
EasyChair Preprint
№ 3210

Cryptographic Algorithm Analysis and
Implementation

Nandkumar Niture

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 20, 2020

1

Cryptographic Algorithm Analysis and Implementation

By: - Nandkumar A Niture

2

Abstract

The impact and necessity of information security has increased exponentially over the last f ew

decades as the denial-of-service attacks are increasing, information is being stolen , hackers are

using more sophisticated and smart methods with help of agile tools for stealing sensitive

information. Do small/mid-size/large corporate organizations need the security of their system?

Yes. They have sensitive user data, employee data, trading data, customer data and other

sensitive confidential information stored in office systems. Do common people need the security

of their systems at home? Yes. They may have their taxes files, social security card information,

bank account details, private pictures, marketing strategy for their small business and many more

private things.

 Computer cryptography was the exclusive domain for long period of time since World War II

but now is practiced outside of military agencies. Cryptography is both science and art , it uses

known obscurity and mathematical formulae. Cryptographic systems should have ability to

assure the authenticity of source from where message gets originated and proof of complete

message delivery. It is sometimes insufficient to protect ourselves from the rules and laws, but

we need to protect ourselves with applying sufficient mathematical equations. So, it is

individuals and legal organizations responsibility to protect their own data.

By combining the digital signature with public-key cryptography, we can develop a protocol that

combines the security of encryption with the authenticity of digital signatures. The signature is

the proof of authenticity. The easiest way to get someone’s public key is from a secure database

from somewhere. The database has to be public, so that anyone can get anyone else’s public key

from secure database.

This paper will aim to assess the cryptographic algorithms and their ways of implementation

with the core principles of cryptographic systems where they take a plaintext message and

through a set of transposition, convert the same plaintext message into ciphertext and from

ciphertext to plaintext. Also covers hashing functions and hashing algorithm techniques.

This paper will also focus on the classes and use of java programming language to implement the

combination of algorithms and their output along with the algorithm time complexity and

problem-solving methodology. This paper can be used as prime source in the field of cyberspace

to get started with the security algorithm implementations.

3

Keywords: Cryptography, Encryption, Decryption, Ciphertext, Plaintext, Cryptographic

Algorithms, Key, Public Key, Private Key, Hashing, Brute-force, Message-Digest, Padding,

Cascad, Time-Complexity, Space-Complexity, Digital-Signature,

4

Abbreviations

AES – Advanced Encryption Standards

SKC – Secrete Key Cryptography

DES – Data Encryption Standard

NBS – National Bureau of Standards

EFF - Electronic Frontier Foundation

IACR - International Association for Cryptologic Research

3DES – Triple DES

NIST – National Institute of Standards and Technology

MD – Message Digest

JCA – Java Cryptographic Architecture

5

Figures and Tables

Tables

Table 1.1 – Cryptographic Algorithms

Table 1.2 - Characteristics of the algorithms

Figures

Figure 1.1: Secrete Key Cryptography

Figure 1.2: Public Key Cryptography

Figure 1.3: Hash Function

Figure 1.4: Digital Signature

Figure 3.2.1: Polynomial equation Time Complexity

Figure 3.2.2: NP and P diagram

Figure 4.2.1: Hash Function – High Level View and Detailed View

6

Table of Contents

Abstract………………………………………………………………………………….........2

Abbreviations………………………………………………………………………………....4

Figures and Tables………………………………………………………………………….…5

Chapter1. Introduction.………………………………………………………………….…….7

1.1 Cryptography………………………………………………………………………………8

1.2 Types of Cryptography…………………………………………………………………10

1.3 Cryptographic Algorithms……………………………….……………………………...12

Chapter 2. Literature review……………………………………………………………….…15

2.1 Algorithm Design History…………………………………………………………….….15

2.2 Protocols…………………………………………………………………………….…...17

2.3 certification……………………………………………………………………………….18

Chapter 3. Research Methodology………………………………………………………….24

3.1 Java Cryptographic Architecture………………………………………………………...24

3.2 Time and space Complexity…………………………………………………………….29

3.3 Java Application Security…………………………………………………………….…32

Chapter 4. Analysis and Discussion…………………………………………………………35

4.1 Analysis…………………………………………………………………………………35

4.2 Discussion………………………………………………………………………………38

Chapter 5. Conclusion and Recommendations………………………………….………….41

5.1 Result of Analysis ………………………………………………………...……………41

5.2 Recommendation……………………………………………………………………… 42

5.3 Open Questions ……………………………………………………………………….42

Appendices……….………………………………………………………………………...43

References …………………………………………………………………………………47

7

Chapter 1

Introduction

The widespread use of the Internet, more connected models, and sophisticated computer and

networking technologies have created the most important and critical collateral – “data”.

Currently, a big percentage of data or information exchanged over the Internet today is not

secure or encrypted effectively (Intel® AES-NI Performance Testing on Linux*/Java* Stack,

2012). The data security is the biggest challenge of computer and information science. The

security always comes with price. The communication is not always happening in a secured way.

There are multiple reasons for this issue. Applications security is always big concern in the world

of data and information security. Confidential data leaked many times because of not having

tight application security. In the healthcare arena, data security becomes crucial as individual

PHI can be compromised to criminals who can use that valuable information to wreak havoc to

interconnected systems and personal lives of innocent citizens. Examples of some commonly

used healthcare workflows are data storage in EMR (Electronic Medical Records), secure

messaging, physician-patient communication, lab results transferred to EMR, Patient Portals and

ePrescibing (Intel® AES-NI Performance Testing on Linux*/Java* Stack, 2012).

Does increased security provide comfort to paranoid people? Or does security provide some very

basic protections that we are naive to believe that we don't need? During this time when the

Internet provides essential communication between literally billions of people and is used as a

tool for commerce, social interaction, and the exchange of an increasing amount of personal

information, security has become a tremendously important issue for every user to deal with.

There are many aspects to security and many applications, ranging from secure commerce and

payments to private communications and protecting health care information. One essential aspect

for secure communications is that of cryptography. But it is important to note tha t while

cryptography is necessary for secure communications, it is not by itself sufficient. The reader is

advised, then, that the topics covered here only describe the first of many steps necessary for

better security in any number of situations.

8

1.1 Cryptography

The art and science of keeping message secure is cryptography, and it is practiced by

cryptographers. The art and science of breaking ciphertext, that is, seeing through disguise. The

branch of mathematics encompassing both cryptography and cryptoanalysis is cryptology

(Schneier, 1996).

