). Edge server dynamically routes requests to the appropriate microser-
vices. Thus, it is possible here to monitor the service usage, as all requests pass
this layer. As an instance of the technology stack, Netflix provides Zuul as the
front door for all requests from devices and web sites to the back-end.

Service Discovery. Service instances dynamically find network locations of a
service provider, which is critical for the service’s auto-scaling and failures.

Service Registry. In addition to service discovery, service registry registers and
de-registers service instances. It stores addresses of each service as the service
initiates and removes the addresses once it does not receive the heartbeat or the
service is terminated. Spring Eureka provides the technology stack for service
discovery and registry.

Load Balancer. A purpose for migrating to a microservices architecture is to
improve the scalability of each service based on the payload [5]. We used load
balancers to distribute the payload among multiple instances of our services.
Netflix Ribbon and Apache Zookeeper are examples of relevant technology stack.

Clircuit Breaker. Once the number of consecutive failures in services crosses
a specific threshold (open state), we call the circuit breaker to either invoke a
response code or return the latest cached data from the service provider. Once
the timeout expires, the circuit breaker allows a limited number of test requests
to service providers, and, if they pass, it changes to a closed state. Hystrix and
NGINX are relevant technology stacks here.

Logging and Reporting. To control what is happening in microservices, ac-
cessing the consolidated logs [5], implementing infrastructure-level metrics, and
creating a holistic view of the system, we need to establish an efficient logging
and reporting functionality. The system is used for a variety of purposes, such
as monitoring the traffic and service usages, identifying the cause of errors, and
finding performance bottlenecks. Due to the wide scope, different technologies
(i.e., Hystrix, Grafana, Kibana, and fluentd) are used for specific purposes.

Continuous Delivery Pipeline. To establish a CD pipeline, we required
continuous integration using following components. Jenkins was the solution
used as the continuous integration server to build and deploy the applications.

Kuksa: a cloud-native architecture 9

Docker was the tool that we used for the containerisation of applications and
to isolate them from each other. The Docker Hub, as the repository of Docker
container images, pulls images from Docker’s public registry instance. Figure 5
shows the CD pipeline in EKCP.

€
“15

=
Jenkins dOCer

5

Fig. 5. The continuous delivery pipeline

5 Evaluation

5.1 Experimental Setting

To evaluate CD in the proposed architecture, we considered that our service sent
automatically-generated updates as specific calls to forty vehicles in a specific
region of the city. The calls were similar as they were demonstrating one released
update. The software delivery cycle that the calls sent to the vehicles was one
minute. In each call, we changed “next move direction” in the rover and the de-
signed architecture should continue the message delivery without interruption.
We ran the experiment for a duration of one hour to record how different mi-
croservices patterns behave in a CD environment in ACPs. We reviewed what
percentages of calls is sent successfully to the rover and provide a statistics of
successful and failed calls to show the CD performance in our design.

To review the scalability and reliability of the services in our designed archi-
tecture, we deployed three different scenarios. We aimed to measure metrics such
as service downtime, recovery time, and load sharing behaviours. We registered
four instances of Backserver service and one Client service (see Section 5) on a
Spring Fureka server. The experimental scenarios were as follows.

1. During the first 10 minutes, all services were up and running. Half of the
Backserver instances (two instances) shutdown automatically at 00:10 and
re-started simultaneously at 00:15.

2. All service instances from the Backserver shut down automatically at 00:20
and started gradually (one by one) every five minutes until they all came up
at 00:40.

3. All service instances from the Backserver went off at 00:45 and re-started
simultaneously at 00:50.

Figure 6 presents the experimental setting in this study, including the differ-
ent services, components, and technology stacks.

The cloud Back-end. We developed the Backserver and Client services using
Spring Boot. All microservices were running on a computer with an Intel Core i7-
6600U CPU @2.6 GHz and 20 GB installed RAM. Eclipse Hono version 7.0 was

10 Banijamali et al.

Kuksa cloud platform) In-vehicle platform
<=<service>> Rl
, &
Intelligent routing v
+c>
=<<service>> J
Client
T wice
—€&) — &)
<<services>
<<component=> <<component>>
Monitoring {8} ss|ins boot Backserver Configuration server y -
<<component>> & i | #9) <<component>>
=<service»> ano
Logging & reporting Service registry MQTT client
ge broker
ry

Fig. 6. The experimental setting

used as the message broker to connect the Backserver to the in-vehicle platform
via MQTT using a 4G connection. The Hono instance was placed on an Azure
Kubernetes service (AKS) cluster.

