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MODULAR IRREGULAR LABELING ON COMPLETE GRAPH AND
COMPLETE BIPARTITE GRAPH

Abstract

A graph that allows for a modular irregular labeling is a modular irregular labeling

graph. A modular irregular labeling of a graph G of size n is a mapping of the graph’s

set of edges to 1, 2, . . . , k with the weights of all vertices distinct. The sum of a vertices’s

incident edge labels is its weight and the weight of all vertex, determined using the method

of additive modulo n. The least biggest edge label that can be used for modular irregular

labeling is the modular irregularity strength. This article shows a modular irregular

labeling of complete graph Kn, n ≥ 3 and some family of complete bipartite graph.

1. Introduction

Graph labeling is the process of mapping a collection of integers, known as labels, to

graph elements, which are commonly represents either vertices or edges[2]. The labels are

usually defines a positive integer. There have been numerous labeling systems established.

Irregular labeling and modular irregular labeling are two examples[2]. Chartrand at. al.

[3] were the first to adopt irregular labeling[13],[30] in 1988. There have been research on

the irregular labeling of some graphs up to this point. Terminology that is not covered in

this paper may be found here [4].

“A modular irregular labeling defined by g : E → {1, 2, 3, ..., k} with k ∈ R+, such that

w(g(x)) =
∑

y∈N(x) g(xy) is distinct vertices, where N(x) is a incedent edges of vertex x.

The irregularity strength s(G) of a graph G is the minimum value of k for which G has

irregular labeling with labels at most k. The irregularity strength s(G) later proved that

if the tree of a graph G is defined only for graphs containing at most one isolated vertex

and no connected component of order 2. The lower bound of the irregularity strength of

a graph G is s(G) ≥ max
1≤i≤∆(G)

{ni + i − 1/i}, where ni vertices with degree i, as stated

in theorem 2.2. For a regular graph G Przyboylo[5] has demonstrated a upper bound of

∗ Corresponding author.
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an irregularity strength is s(G) < 16n+6d
6

. Aigner and Triesch[6] demonstrated that any

tree with no vertices of degree two has an irregularity strength equal to the number of its

leaves. Ferrara et al. [7] later proved that if the tree T has every two vertices of degree

not equal to two at a distance of at least eight with number of leaves at least three, then

s(T ) = n1 + n2/2, where n1 indicats the number of leaves and n2 indicates the number of

vertices of degree two. The survey of irregular labelling has beeen done by Baca et al.”

[8]. Many more outcomes have been discovered as a result of this survey report. For the

most recent information, see Gallian’s survey [2].

“A graph of modular irregular labeling is defined by ϕ : E(G) → {1, 2, ..., k}so that

a bijective function defined by wt(ϕ(x)) =
∑

y∈N(x) ϕ(xy) and distinct values. The set

of the weights of the vertices is a family of labeling exists is called the modular irregu-

larity strength ms(G) of the graph G.” The path, star, triangular graph, gear and cycle

graph’s modular irregularity strength was determined by Baca et al. [9]. The tadpole

graph’s modular irregularity and double cycle graph’s modular irregularity were proven

by Muthugurupackiam et al.[10]. Baca et al.[12], further demonstrated the fan graph’s

modular irregularity strength. Vidyanandini at. al. [13] analysed the edge irregularity

strength of complete graphs and complete bipartite graphs. Sugeng at. al. [1] determined

the modular irregular labeling on double friendship graph and star graph. In this paper,

we present the modular irregular labeling of complete graph and complete bipartite graph.

2. Known Results

“There are some known results that we will use to prove the modular irregularity

strength of the complete graph and complite bipartite graph that follows in this section.”

Theorem 2.1. (see[1]). “Let Skk, k is atleast 1 be a regular double star graph then

Skk =

 2k, k is odd

∞, k is even”

Theorem 2.2. (see[3]). “Let G be a connected graph with an order more than 2, which

has ni vertices with degree i. Then, s(G) ≥ max
1≤i≤∆(G)

{
ni+i−1

i

}
. The relation between the

iregularity strength and modular irregularit strength has been known and presented in the

following theorem”.
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Theorem 2.3. (see[9]). “Let G be agraph without a component of order ≤ 2. Then,

s(G) ≤ ms(G), Not all graphs can have modular irregular labeling. In the following

theorem, Baca et al. give a requirement of a graph that cannot have a modular irregular

labeling, denoted by ms(G) = ∞”.

Theorem 2.4. (see[9]). “If G is a graph of orger n, n ≡ 2(mod4), then G has no modular

irregular k-labeling, i.e., ms(G) = ∞”.

3. Main results

“In this section, we will prove modular irregular labeling for different vetex of complete

graph and complete bipartite graph.

Theorem 3.1. Complete graph Kn, n ≥ 3 admit a modular irregular labeling.