There are five primary functions of cryptography today:

1. Privacy/confidentiality

2. Integrity

3. Non-repudiation

4. Key exchange

Keys in cryptography:

What is key? A definition of a key from ISO/IEC 10116 (2nd edition): 1997 is

A sequence of symbols that controls the operation of a cryptographic transformation (e.g.

encipherment, decipherment). In practice a key is normally a string of bits used by a

cryptographic algorithm to transform plain text into cipher text or vice versa. The key should be

the only part of the algorithm that it is necessary to keep secret (Australia., 2000-14).

1. Public key

2. Private key

3. Symmetric key cryptography

4. Asymmetric key cryptography

In cryptography, we start with the unencrypted data, referred to as plaintext. Plaintext is

encrypted into ciphertext, which will in turn (usually) be decrypted back into usable plaintext.

The encryptions and decryptions are based upon the type of cryptography scheme being

employed and some form of key. For those who like formulas, this process is sometimes written

as:

The basic argument from computer magazine of Whitfield Diffie and Martin Hellman (Stanf ord

University)

Initial proposed standard of transformation of block of 64 plaintexts P bits into a block of 64

ciphertext bits of C and this is governed by key K which is 56 bits (Hellman, 1977).

9

C = Ek(P)
P = Dk(C)

where P = plaintext, C = ciphertext, E = the encryption method, D = the decryption method,
and k = the key.

Let’s discuss the known-plaintext attack for reasons of cryptoanalysis is based on variations of
the known-plaintext attack, NBS has agreed upon the system should be protected from the knows
plaintext attacks.

Let’s Suppose Key K is 56 bits for initial computation.

To decipher C under the K (2 ̂ 56 keys)

Let’s say one key tried each microsecond it would take 10^11 Seconds or 10^6 Days to do
search on keys.

The decreasing cost of computation has serious effect on breaking the keys, where in 10 years
let’s say $10 million machine should be $100,000 machine and days’ time will cost $25 .

What is latest on the time complexity of cracking DES - searched more than 88 billion keys

every second, for 56 hours, before found the right 56-bit key to decrypt the answer to the RSA

challenge, which was 'It's time for those 128-, 192-, and 256-bit keys.

To prove the insecurity of DES, EFF built the first unclassified hardware for cracking messages

encoded with it. EFF DES Cracker, which was built for less than $250,000. It took the machine

less than 3 days to complete the challenge, shattering the previous record of 39 days set by a

massive network of tens of thousands of computers. The research results are fully documented in

a book published this week by EFF and O'Reilly and Associates, entitled "Cracking DES: Secrets

of Encryption Research, Wiretap Politics, and Chip Design." Although the cryptographic

community has understood for years that DES keys are much too small, DES-based systems are

still being designed and used today. (RELEASE, 2016)

10

1.2 Types of Cryptography

Secret Key Cryptography (SKC): Uses one single key for both encryption and decryption; also

called symmetric encryption. Primarily used for privacy and confidentiality.

Example of algorithms – DES, 3DES(triple DES), AES, Blowfish, RC4, RC4.

Figure 1.1: Secrete Key Cryptography

Public Key Cryptography (PKC): Uses one key for encryption and another for decryption; also

called asymmetric encryption. Primarily used for authentication, non-repudiation, and key

exchange.

Example of Algorithms – RSA, Deffie-Hellman

Figure 1.2: Public Key Cryptography

Hash Functions: Uses a mathematical transformation to irreversibly "encrypt" information,

providing a digital fingerprint. Primarily used for message integrity.

Example of Algorithms – MD5, SHA256, SHA512.

11

Figure 1.3: Hash Function

In digital signing, one-way hash functions are used as input for a signing algorithm. In RSA

signing, a 36-byte structure of two hashes (one SHA and one MD5) is signed (encrypted with the

private key) (A. Freier, 2011).

Digital Signature: A digital signature is intended to copy the hand-written signature on an

important document such as contract. Its mathematical representation and conveys specific

meaning in binary data.

As shown in figure digital signature can be created by encryption the entire message with the

private key of the sender and even if future security is needed then the message can be encrypted

with symmetric algorithm. (A. Freier, 2011)

Figure 1.4: Digital Signature

12

1.3 Cryptographic Algorithms

Symmetric

Name of Algorithm Method of

Algorithm

Key Size

DES 64 bit block cipher 64 bit

3DES 64 bit block cipher 192 bit

Blowfish 64 bit block cipher 32 to 488 bit key

AES 128 bit block cipher 128, 192, 256 bit

Twofish 128 bit block cipher 128, 192, 256 bit

RC4 one bit per unit time 40 to 2048 bit key

RC5 block mode from 1 to 2048

Asymmetric

Name of Algorithm Method of

Algorithm

Key Size

RSA key transport 1028 bit

Diffie-Hellman key exchange varies

El Gamal key exchage varies

Hashing

Name of Algorithm Method of

Algorithm

Key Size

MD5 MD5 Block hashing 512 bit block

creates 128 bit

digest

SHA-1 Rivest SHA hashing 512 bit creates 160

bit digest

SHA-2 Hash creates 224, 256,

384 bit hashes

HMAC-MD5 key digest creates 128 bit

hashes

HMAC-SHA1

creates 160 bit

hashes

 Table 1.1 – Cryptographic Algorithms

13

Table 1.1 describes the cryptographic algorithms and their categorization in symmetric,

asymmetric and hashing types.

Based upon the NSIT recommendation, commonly used, key size, sharing, speed and complexity

of these algorithms below table have an explanation.

Table 1.2 - Characteristics of the algorithms (Mehmood, 2017)

Due to the above characteristics, symmetric and asymmetric algorithms are sometimes used in a

hybrid approach. Asymmetric ciphers are characteristically used for identity authentication

performed via digital signatures & certificates, for the distribution of symmetric bulk encryption

key, non-repudiation services and for key agreement. Symmetric ciphers are used for bulk

encryption of data due to their fast speed. (Mehmood, 2017)

Hybrid approach of symmetric and asymmetric algorithms will be used in effective way to

overcome the attacks and enhance the security in web applications.

This paper is going to elaborate on the use the algorithms in hybrid approach in java

cryptographic architecture along with its analysis.

Problem Statement and Justification: How to prevent data breaches and secure enterprise

applications using the combination of cryptographic algorithms with analysis in details. The

combination of superseded algorithms will resolve the attack almost 90% in volume

14

The right combination of using AES, DES and other algorithms will prevent the data leak and

vulnerabilities in enterprise applications. With this problem in mind, we need to analyze

algorithms in detail and make the combination of these algorithm in programing language for

proven security attacks.

15

Chapter 2

Literature Review

Security algorithms in cryptography is always very challenging and demanding area, as there are

high demands to analyze for the new security standards and put the outdated as deprecated f rom

the list. In this review I am going to present what has done so far, and the programing language

standards to put the mathematical functions together.