The Client service automatically triggered the delivery to the Backserver
instances. Each message delivered to the rover contained the “rover id”, “speed
control”, and “next move direction”. The Backserver was responsible for sending
the messages to the Hono instance and from there to the rover. The microservice
patterns and technologies used are shown in Table 1.

Table 1. Microservice patterns and technologies used in this experiment

Pattern Technology Customised configuration

Intelligent routing |Netflix Zuul serviceld: backserver, serviceld: Client
Load Balancing Netflix Ribbon Server list refresh interval: 2s

Circuit breaker Hystrix Sleep window: 5s, Request volume thresh-

old: 20, Error threshold: 50%
Configuration server|Eureka -
Service registry Eureka eureka.client.register-with-eureka=false
eureka.client.fetch-registry=false

Monitoring Hystrix dashboard |-

The in-vehicle Platform. To demonstrate the outcomes of the experiment,
we used a rover, which is an open source mobile robot. The rover includes a
Raspberry Pi 3 Model B (RPi3), a motor driver layer (Arduino), and a Rover-
Sense layer designed for in-vehicle communication demonstrations. A customised
software (called roverapp®) was designed that runs on a Linux-based embedded
single board computer (i.e., RPi3). The roverapp includes an API to handle
various functions in the rover, such as motion control.

In addition to the commands sent to the rover, the RoverSense layer sends
telemetry data from different sensors, such as infrared proximity sensors, ultra-
sonic sensors, temperature and humidity sensors, and an accelerometer to the

® https://app4mc-rover.github.io/rover-app/

Kuksa: a cloud-native architecture 11

cloud. The roverapp creates the possibility of real-time video streaming to the
cloud platforms, such as Azure or AWS. It also allows the marker detection used
in platooning or autonomous driving scenarios.

The rover’s features’ applications and tooling use AGL as the operating sys-
tem, which runs on RPi3. The in-vehicle Kuksa layers, including a middleware
layer (containing Kuksa APIs and Eclipse Paho) and an application layer (con-
taining a runtime and sandbox environment), run on top of AGL. These two
layers enable functions such as communication to the cloud via MQTT and
third party applications’ implementation.

5.2 Results

This section is structured to address the research questions and includes the
aggregated results of our experiment.

RQ1. Can the microservices architecture design enable over-the-air
continuous delivery from cloud platforms in the automotive domain?
CD helps teams to produce applications in short cycles and ensures that the
software can be reliably released at any time. Figure 7 shows the service registry
dashboard in a Spring Eureka server. It shows that four instances of the Back-
server and one Client service were up and running at the time of the experiment.

g‘ Sprlng 2Ka HOME LAST 1000 SINCE STARTUP

System Status

Environment test Current time 2019-06-03T11:50:06 +0300
Data center default Uptime 00:23

Lease expiration enabled rue

Renews threshold 11

Renews {last min) 12
DS Replicas

Instances currently registered with Eureka

_
Application AMIs Zones Status

nfa
4

BACKSERVER (4)

nfa

CLIENT 1)
(1) o
ZUUL- nfa e o
i {1) - TOLO25146 . mshome. net:zuul-service:5090
SERVICE o “ it

Fig. 7. Registered services for the designed architecture

Table 2 shows the aggregated results of the duration that each service in-
stance of the Backserver was up during our designed scenarios. In addition, it
shows statistical information on the service resiliency in our setting.

During our experiment, we could make changes (shutdown, re-start, and
update the code) in a service without affecting other services. According to our
experimental scenarios, Backserver instances set up and down multiple times,
even though it did not impact other available services. It was easy to make

12 Banijamali et al.

Table 2. Experiment results using the designed microservices architecture

No. of running instances in Time
three scenarios
zero (shutdown all instances) 10 min.

Total duration of experiment 60 min. one 5 min.
two 10 min.

Cycle time 1 min. three 5 min.
four 30 min.

Circuit breaker status No. Circuit breaker status No.