Proof. Let G be a simple undirected graph in which every pair distinct vertices are con-

nected by a unique edge. Let v1, v2, ..., vn be the vertices and e1, e2, ..., en be the edges.

Let |v(G)| = n and |E(G)| ≤ n. The weights of the vertices are the sum of its in-

cident edge labels and all vertex weights are calculated with sum modulo n. Define

f : V (G) → 0, 1, 2, ..., n− 1 and f : E(G) → 1, 2, ..., n.”

Case(i) When n = 3, the complete graph K3 illustrated.

The vertex labeling V (G) has follows vi = i− 1, i = 1, 2, ..., n− 1 and the edge labels for

Figure 1. Complete Graph K3

the complete graph K3 defined by

f(vivj) = i, i = 1, j = 2

f(vivj) = i+ 2, i = 1, j = 3

f(vivj) = i, i = 2, j = 3
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Case(ii)When n = 4, the complete graph K4 illustrated.

The vertex labeling V (G) has follows vi = i− 1, i = 1, 2, ..., n− 1 and the edge labels for

Figure 2. Complete Graph K4

the complete graph K4 defined by

f(vivj) = i, i = 1, j = 2

f(vivj) = i, i = 1, j = 3

f(vivj) = i, i = 1, j = 4

f(vivj) = i, i = 2, j = 4

f(vivj) = i− 1, i = 2, j = 3

f(vivj) = i, i = 3, j = 4

Case(iii) When n = 5, the complete graph K5 illustrated.

The vertex labeling V (G) has follows vi = i− 1, i = 1, 2, ..., n− 1 and the edge labels for

the complete graph K5 defined by

f(vivj) = i, i = 1, j = 2, f(vivj) = i, i = 1, j = 3

f(vivj) = i+ 1, i = 1, j = 4, f(vivj) = i, i = 1, j = 5

f(vivj) = i, i = 2, j = 3, f(vivj) = i, i = 2, j = 4

f(vivj) = i− 1, i = 2, j = 5, f(vivj) = i, i = 3, j = 4

f(vivj) = i− 2, i = 3, j = 5, f(vivj) = i− 3, i = 4, j = 5

Case(iv) When n = 6, the complete graph K6 illustrated.

The vertex labeling V (G) has follows vi = i− 1, i = 1, 2, ..., n− 1 and the edge labels for

the complete graph K6 defined by
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Figure 3. Complete Graph K5

Figure 4. Complete Graph K6
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f(vivj) = i, i = 1, j = 2, f(vivj) = i, i = 1, j = 3

f(vivj) = i, i = 1, j = 4, f(vivj) = i+ 1, i = 1, j = 5

f(vivj) = i, i = 1, j = 6, f(vivj) = i, i = 2, j = 3

f(vivj) = i− 1, i = 2, j = 4, f(vivj) = i, i = 2, j = 5

f(vivj) = i− 1, i = 2, j = 6, f(vivj) = i, i = 3, j = 4

f(vivj) = i− 1, i = 3, j = 5, f(vivj) = i− 2, i = 3, j = 6

f(vivj) = i− 1, i = 4, j = 5, f(vivj) = i− 3, i = 4, j = 6

f(vivj) = i− 4, i = 5, j = 6

Case(v)When n = 7, the complete graph K7 illustrated.

The vertex labeling V (G) has follows vi = i− 1, i = 1, 2, ..., n− 1 and the edge labels for

Figure 5. Complete Graph K7

the complete graph K7 defined by

f(vivj) = i+ 2, i = 1, j = 2, f(vivj) = i+ 2, i = 1, j = 3
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f(vivj) = i+ 1, i = 1, j = 4, f(vivj) = i+ 1, i = 1, j = 5

f(vivj) = i+ 2, i = 1, j = 6, f(vivj) = i, i = 1, j = 7

f(vivj) = i+ 1, i = 2, j = 3, f(vivj) = i+ 1, i = 2, j = 4

f(vivj) = i, i = 2, j = 5, f(vivj) = i, i = 2, j = 6

f(vivj) = i, i = 2, j = 7, f(vivj) = i− 1, i = 3, j = 4

f(vivj) = i+ 1, i = 3, j = 5, f(vivj) = i− 1, i = 3, j = 6

f(vivj) = i− 1, i = 3, j = 7, f(vivj) = i− 1, i = 4, j = 5

f(vivj) = i+ 1, i = 4, j = 6, f(vivj) = i− 2, i = 4, j = 7

f(vivj) = i− 1, i = 5, j = 6, f(vivj) = i− 2, i = 5, j = 7

f(vivj) = i− 3, i = 6, j = 7

Case(vi) When n = 8, the complete graph K8 illustrated.