2.1 Algorithms design history

DES and 3DES:

DES is block cipher and it encrypts data in 64-bit blocks. A 64-bit plaintext block goes as an

input and 64-bit block of ciphertext comes out as output. As DES is symmetric key algorithm

both the encryption and decryption use the same key and the key length is 54 bits.

Almost 30 years after first publishing DES, the National Institute of Standards and Technology

(NIST) finally withdrew the standard in 2005, reflecting a long-established consensus that DES

is insufficiently secure. By 2008, commercial hardware costing less than USD 15,000 could

break DES keys in less than a day on average. DES is long past its sell-by date (L. Hornquist

Astrand, 2012).

Some DES implementations use triple-DES since DES is not a group, as resultant ciphertext is

much harder to break using exhaustive search 2^112 attempts as usually 2^56 in DES.

Plaintext P and Ciphertext C

Plaintext →DES(Key1)→DES(key2)→DES(key3)→Ciphertext

Ciphertext →DES(key3)→DES(key2)→DES(key1)→Plaintext

For a brute-force attack on 3DES, however, the outlook is far less optimistic. Consider the

problem: we know C and P, and we are trying to guess k1, k2, and k3 in the following re lation

(Kelly, 2006)

16

 C = E_k3(D_k2(E_k1(p)))

To guess the keys, we must execute something like the following (assuming k1, k2, and k3 are

64-bit values keys), E is encryption function, D is decryption function, C is Cyphertext

 for (k3 = 0 to 2^56 step 1)

 compute C2 = D_k3(C1)

 for (k2 = 0 to 2^56 step 1)

 compute C3 = E_k2(C2)

 for (k1 = 0 to 2^56 step 1)

 begin

 compute p = D_k1(C3) xor IV

 if (p equals p-expected)

 exit loop; we found the keys

 end

The correct combination should have to try 2^168 operations. But as the computing power has

raised over the time, the more operations taking place per microsecond. Building triple DES

cracker today is not impossible.

DES and 3DES both are very much susceptible for brute-force attacks which are well

accomplished in the moderated financial circumstances. Because of this cryptographer must look

out for more strong and robust algorithm to deal with the computing attacks.

For this matter the DES has deprecated and replaced by AES. Still many applications including

still rely on DES for security (Kelly, 2006).

AES:

The block cipher used in AES algorithm encryption protocol is 128 bits [AES MODE]. The

plaintext P is divided into 128-bit blocks in AES standard. The last block may have f ewer than

128 bits, and no padding is required.

Advanced Encryption Standard (AES) as a primitive to securely encrypt plaintext key(s) with

any associated integrity information and data, such that the combination could be longer than the

width of the AES block size (128-bits) where ciphertext bit should be a highly non-linear

function of each plaintext bit, and (when unwrapping) each plaintext bit should be a highly non -

17

linear function of each ciphertext bit, and it is sufficient to approximate an ideal pseudorandom

permutation to the degree that exploitation of undesirable phenomena is as unlikely as guessing

the AES engine key. (Schaad, 2002)

Inputs: Plaintext, n 64-bit values {P1, P2, ..., Pn}, and

 Key, K (the KEK).

 Outputs: Ciphertext, (n+1) 64-bit values {C0, C1, ..., Cn}.

 1) Initialize variables.

 Set A0 to an initial value (see 2.2.3)

 For i = 1 to n

 R[0][i] = P[i]

 2) Calculate intermediate values.

MSB is most significant bits

LSB is least significant bits

R Register of an 64 bit

 For t = 1 to s, where s = 6n

 A[t] = MSB(64, AES(K, A[t-1] | R[t-1][1])) ̂ t

 For i = 1 to n-1

 R[t][i] = R[t-1][i+1]

 R[t][n] = LSB(64, AES(K, A[t-1] | R[t-1][1]))

 3) Output the results.

 Set C[0] = A[t]

 For i = 1 to n

 C[i] = R[t][i] //array of 2 dimensions.

18

Diffie-Hellman Algorithm –

“As the Diffie-Hellman algorithm is asymmetric key algorithm and being used to establish a

shared secret that can be used for secret communications while exchanging data over a public

network using the elliptic curve to generate points and get the secret key using the parameters.

For the sake of simplicity and practical implementation of the algorithm, we will consider only 4

variables one prime P and G (a primitive root of P) and two private values a and b. P and G are

both publicly available numbers. Users (say Alice and Bob) pick private values a and b and they

generate a key and exchange it publicly, the opposite person received the key and from that

generates a secret key after which they have the same secret key to encrypt (Implementation of

Diffie-Hellman Algorithm, 2017)“

Public Keys available = P, G

Private Key Selected = a, b

Key generated = x = G^a mod P Key generated = x = G^b mod P

Exchange of generated keys takes place

Key received = y key received = x

Generated Secret Key = k_a = y^a mod P Generated Secret Key = k_b = x^b mod P

Algebraically it can be shown that k_a = k_b

Users now have a symmetric secret key to encrypt

MD5 Algorithm –

This algorithm is hashing algorithm called Message Digest Algorithm. The algorithm takes as

input message of arbitrary length and produce 128-bit output called fingerprint. This algorithm is

basically intended for digital signatures applications. A large file be compressed in secure

manner before encrypted with private key under public-key cryptosystem such as RSA.

It has five steps and four rounds

1. Append padding bits

2. Append length

3. Initialize Message Direst buffer

4. Process this message into 16-word blocks

5. Output

this is for processing 16-word block

19

 For i = 0 to N/16-1 do

 For j = 0 to 15 do

 Set X[j] to M[i*16+j].

 End

MD5 is simple to implement, the only difficulty when its comes the same message digest f or 2

messages on the order of 2^64 operations, but this will rarely happen.

Most of copyrights are with RSA data security for this hashing algorithm. License will be

granted for derivative work with this algorithm from RSA data security.

SHA-

The United States of America has adopted Secure Hash Algorithms(SHAs). SHA-224, SHA-256,

SHA-384 and SHA-512 are used for computing a condensed representation of message or data

file. When a message size is less than 2^64 bits we use SHA-224 and SHA-256 but when a

message size is less than 2^128 bits we use SHA-384 and SHA-512, the result of the output is

called message digest. It is not computationally feasible to produce same message digest by the

two different messages. Message padding is used to make the total length of the message

multiple of 512 (for SHA-224, SHA-256) or a multiple of 1024(for SHA-384, SHA-512) (RFC

4634 US Secure Hash Algorithms (SHA and HMAC-SHA), 2006)

RC4 :

RC4 is a variable key-sized stream cipher developed by Ron Rivest in 1987. RC4 works in output-

feedback (OFB) mode, so that the key stream is independent of the plaintext. The algorithm is described

in detail in Schneier's Applied Cryptography, 2/e, pp. 397-398.