Success (execution completed with 22 Failure (execution threw an Ex- 24

O errors) ception)

Timeout (execution started, but did 4 Short-Circuited 0

not complete in the allowed time)

Quickest time to call Backserver 1 min.
when came up

changes on a service, e.g., updating the listening port or rover direction, without
interruption to other services.

Our findings indicated that although we had a number of failed calls and
timeout errors due to the following reason, the circuit breaker could prevent
cascading failures to other services. The Client service talked with the service
registry to receive the IP addresses of available Backserver instances and used
its load balancer to choose one of them. The Client service could not know
directly that a Backserver instance was no longer available. This is the job of the
service registry to continuously discover which Backserver instances are dead or
alive via heartbeat mechanisms. During our experiment, the Backserver instances
shutdown several times while the Client service could not get the list of the
remaining instances from the service registry in real-time. In this approach, the
service discovery logic tightly coupled with clients, in which it could improve
through other approaches, such as server-side service discovery.

Summary. The designed architecture preserved continuous software de-
livery by automatic registering and de-registering service instances and
continuing OTA software delivery after each change.

RQ2. How can the microservices architecture design improve the reli-
ability and scalability of services in cloud platforms in the automotive
domain? Table 3 shows a summary of the results of the total calls on each
Backserver instance. The Client service sent more calls on the Backserver in-
stances that were up for a longer time in our scenarios. In total, we had 990
successful calls distributed among four Backserver instances to control the rover
speed and movement direction.

Table 3. The number of calls on the Backserver instances

Service #1 455
Service #2 276
Service #3 153
Service #4 106

Total calls sent to rover 990

Kuksa: a cloud-native architecture 13

Figure 8 presents how the load balancing mechanism distributed the load
among the different instances. In addition, it shows the circuit breaker behaviour
regarding different errors to improve the reliability of the system.

e Sorvice] = @ = Sorvice2 Service3 = @ = Serviced Total sent

404040 40 40 40 404040 4040 4040 40 40 40

40 | 40 J40 37

37 35

Number of messages
B

®
v

N
8
N
==
2

==

3
©
o
e

Time (minutes elapsed)
Fig. 8. The number of calls on each service in three scenarios

The client-side strategy load balancing automatically distributed concurrent
calls to the available Backserver instances. The Netflix Ribbon load balancer
continuously rotated a list of Backserver instances that were attached to it (the
Round Robin method). In addition, to manage failures that happened in a ser-
vice (e.g., timeout), Hystrix prevented cascading failures to other services, which
improved the fault tolerance of our system. Broken service instances automati-
cally recovered and registered themselves into the Eureka service registry, which
made the designed microservices recoverable.

Summary. Although failures often happen in services, load balancing
mechanisms were able to skip unhealthy instances.

6 Discussions

The objective of this research was to review whether the recent architectural
design styles, such as microservices, could address CD and DevOps in the auto-
motive domain. In an experimental setting, we evaluated how quality attributes
such as the scalability and reliability of services could be improved by microser-
vices patterns.

RQ1. Can the microservices architecture design enable over-the-air
continuous delivery from cloud platforms in the automotive domain?
A previous study [6] noted that to maintain continuous software delivery, it
is necessary to address architectural challenges, such as the deployability and
modifiability. Our findings showed that the proposed architecture could improve
the deployability of the system as there was no need to resolve the conflicts

14 Banijamali et al.

between changes afterwards. Furthermore, we could deploy changes in different
services independently and quickly without any interruption in other services.

We noticed that microservices created the possibility to make the changes
localised to one service while other services were not affected. We had lightweight
services that made any update in the codes easier. In safety-critical systems,
such as ACPs, it is vital that changes in a service or technology do not interrupt
other running services. Our findings showed that microservices could improve
the modifiability of the architecture. Although the designed architecture could
enable the CD in this domain by sending OTA messgaes to the rover, there were
several failed and timeout calls that should be optimised with respect to different
service level agreements.

RQ2. How can the microservices architecture design improve the reli-
ability and scalability of services in cloud platforms in the automotive
domain? Scalability is the property of a system that handles a growing amount
of requests by adding resources to the system. The Backserver instances allowed
us to support a good number of concurrent calls coming from the Client to the
rover. The Backserver was also stateless, which did not retain consumer states. It
enabled us to have autoscaling of the services when the load required. The load
balancing mechanism in our system could also distribute the load automatically
among available service instances.