The vertex labeling V (G) has follows vi = i− 1, i = 1, 2, ..., n− 1 and the edge labels for

Figure 6. Complete Graph K8

the complete graph K8 defined by

f(vivj) = i+ 1, i = 1, j = 2, f(vivj) = i, i = 1, j = 3

f(vivj) = i, i = 1, j = 4, f(vivj) = i, i = 1, j = 5

f(vivj) = i, i = 1, j = 6, f(vivj) = i, i = 1, j = 7
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f(vivj) = i, i = 1, j = 8, f(vivj) = i, i = 2, j = 3

f(vivj) = i− 1, i = 2, j = 4, f(vivj) = i− 1, i = 2, j = 5

f(vivj) = i− 1, i = 2, j = 6, f(vivj) = i− 1, i = 2, j = 7

f(vivj) = i− 1, i = 2, j = 8, f(vivj) = i− 1, i = 3, j = 4

f(vivj) = i− 1, i = 3, j = 5, f(vivj) = i− 2, i = 3, j = 6

f(vivj) = i− 2, i = 3, j = 7, f(vivj) = i− 2, i = 3, j = 8

f(vivj) = i− 2, i = 4, j = 5, f(vivj) = i− 2, i = 4, j = 6

f(vivj) = i− 2, i = 4, j = 7, f(vivj) = i− 3, i = 4, j = 8

f(vivj) = i− 3, i = 5, j = 6, f(vivj) = i− 2, i = 5, j = 7

f(vivj) = i− 4, i = 5, j = 8, f(vivj) = i− 1, i = 6, j = 7

f(vivj) = i− 5, i = 6, j = 8, f(vivj) = i− 6, i = 7, j = 8

therefore, by the definition vertex labels are obtained in complete graph Kn, n =

3, 4, ..., 8 □

Theorem 3.2. Let Kn be a complete graph on n vertices then ms(Kn) =
ms(Kn−1)∗ms(Kn−2)

3

for n = 5, 6

Proof. The vertices are follows V (G) = vi = i− 1, i = 1, 2, ..., n− 1 and the edge labels

for the complete graph defined by minimum of k by the definition of modular irregularity

strength of G is obtained. Which completes the theorem. □

Theorem 3.3. Let Km,n be a complete bipartite graph then ms(Km,n) = m+ n− 2

Proof. Let us call the vertices of Km,n as {x1, x2, ..., xm, y1, y2, ..., yn} where x′
is and y′is

are vertices. Let us define vertex labelling as follows Φ(xi) = 3, 1 ≤ i < 2

Φ(xi) = 4, 2 ≤ i < 3

Φ(xi) = 6, 3 ≤ i < 4

Φ(xi) = 1, 4 ≤ i < 5

Φ(yj) = 2, 1 ≤ j < 2

Φ(yj) = 5, 2 ≤ j < 3

Φ(yj) = 7, 3 ≤ j < 4

Φ(yj) = 0, 4 ≤ j < 5

the edge values are obtained {2, 3, 5, 6}
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+

Figure 7. Bipartite Graph K4,4

Let us define edge labels as follows

f(xiyj) = i+ 1, i = 1, j = 1, f(xiyj) = i+ 2, i = 1, j = 2

f(xiyj) = i+ 2, i = 1, j = 3, f(xiyj) = i+ 2, i = 1, j = 4

f(xiyj) = i+ 1, i = 2, j = 1, f(xiyj) = i+ 3, i = 2, j = 2

f(xiyj) = i, i = 2, j = 3, f(xiyj) = i, i = 2, j = 4

f(xiyj) = i− 1, i = 3, j = 1, f(xiyj) = i− 1, i = 3, j = 2

f(xiyj) = i+ 2, i = 3, j = 3, f(xiyj) = i+ 2, i = 3, j = 4

f(xiyj) = i− 1, i = 4, j = 1, f(xiyj) = i− 1, i = 4, j = 2

f(xiyj) = i+ 1, i = 4, j = 3, f(xiyj) = i+ 2, i = 4, j = 4

Hence from definition of modular irregular labeling, the vertex labeling of the complete

bipartite graph Km,n obtained. □

4. Applications

In numerous fields of wireless networks, such as cognitive radio networks, Bcube for

signals, big data, and cloud computing, bipartite graphs can mathematically simulate

common scenarios as well as major problems[14]-[21]. Using modular irregular label-

ing in Bcube graph of networks we can connect more subscribers with minimum of

connectivity[11]. In science, engineering, and technology, as well as medicine, the bi-

partite graph has a wide range of applications[32]. In cloud computing and cognitive
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radio networks, bipartite graphs and perfect matching algorithms may tackle a variety of

challenges[22]-[29],[31]. Graphs are used to networks communication, data organisation

and computational devices etc. Modeling cloud computing and cognitive radio network

challenges will be the focus of future study. Bipartite graph applications in computer

science, particularly in the above-mentioned fields, are rarely studied in the literature.

Figure 8. Bcube

Figure 9. Radio Networks

Conclusions

Hence complete graph Kn, n ≥ 3 and some family of complete bipartite graph admits

modular irregular labelling.
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