RC4 employs an 8x8 substitution box (S-box). The S-box is initialized so that S[i] = i, for i=(0,255).

A permutation of the S-box is then performed as a function of the key. The K array is a 256-byte structure

that holds the key (possibly supplemented by an Initialization Vector), repeating itself as necessary so as

to be 256 bytes in length (obviously, a longer key result in less repetition).

 j = 0

 for i = 0 to 255

 j = j + S[i] + K[i]

 swap (S[i], S[j])

Encryption and decryption are performed by XORing a byte of plaintext/ciphertext with a random byte

from the S-box in order to produce the ciphertext/plaintext, as follows:

 Initialize i and j to zero

20

For each byte of plaintext (or ciphertext):

 i = i + 1

 j = j + S[i]

 swap (S[i], S[j])

 z = S[i] + S[j]

 Decryption: plaintext [i] = S[z] XOR ciphertext [i]

 Encryption: ciphertext [i] = S[z] XOR plaintext [i]

21

2.2 Protocols

SSL:

SSL should be used to establish a secure connection between two devices. By utilizing SSL 3.0

to successfully exchange cryptographic parameters without knowledge of another’s code.

Basic block size is 8 bits,

value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) | ...| byte[n-1];

The asymmetric algorithms are used in the handshake protocol to authenticate parties and to

generate shared keys and secrets (A. Freier, 2011).

The Client list contains the following items:

• 1. Client hello
• 7. Certificate optional
• 8. Client key exchange

• 9. Certificate verify optional
• 10. Change cipher spec
• 11. Finished
• 14. Encrypted data

• 15. Close messages

Five empty lines separate item 1. Client hello and item 7. Certificate. Two empty lines separate

item 11. Finished and item 14. Finished.

The Server list contains the following items:

• 2. Server hello
• 3. Certificate optional
• 4. Certificate request optional
• 5. Server key exchange optional

• 6. Server hello done
• 12. Change cipher spec
• 13. Finished
• 14. Encrypted data

• 15. Close messages

Five empty lines separate item 6. Server hello done and item 12. Change cipher spec.

22

2.3 Certification

Creating a Keystore to Use with JSSE

Create a new keystore and self-signed certificate with corresponding public and private keys.

keytool -genkeypair -alias nameofstore -keyalg RSA -validity 7 -keystore keystore

Examine the keystore. Notice that the entry type is keyEntry, which means that this entry has a

private key associated with it).

keytool -list -v -keystore keystore

Enter keystore password: password

Export and examine the self-signed certificate

keytool -export -alias nameofstore -keystore keystore -rfc -file duke.cer

Enter keystore password: password

import the certificate into a new truststore.

keytool -import -alias nameofstorecert -file nameofstore.cer -keystore truststore

Enter keystore password: trustword

Before you can use the Java Signature class you must create a Signature instance. You create

a Signatureinstance by calling the static getInstance() method. Here is an example that creates a

Java Signatureinstance:

Signature signature = Signature.getInstance("SHA256WithDSA");

The String passed as parameter to the getInstance() method is the name of the digital signature

algorithm to use.

SecureRandom secureRandom = new SecureRandom();

KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("DSA");

KeyPair keyPair = keyPairGenerator.generateKeyPair();

signature.initSign(keyPair.getPrivate(), secureRandom);

When the Signature instance is initialized you can use it to create digital signatures. You create a

digital signature by calling the update() method one or more times, finishing with a call to sign().

Here is an example of creating a digital signature for a block of binary data:

byte[] data = "abcdefghijklmnopqrstuvxyz".getBytes("UTF-8");

signature.update(data);

byte[] digitalSignature = signature.sign();

23

If you want to verify a digital signature created by someone else, you must initialize

a Signature instance into verification mode (instead of signature mode). Here is how initializing

a Signature instance into verification mode looks:

Signature signature = Signature.getInstance("SHA256WithDSA");

signature.initVerify(keyPair.getPublic());

Notice how the Java Signature instance is now initialized into verification mode, passing a public

key of a public / private key pair as parameter.

Once initialized into verification mode you can use the Signature instance to verify a digital

signature. Here is how verifying a digital signature looks:

byte[] data2 = "abcdefghijklmnopqrstuvxyz".getBytes("UTF-8");

signature2.update(data2); (Corporation, 2016)

boolean verified = signature2.verify(digitalSignature);

In some cases, cost associated with changing digital certificates and cryptographic keys are high.

Examples include decryption and subsequent re-encryption of very high databases and legacy

systems, decryption and re-encryption of distributed systems has very huge number of keys. In

such a case, the expense of security measures necessary to support longer crypto periods may

justified. In some situations, we must revoke certification when employee or resource moving

from certain trusted job.

24

Chapter 3

Research Methodology

3.1 Java Cryptographic Architecture

There are many programming languages in which the security algorithms implemented for the

application security. The most common platform for today’s application development is Java.

The Java platform strongly emphasizes security with core libraries inbuilt, including language

safety, cryptography, public key infrastructure, authentication, secure communication. The JCA

(Java Cryptographic Architecture) is a major piece of the platform and contains a "provider"

architecture and a set of APIs for digital signatures, message digests (hashes), certificates and

certificate validation, encryption (symmetric/asymmetric block/stream ciphers), key generation

and management, and secure random number generation.

These APIs allow developers to easily integrate security into their application code. The

architecture was designed around implementation independence, implementation interoperability

and algorithm extensibility.

As java interoperable across applications, not bound to specific provider and provider is not

bound to specific application. Java platform has many built-in sets of security which used widely

today.

Java included packages javax.crypto, javax.crypto.spec, javax.crypto.interfaces

Java.security.provider is the base class for security providers. When instance of particular

algorithm needed, the JCS consult the providers database.

Suppose you want to get the statement request for SHA-512 from installed provider

 md = MessageDigest.getInstance(“SHA-512”);

to get an instance of an engine class to implement AES

import javax.crypto.*;

Cipher ctxt = Cipher.getInstance(“AES”);

ctxt.init(ENCRYPT_MODE, key);

ctxt init(DECRYPT_MODE, key); A secure class loading, and verification mechanism ensures

that only legitimate java code will get executed. It’s better to use java cryptographic architecture

mechanism while executing the application transactions on application and web servers.

25

Method to put security algorithms into programming language.

AES (Advanced Encryption Standard) can encrypt and decrypt information using a common

password of 128, 192 or 256 bits. In this program I am using a random 128 bits password in this

case (16 bytes). This is useful for protect classified information you need to bring back the

original form later. AES is a symmetric block cipher used by the U.S. government adopted.