Our findings in this study showed how the fault-tolerant mechanisms, such
as the circuit breaker, could handle the resiliency and reliability in our proposed
architecture. We defined different thresholds such as the error threshold per-
centage and request volume threshold to force the circuit breaker to open and
prevent slow or failed calls from interrupting other services in our architecture,
which improved reliability of the architecture.

6.1 Threats to validity

Construct validity, in our research, is concerned with using the right measures
in our experiment. To assess the reliability and scalability, we used the common
metrics that are widely applied in the literature (see [5,23]). Internal validity
concerns the relationship between the constructs and the proposed explanation.
Our implementation was run in three scenarios in a laboratory experimental
setting with specific and defined objectives. Although we established a controlled
environment, aspects related to the performance of Azure cloud platform or
4G network connection could not be customised or controlled. In addition, the
implementation and results were discussed and reviewed among the authors
of this study. In our experiment, we selected the technology stacks that are
commonly used by companies and the performance analysis of those technologies
are out of scope of this research.

External validity is related to the generalisability of the study. A previous
study [1] noted that it is not essential to satisfy all requirements by a given
benchmark candidate to be considered useful for empirical research. We applied
microservices patterns from scientific literature, established a controlled experi-
ment with three defined scenarios, and used a real-world project to evaluate the
behaviour of one single microservice in the designed architecture. Future studies

Kuksa: a cloud-native architecture 15

can replicate the experiment with multiple services in real continuous software
delivery environments in the automotive domain to evaluate generalisability of
the results. Reliability concerns the repeatability of the research procedure and
conclusions. We explained in detail the experimental setting and all publicly
available materials, which can be applied by future studies.

7 Conclusion

Automotive cloud platforms have received increasing attention from research
and industrial communities. To increase the reliability and scalability in ACPs
and enable continuous software delivery in the automotive domain, we proposed
a microservices architecture for a real-world project called Eclipse Kuksa and
ran an experiment to evaluate the designed architecture.

Our findings showed that the proposed architecture could handle CD through
improving the deployability, modifiability, and availability of the architecture.
Our designed architecture could address quality issues, such as payload distri-
bution among different instances and the resiliency of services. The research
findings showed that microservices are an interesting design alternative to ad-
dress quality concerns of future cloud platforms in the automotive domain.

References

1. Aderaldo C. M., Mendonga N.C., Pahl C., Jamshidi P.: Benchmark requirements
for microservices architecture research. In: 1st Int. Workshop on Establishing the
Community-Wide Infrastructure for Arch.-Based Soft Eng., pp. 8-13. IEEE (2017).

2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables de-
vops: Migration to a cloud-native architecture. IEEE Software 33, 42-52 (2016).

3. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures
using microservices: An experience report. In: Adv. in Service-Oriented and Cloud
Comp., pp. 201-215. Springer, Switzerland (2015).

4. Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D.A., Lynn, T.: Microservices
migration patterns. Software: Practice and Experience. J. Software: Prac. and Expe.
48, pp. 2019-2042 (2018).

5. Bass, L., Weber, 1., Zhu, L.: DevOps: A software architect’s perspective. Addison-
Wesley Professional (2015).

6. Chen, L.: Microservices: Architecting for continuous delivery and DevOps. In: Int.
Conf. on Software Arch. (ICSA), pp. 39-397. IEEE (2018).

7. Contreras-Castillo, J., Zeadally, S., Guerrero-Ibanez, J.A.: Internet of vehicles: Ar-
chitecture, protocols, and security. Internet of Things J. 5, pp. 3701-3709 (2018).

8. Datta, S. K., Gyrard, A., Bonnet, C., Boudaoud, K.: oneM2M architecture based
user centric IoT application development. In: 3rd Int. Conf. on Future Internet of
Things and Cloud, pp. 100-107. IEEE (2015).

9. Dragoni, N., Dustdar, S., Larsen, S.T., Mazzara, M.: Microservices: Migration of a
mission critical system. arXiv preprint arXiv:1704.04173 (2017).

10. Ebert, C., Favaro, J.: Automotive software. IEEE Software 34, pp. 33-39 (2017).

11. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: Devops. IEEE Software 33,
94-100 (2016).