MD5: Useful for databases, the text encrypted by MD5 theoretically can't be decrypted then only

the encrypted info would match the same result. Better to store passwords in databases , can be

hacked only by force breaker and it can be impossible as well and it cannot be decrypted

 Sample Java Code

package javacryptoarchitecture;

import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.UnsupportedEncodingException;

import java.security.*;
import java.util.Arrays;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import java.util.Scanner;

import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.spec.*;

import java.security.MessageDigest;
import java.security.cert.CertificateException;
import java.security.cert.CertificateFactory;
import java.util.Collection;

import java.util.Iterator;
import java.util.logging.Logger;
import javax.xml.bind.DatatypeConverter;

/**

 *
 * @author Nandkumar
 */
public class JavaCryptoArchitecture {

 /**
 * @param args the command line arguments
 * @throws java.security.NoSuchAlgorithmException
 * @throws java.security.InvalidKeyException
 * @throws javax.crypto.NoSuchPaddingException

 * @throws javax.crypto.IllegalBlockSizeException
 * @throws javax.crypto.BadPaddingException
 * @throws java.io.FileNotFoundException
 * @throws java.security.cert.CertificateException
 */

 public static void main(String[] args) throws NoSuchAlgorithmException, InvalidKeyException, NoSuchPaddingException,
IllegalBlockSizeException, BadPaddingException, FileNotFoundException, CertificateException, IOException {
 Scanner scanner = new Scanner(System.in);
 System.out.println("Type String from user: ");

26

 String userstring;
 userstring = scanner.nextLine();
 KeyGenerator kgen = KeyGenerator.getInstance("Blowfish");

 System.out.println(kgen);
 //kgen.init(128);
 SecretKey skey = kgen.generateKey();
 byte[] raw = skey.getEncoded();
 SecretKeySpec skeySpec = new SecretKeySpec(raw, "Blowfish");

 System.out.println(skeySpec);
 Cipher cipher = Cipher.getInstance("Blowfish");
 System.out.println(cipher);
 cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
 byte[] encrypted = cipher.doFinal("This is just an example".getBytes());

 System.out.println(Arrays.toString(encrypted));
 KeyGenerator keygen = KeyGenerator.getInstance("AES");
 keygen.init(128);
 System.out.println("this is KeyGen :" + keygen);

 SecretKey aesKey = keygen.generateKey();
 System.out.println("this is secretkey :" + keygen);
 Cipher aesCipher;
 aesCipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
 aesCipher.init(Cipher.ENCRYPT_MODE, aesKey);

 System.out.println("this is aesCipher :" + aesCipher);
 System.out.println("Type String from user: ");
 String userstring1;
 userstring1 = scanner.nextLine();
 byte[] cleartext;

 cleartext = userstring1.getBytes();
 System.out.println("this is cleartext :" + Arrays.toString(cleartext));
 byte[] ciphertext;
 ciphertext = aesCipher.doFinal(cleartext);
 System.out.println("this is ciphertext :" + Arrays.toString(ciphertext));

 aesCipher.init(Cipher.DECRYPT_MODE, aesKey);
 byte[] cleartext1;
 cleartext1 = aesCipher.doFinal(ciphertext);
 System.out.println("this is cleartext1 :" + Arrays.toString(cleartext1));

 System.out.println("Type String from user for SHA256 : ");
 Scanner sn = new Scanner(System.in);

 System.out.print("Please enter data for which SHA256 is required:");

 String data = sn.nextLine();
 JavaCryptoArchitecture jc = new JavaCryptoArchitecture();
 String hash = jc.getSHA256Hash(data);
 System.out.println("The SHA256 (hexadecimal encoded) hash is:" + hash);

 MessageDigest md = MessageDigest.getInstance("MD5");
 int MDciphertext = md.getDigestLength();
 System.out.println("This is MD5 Digest Length" + MDciphertext);
 Provider MDCipher = md.getProvider();
 System.out.println("This is MD5 Digest Provider" + MDCipher);

 String name = "Nandkumar";
 byte[] bytesOfMessage = name.getBytes("UTF-8");
 byte[] MDC1 = md.digest(bytesOfMessage);
 System.out.println(" This is MD5 cipher" + Arrays.toString(MDC1));
 }

 private String getSHA256Hash(String data) {
 String result = null;

 try {

 MessageDigest digest = MessageDigest.getInstance("SHA-256");

 byte[] hash = digest.digest(data.getBytes("UTF-8"));

27

 return bytesToHex(hash);

 } catch (UnsupportedEncodingException | NoSuchAlgorithmException ex) {

 }

 return result;
 }

 private String bytesToHex(byte[] hash) {

 return DatatypeConverter.printHexBinary(hash);

 }

Output of the program:

Type String from user:

Cryptographic Algorithm

javax.crypto.KeyGenerator@2dd5b144

javax.crypto.spec.SecretKeySpec@268502a9

javax.crypto.Cipher@20ebd7c4

[-32, 24, 17, 123, -103, 61, -46, 50, -89, -100, -17, -6, 27, 28, 38, -77, -7, 60, 65, -12, -41, 21, 77, 83]

this is KeyGen :javax.crypto.KeyGenerator@6e156bbf

this is secretkey :javax.crypto.KeyGenerator@6e156bbf

this is aesCipher :javax.crypto.Cipher@4d1b6341

Type String from user:

Nandkumar A Niture

this is cleartext :[78, 97, 110, 100, 107, 117, 109, 97, 114, 32, 65, 32, 78, 105, 116, 117, 114, 101]

this is ciphertext :[21, -49, -92, -88, -47, 60, 109, 113, 126, -58, 73, 35, 74, 93, 106, -95, 103, -124, -99, -50, 91, -56, 99, 1, -126, 17, -54, 26, 113, -

125, -93, 98]

this is cleartext1 :[78, 97, 110, 100, 107, 117, 109, 97, 114, 32, 65, 32, 78, 105, 116, 117, 114, 101]

Type String from user for SHA256 :

Please enter data for which SHA256 is required:Nandkumar Niture

The SHA256 (hexadecimal encoded) hash is:997CCD6D8B600D62A5DF98F99E7E7C9A7AA677386DAD4A0F81242D7F86994380

This is MD5 Digest Length16

This is MD5 Digest ProviderSUN version 1.7

 This is MD5 cipher[53, 16, 83, 107, 60, 77, 30, 58, -23, -122, -65, -66, -25, 21, -94, 100]

28

public static byte[] encrypt(final SecretKeySpec key, final byte[] iv, final byte[] message) throws GeneralSecurityException {

 final Cipher cipher = Cipher.getInstance(AES_MODE);
 IvParameterSpec ivSpec = new IvParameterSpec(iv);
 cipher.init(Cipher.ENCRYPT_MODE, key, ivSpec);
 byte[] cipherText = cipher.doFinal(message);

 log("cipherText", cipherText);

 return cipherText;
 }
public static String decrypt(final String password, String base64EncodedCipherText) throws GeneralSecurityException {

 try {
 final SecretKeySpec key = generateKey(password);

 log("base64EncodedCipherText", base64EncodedCipherText);

 byte[] decodedCipherText = Base64.decode(base64EncodedCipherText, Base64.NO_WRAP);
 log("decodedCipherText", decodedCipherText);

 byte[] decryptedBytes = decrypt(key, ivBytes, decodedCipherText);

 log("decryptedBytes", decryptedBytes);
 String message = new String(decryptedBytes, CHARSET);
 log("message", message);

 return message;
 }

29

3.2 Time and Space Complexity

Complexity theory provides a methodology for analyzing the computational complexity of an

algorithm. This can be measured by two variables Time(T) and Space(S)

Both T and S are expressed as function of n and where n is a size of an input. This computational

complexity measured in big O notation.

This is measured in terms of polynomial, lets say the quadratic equation polynomial is having

complexity as

T = O(n2)

Polynomial algorithms with index m is having time or space complexity as O(n raise to m)

This class of algorithm having time complexity is called polynomial-time algorithms.

In cryptography ideally a algorithm considered as best algorithm to break is algo rithm of

exponential-time complexity. The super polynomial time complexity algorithms is ideal f or the

cryptographer and security engineers to design.

 3.2.1Polynomial equation Time Complexity

30

Time evaluation for 3DES is cubic ---

 for (k3 = 0 to 2^56 step 1)

 compute C2 = D_k3(C1)

 for (k2 = 0 to 2^56 step 1)

 compute C3 = E_k2(C2)

 for (k1 = 0 to 2^56 step 1)

 begin

 compute p = D_k1(C3) xor IV

 if (p equals p-expected)

 exit loop; we found the keys

 end

3DES has 3 loops, so the time complexity would go high and its almost impossible to break the

security algorithm.

P = Problem solved

NP = Problem Not Solved

31

3.2.2 NP and P diagram

When P=NP the algorithms are breakable by feasible and deterministic.

In security we always must and make sure P should never be equal to NP

32

3.3 Java Application Security

To enable and disable the cryptographic algorithms in java application security –

Edit java.security file under jre/lib/security/java.security

If you want to enable or disable the algorithm

add values into jdk.tls.disabledAlgorithms= TLSv1, DES, DESede

Test to make sure TLSv1 is not enabled

openssl s_client -connect appserver-dev:7002 -tls1_1

This is test to make sure tls1_1 is enabled -

openssl s_client -connect appserver-dev:7002 -tls1_1

This is test to make sure DES and 3DES not enabled -

openssl s_client -connect oig01-dev.ual.com:7002 -cipher "DES:3DES"

Creating an SSLEngine object – From Java Oracle Reference

import javax.net.ssl.*;

import java.security.*;

KeyStore ksKeys = KeyStore.getInstance("JKS");

33

ksKeys.load(new FileInputStream("testKeys"), passphrase);

KeyStore ksTrust = KeyStore.getInstance("JKS");

ksTrust.load(new FileInputStream("testTrust"), passphrase);

KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");

kmf.init(ksKeys, passphrase);

// TrustManagers decide whether to allow connections

TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");

tmf.init(ksTrust);

sslContext = SSLContext.getInstance("TLS");

SSLEngine engine = sslContext.createSSLengine(hostname, port);

engine.setUseClientMode(true);

How to grant the permission on algorithms in Java application security .

Local_Policy.jar setting

// Some countries have import limits on crypto strength. This policy file
// is worldwide importable.

grant {
 permission javax.crypto.CryptoPermission "DES", 64;
 permission javax.crypto.CryptoPermission "DESede", *;
 permission javax.crypto.CryptoPermission "RC2", 128,
 "javax.crypto.spec.RC2ParameterSpec", 128;
 permission javax.crypto.CryptoPermission "RC4", 128;

 permission javax.crypto.CryptoPermission "RC5", 128,
 "javax.crypto.spec.RC5ParameterSpec", *, 12, *;
 permission javax.crypto.CryptoPermission "RSA", *;
 permission javax.crypto.CryptoPermission *, 128;

};

With no restrictions –

// Country-specific policy file for countries with no limits on crypto strength.
grant {
 // There is no restriction to any algorithms.
 permission javax.crypto.CryptoAllPermission;

};

Below program implement all the secure hash functions in one program

public class HashFun {

34

 // algorithms: MD2, MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512(most

Secure)

 public static void main(String[] args) {

 String anyString = "Hash this String";

 System.out.println(getHash(anyString.getBytes(), "SHA-512"));

 try {

 File image = new File("fam.jpg");

 byte[] imageBytes = Files.readAllBytes(image.toPath());

 System.out.println(getHash(imageBytes, "SHA-512"));

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 public static String getHash(byte[] inputBytes, String algo) {

 String hashVal = "";

 try {

 MessageDigest messageDigest = MessageDigest.getInstance(algo);

 messageDigest.update(inputBytes);

 byte[] digestedBytes = messageDigest.digest();

 hashVal =

DatatypeConverter.printHexBinary(digestedBytes).toLowerCase();

 } catch (Exception e) {

 e.printStackTrace();

 }

 return hashVal;

 }

35

Chapter 4

Analysis and Discussion

4.1 Analysis

If performance is not an issue, then there is no reason not to use multiple streams ciphers and

cascade them. The output of each generator can be again combined into another input output will

get the resultset of more complicated encrypted data. Now this standard can be applied in to the

data protection and make application more secured. The security of the cascade is at least as

secure as the strongest algorithm. Stream ciphers can be combined in all the same ways as block

ciphers. Stream ciphers can be combined in all the same ways block ciphers. Stream ciphers can

be cascaded with other stream ciphers, or together with block ciphers.

The most clever trick is to use the multiple algorithms either a block of stream or block cipher.

The ideal hash function has three main properties:

1. It is extremely easy to calculate a hash for any given data.

2. It is extremely computationally difficult to calculate an alphanumeric text that has a given

hash.

3. It is extremely unlikely that two slightly different messages will have the same hash.

The MD5 algorithm is intended for digital signature applications, where a large file must be

"compressed" in a secure manner before being encrypted with a private (secret) key under a

public-key cryptosystem such as RSA (Network Working Group, 1992).

In Java Message-Digest class provides the functionality of a message digest algorithm, such as
MD5 or SHA. Message digests are secure one-way hash functions that take arbitrary-sized data
and output a fixed-length hash value.

Like other algorithm-based classes in Java Security, Message-Digest has two major components:

Message Digest API (Application Program Interface)
This is the interface of methods called by applications needing message digest services.
The API consists of all public methods.