12. Fiosina, J., Fiosins, M., Miiller, J.P.: Big data processing and mining for next
generation intelligent transportation systems. J. Teknologi 63, pp. 21-38 (2013).

13. Fowler, M., Lewis, J.: Microservices. https://martinfowler.com/articles/microservices.html.

16 Banijamali et al.

14. Google Cloud: Designing a Connected Vehicle Platform on Cloud IoT Core - 2019-
05-07. https://cloud.google.com/solutions/designing-connected-vehicle-platform.

15. Héberle, T., Charissis, L., Fehling, C., Nahm, J., Leymann, F.: The connected car
in the cloud: A platform for prototyping telematics services. IEEE Software 32,
11-17 (2015).

16. Haghighatkhah A., Banijamali A., Pakanen O., Oivo M., Kuvaja P.: Automotive
software engineering: A systematic mapping study. J. Syst. Soft. 128, 25-55 (2017).

17. He, W., Yan, G., Da, Xu L.: Developing vehicular data cloud services in the IoT
environment. IEEE Trans. on Ind. Info. 10, pp. 1587-1595 (2014).

18. Jain, P.: Automotive Cloud Technology to Drive Industrys New Business Mod-
els - 2019-05-07. http://shiftmobility.com/2017/06/automotive-cloud-technology-
drive-automotive-industrys-new-business-models.

19. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, A., Zaharia, M.: A view of cloud computing.
Commun of the ACM 53 (2010).

20. Levcovitz, A., Terra, R., Valente, M.T.: Towards a technique for extracting mi-
croservices from monolithic enterprise systems. arXiv:1605.03175, (2016).

21. Lu, N., Cheng, N., Zhang, N., Shen, X., Mark, J.W.: Connected vehicles: Solutions
and challenges. Internet of Things J. 1, pp. 289-299. IEEE (2014).

22. Mietzner, R., Leymann, F., Unger, T.: Horizontal and vertical combination of
multi-tenancy patterns in service-oriented applications. Enterprise Info. Syst. 5, pp.
59-77 (2011).

23. Newman, S.: Building microservices: designing fine-grained systems. O’Reilly Me-
dia, Inc. (2015).

24. O’Brien, L., Merson, P.; Bass, L.: Quality attributes for service-oriented architec-
tures. In: Proc. of the Int. Workshop on Syst. Dev. in SOA Env., pp. 3 (2007).

25. Pahl, C., Jamshidi, P.: Microservices: A systematic mapping study. In: Proc. of
the 6th Int. Conf. on Cloud Computing and Services Science, pp. 137-146 (2016).

26. Rufino, J., Alam, M., Ferreira, J.: Monitoring V2X applications using DevOps and
docker. In: Int. Smart Cities Conf., pp. 1-5 (2017).

27. Serrano, D., Baldassarre, T., Stroulia, E.: Real-time traffic-based routing, based
on open data and open-source software. In: 3rd World Forum on Internet of Things,
pp. 661-665 (2016).

28. Shavit, M., Gryc, A., Miucic, R.: Firmware update over the air (FOTA) for auto-
motive industry. SAE Tech. (2007).

29. Stol, K., Fitzgerald, B.: The ABC of software engineering research. ACM Trans.
on Software Eng. and Meth. 27, 11 (2018).

30. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: A
systematic mapping study. In: Proc. of the 8th Int. Conf. on Cloud Computing and
Services Science, pp. 221-232 (2018).

31. Thones, J.: Microservices. IEEE Software 32, pp. 116-116 (2015).

32. Yang, M., Mahmood, M., Zhou, X., Shafaq, S., Zahid, L.: Design and implemen-
tation of cloud platform for intelligent logistics in the trend of intellectualization.
China Commu. 14, pp. 180-191 (2017).

33. Zeller, M., Prehofer, C., Krefft, D., Weiss, G.: Towards runtime adaptation in
AUTOSAR. In: 5th Workshop on Adaptive and Reconfigurable Embedded Syst.
10, pp. 17-20 (2013).

34. Zhang, T., Antunes, H., Aggarwal, S.: Defending connected vehicles against mal-
ware: Challenges and a solution framework. Internet of Things J. 1, pp. 10-21.(2014).

35. Zhu, L., Bass, L., Champlin-Scharff, G.: DevOps and its practices. IEEE Software
33, 32-34 (2016).