Message Digest SPI (Service Provider Interface)
This is the interface implemented by providers that supply specific algorithms. It consists
of all methods whose names are prefixed by engine. Each such method is called by a

36

correspondingly-named public API method. For example, the engineReset method is

called by the reset method. The SPI methods are abstract; providers must supply a

concrete implementation.

A MessageDigest object starts out initialized. The data is processed through it using
the update methods. At any point reset can be called to reset the digest. Once all the data to be
updated has been updated, one of the digest methods should be called to complete the hash

computation.

The digest method can be called once for a given number of updates. After digest has been

called, the MessageDigest object is reset to its initialized state.

Implementations are free to implement the Cloneable interface, and doing so will let client
applications test cloneability using instanceof Cloneable before cloning:

 MessageDigest md = MessageDigest.getInstance("SHA");

 if (md instanceof Cloneable) {

 md.update(toChapter1);

 MessageDigest tc1 = md.clone();

 byte[] toChapter1Digest = tc1.digest;

 md.update(toChapter2);

 ...etc.

 } else {

 throw new DigestException("couldn't make digest of partial

content");

 }

The MD5 message-digest algorithm is simple to implement and provides a "fingerprint" or

message digest of a message of arbitrary length. It is conjectured that the difficulty of coming

up with two messages having the same message digest is on the order of 2^64 operations,

and that the difficulty of coming up with any message having a given message digest is on

the order of 2^128 operations. The MD5 algorithm has been scrutinized for weaknesses. It is,

however, a relatively new algorithm and further security analysis is of course justified, as is

the case with any new proposal of this sort (Network Working Group, 1992).

Hashing is a one-way function. It's "irreversible". Unlike the other private or public key

which requires same key on client and server. Hashing is mostly used for integrity purposes

with the output hash given to anyone who request the hash function. Example: You

download a Oracle IOS image, you then download the hash, the hash is in a base 16 f ormat.

The hash you download will either MD5 or a version of SHA, this will be given by the

37

source of the IOS download. You can run the IOS image file through the same hash

mechanism (MD5 or SHA) using free software and you should get the same exact output that

Cisco did. This is the beauty of hashing; 1000 people can hash the same file 1000 times and

the exact same output should be created. With the hash being the same you have just proven

integrity of the data. If the hash is different than the data has been tampered with.

Encryption is a complex subject. Encryption takes plain text data and converts it to

unreadable data. There are multiple algorithms (symmetric & asymmetric) that can be used

to encrypt, it depends on the reason of encryption. Symmetric encryption algorithms (AES,

DES, 3DES) use the same key (public key) to encrypt and decrypt data. Asymmetric

encryption uses both private and public key to encrypt and decrypt data (commonly used f or

digital signatures).

A digital signature is when the sender of data hashes text, encrypts the text with his "Private

Key," then transmits the data (plain text & hash). The receiver has access to the senders

"Public Key" (receiver being validated and validating through a trusted CA) who then

decrypts the data, hashing the same text that the sender hashed which should come to the

same output. When this happens the receiver just verified the sender’s identity. Private and

public keys come in pairs and can only work within themselves, so if the obtained public key

decrypts data that was encrypted by the sender’s private key (sender is the only person who

should have it on the planet), non-repudiation and verification of identity was just performed

through that digital signature.

38

4.2 Discussion

Why hash functions are so important in today’s cryptographic standards, because hash

functions play a fundamental role in modern cryptography in many ways. While related to

conventional hash functions commonly used in non-cryptographic computer applications – in

both cases, larger domains are mapped to smaller ranges – they differ in several important

aspects. Our focus is restricted to cryptographic hash functions (hereafter, simply hash

functions), and to their use for data integrity and message authentication. Hash functions take

a message as input and produce an output referred to as a hash code, hash-result, hash-value,

or simply hash. (Lecture Outline UT Dallas, 2015)

High level View and Detailed view of hash function. Most unkeyed hash functions h are

designed as iterative processes and repeated the output processed data which hash arbitrary

length inputs by processing successive fixed-size blocks of the input, as illustrated in Figure

(Menezes, 1996)

39

Figure 4.2.1: Hash Function – High Level View and Detailed View (A. Freier, 2011)

A hash input x of arbitrary finite length is divided into fixed-length r-bit blocks xi. This

preprocessing typically involves appending extra bits (padding) as necessary to attain an

overall bitlength which is a multiple of the block length r, and often include a block or partial

block indicating the bitlength of the unpadded input. Each block xi then serves as input to an

internal fixed-size hash function f, the compression function of h, which computes a new

intermediate result of bitlength n for some fixed n, as a function of the previous n -bit

intermediate result and the next input block xi. Letting Hi denote the partial result after stage

i, the general process for an iterated hash function with input x = x1x2 ...xt can be modeled as

follows: H0 = IV ; Hi = f(Hi−1, xi), 1 ≤ i ≤ t; h(x) = g(Ht). Hi−1 serves as the n -bit chaining

variable between stage i − 1 and stage i, and H0 is a pre-defined starting value or initializing

value (IV). An optional output transformation g is used in a final step to map the n -bit

40

chaining variable to an m-bit result g(Ht); g is often the identity mapping g(Ht) = Ht. Hash

functions are distinguished by the nature of the preprocessing, compression function, and

output transformation. (Menezes, 1996)

41

Chapter 5

Conclusion and Recommendations

5.1 Result of Analysis

Computer security is based on the use of cryptography. Robust cryptography is based on two

things: Good algorithms (e.g., AES) and High-quality keys (e.g., good random numbers).

There is always a right way of doing things, and which involves a cost, time and quality work

from security engineers while building security around applications.

There are many ways for double to power of encryption, the method of cascading will construct

the double encryption in programmatic way to encrypt the data. As I have elaborated the

programming methods and structures of the deriving the encryption standards there are multiple

ways of encrypting the data.

5.2 Recommendations

 Data breached can be avoided with the strong security algorithms in application security. One o f

the most efficient way to implement security is at the time of application development and

making sure the quality of product rating based on its security in the application domain.

While doing customization at client side there need to be certain principles followed from the

security engineers and product development team. Security is not product or feature to be

released in the market, but it is the best practices to be implemented across each domain of

application development.

42

5.3 Open Questions

In this dissertation, I analyzed public-key and identity-based encryption schemes that are secure

against memory attacks. The first question that arises from our work is whether it is possible to

(define and) construct other cryptographic primitives such as signature schemes, identification

schemes and even protocol tasks that are secure against memory attacks. The second question is

whether it is possible to protect against memory attacks that measure an arbitrary polynomial

number of bits. Clearly, this requires some form of (randomized) refreshing of the secret -key,

and it would be interesting to construct such a mechanism. Finally, it would be interesting to

improve the parameters of our construction, as well as the complexity assumptions, and to design

encryption schemes against memory attacks under other cryptographic assumptions.

Electronics surveillance has become a powerful tool in the law enforcement and cybersecurity

law implementation. However, there is an increasing realization that new technology may be

helping hackers and criminals more than low and ethical enforcements. There are many open-

ended discussions on the privacy and security of sensitive data. Data encryption and using highly

secured algorithms is one of the way but not the only way!

43

Appendices

1. Privacy/confidentiality: Ensuring that no one can read the message except the intended

receiver.

2. Authentication: The process of proving one's identity.

3. Integrity: Assuring the receiver that the received message has not been altered in any way

from the original.

4. Non-repudiation: A mechanism to prove that the sender really sent this message.

5. Key exchange: The method by which crypto keys are shared between sender and receiver.

6. Public key: Public keys are those keys that are made available to anyone who needs it and

is used to encrypt the data.

7. Private key: A Private key is safe and is not available to anyone except the creator and is

used to decrypt data encrypted by the public key.

8. Symmetric key cryptography: In symmetric key cryptography the same key is used for

both encryption and decryption.

9. Asymmetric key cryptography: In asymmetric key cryptography a different key is used for

encryption and decryption.

10. Encryption algorithm: technique or rules selected for encryption.

11. Key: is secret value used to encrypt and/or decrypt the plain-text

12. Cryptanalysis: The study of cryptographic algorithms

13. Cryptology: Cryptography and cryptanalysis combined constitute the area of cryptology

Java Security Engine Classes

The following engine classes are available in Java Cryptographic Architecture (Corporation,

2016)

1. SecureRandom: used to generate random or pseudo-random numbers.

2. MessageDigest: used to calculate the message digest (hash) of specified data.

3. Signature: initialized with keys, these are used to sign data and verify digital signatures.

4. Cipher: initialized with keys, these are used for encrypting/decrypting data. There are

various types of algorithms: symmetric bulk encryption (e.g. AES), asymmetric

encryption (e.g. RSA), and password-based encryption (e.g. PBE).

44

5. Message Authentication Codes (MAC): like MessageDigests, these also generate hash

values, but are first initialized with keys to protect the integrity of messages.

6. KeyFactory: used to convert existing opaque cryptographic keys of type Key into key

specifications (transparent representations of the underlying key material), and vice versa.

7. SecretKeyFactory: used to convert existing opaque cryptographic keys of type SecretKey

into key specifications (transparent representations of the underlying key material), and

vice versa. SecretKeyFactorys are specialized KeyFactorys that create secret (symmetric)

keys only.

8. KeyPairGenerator: used to generate a new pair of public and private keys suitable for use

with a specified algorithm.

9. KeyGenerator: used to generate new secret keys for use with a specified algorithm.

10. KeyAgreement: used by two or more parties to agree upon and establish a specific key to

use for a particular cryptographic operation.

11. AlgorithmParameters: used to store the parameters for a particular algorithm, including

parameter encoding and decoding.

12. AlgorithmParameterGenerator : used to generate a set of AlgorithmParameters suitable

for a specified algorithm.

13. KeyStore: used to create and manage a keystore. A keystore is a database of keys. Private

keys in a keystore have a certificate chain associated with them, which authenticates the

corresponding public key. A keystore also contains certificates from trusted entities.

14. CertificateFactory: used to create public key certificates and Certificate Revocation Lists

(CRLs).

15. CertPathBuilder: used to build certificate chains (also known as certification paths).

16. CertPathValidator: used to validate certificate chains.

17. CertStore: used to retrieve Certificates and CRLs from a repository.

45

Key Size with possible combinations -

46

47

 References

A. Freier, P. K. (2011, August). The Secure Sockets Layer (SSL) Protocol Version 3.0 . Retrieved

from www.tools.ietf.org: https://tools.ietf.org/html/rfc6101

Australia., D. M. (2000-14). DI Management. Retrieved from DI Management Cryptography:

https://www.di-mgt.com.au/cryptokeys.html

Corporation, O. (2016, June). Engine Classes and Algorithms. Retrieved from www.oracle.com:

https://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html

Hellman, M. a. (1977). Exhaustive Cryptanalysis of NBS Data Encryption Standard.

https://ee.stanford.edu/~hellman/publications/27.pdf, 1-2.

Implementation of Diffie-Hellman Algorithm. (2017). Retrieved from

https://www.geeksforgeeks.org: https://www.geeksforgeeks.org/implementation -diffie-

hellman-algorithm/

Intel® AES-NI Performance Testing on Linux*/Java* Stack . (2012, June 1). Retrieved from

software.intel.com: https://software.intel.com/en-us/articles/intel-aes-ni-performance-

testing-on-linuxjava-stack

Kelly, S. (2006, December). Network Working Group RFC. Retrieved from www.ietf.org:

https://www.ietf.org/rfc/rfc4772.txt

L. Hornquist Astrand, A. I. (2012, July). Request for Comments: 6649 . Retrieved from

www.ietf.org : https://tools.ietf.org/html/rfc6649

Lecture Outline UT Dallas. (2015). Retrieved from

http://www.utdallas.edu/~muratk/courses/crypto07_files/hash.pdf:

http://www.utdallas.edu/~muratk/courses/crypto07_files/hash.pdf

48

Mehmood, A. (2017, oct 9). Differences between Hash functions, Symmetric & Asymmetric

Algorithms. Retrieved from www.cryptomathic.com:

https://www.cryptomathic.com/news-events/blog/differences-between-hash-functions-

symmetric-asymmetric-algorithms

Menezes. (1996). Handbook of Applied Cryptography. Retrieved from Math Waterloo.ca:

http://cacr.uwaterloo.ca/hac/about/chap9.pdf

Network Working Group, R. f. (1992, April). The MD5 Message-Digest Algorithm. Retrieved

from IETF : https://tools.ietf.org/html/rfc1321

RELEASE, P. (2016, Aug 9). EFF DES CRACKER MACHINE BRINGS HONESTY TO

CRYPTO DEBATE. Retrieved from www.eff.org: https://www.eff.org/press/releases/eff -

des-cracker-machine-brings-honesty-crypto-debate

RFC 4634 US Secure Hash Algorithms (SHA and HMAC-SHA). (2006, July). Retrieved from

https://tools.ietf.org: https://tools.ietf.org/html/rfc4634

Schaad, J. (2002, September). Advanced Encryption Standard (AES) Key Wrap Algorithm .

Retrieved from https://tools.ietf.org/html/rfc3394: https://tools.ietf.org/html/rfc3394

Schneier, B. (1996). Applied Cryptography. Hoboken, NJ: John Wiley & Sons Inc.

