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Abstract: Myocardial infarction disease (MID) is caused to the rapid progress of undiagnosed coronary artery disease 

(CAD) that indicates the injury of a heart cell by decreasing the blood flow to the cardiac muscles. MID is the leading 

cause of death in middle-aged and elderly subjects all over the world. In general, raw Electrocardiogram (ECG) signals 

are tested for MID identification by clinicians that is exhausting, time-consuming, and expensive. Artificial 

intelligence-based methods are proposed to handle the problems to diagnose MID on the ECG signals automatically.  

Hence, in this survey paper, artificial intelligence-based methods, including machine learning and deep learning, are 

review for MID diagnosis on the ECG signals. Using the methods demonstrate that the feature extraction and selection 

of ECG signals required to be handcrafted in the ML methods. In contrast, these tasks are explored automatically in 

the DL methods. Based on our best knowledge, Deep Convolutional Neural Network (DCNN) methods are highly 

required methods developed for the early diagnosis of MID on the ECG signals. Most researchers have tended to use 

DCNN methods, and no studies have surveyed using artificial intelligence methods for MID diagnosis on the ECG 

signals. 

Keywords: Myocardial Infarction Disease, Electrocardiogram, Machine learning, Deep learning, deep convolutional 

neural network, Diagnosis 

 

1. Introduction  

A Myocardial Infarction Disease (MID) is known as a Heart attack commonly [1-5], in the health care environment, 

which its symptoms, is damage to the heart cells due to lack of oxygen to the blood in the heart vessels, and there is a 

loss of blood supply to the heart. If the heart attack is not diagnosed in time, it consequences to physical disabilities 

in the left ventricle of the heart, which eventually leads to Congestive Heart Failure (CHF). Heart failure is the disease 

that the heart cannot pump blood around the body efficiently because the heart muscle is too weak to pump blood. 

Also in very acute heart conditions, can lead to the death of individuals with these symptoms. When Coronary Artery 
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Disease (CAD) is not diagnosed correctly, it progresses rapidly and leads to MID [6] as blood flow to the heart muscle 

decreases [7]. For example, the annual occurrence of Clinical centers reception for critical MID places between 90 

and 312 per 100 000 inhabitants in Europe [8] .  The image of healthy and MID subjects is shown in Figure 1 [9, 10]. 

 

Figure 1. Typical ECG signals of Normal and MID subjects. 

 

Based on Figure 1, most of the researchers used the Physikalisch-Technische Bundesanstalt (PTB) database for MID 

diagnosis. The records of the database are contained of twelve leads ECG and three Frank signals that are commentated 

by professional cardiologists. These signals are simultaneously recorded. There are 312 MID and 80 normal records 

from 113 MI patients and 52 HC patients, respectively, which is digitized at 1000Hz, with 16-bit resolution over a 

range of ±16.384 mV [11-13].  

Moreover, an illustration of MID is shown in Figure 3. 

 

 

Figure 2. An illustration of MID. 

Based on Figure 2, when one of the coronary arteries (right coronary artery, right coronary artery) becomes completely 

blocked, the MID is caused [14, 15]. 

The most common system of diagnosing heart disease, especially CAD and MID, is the electrocardiogram (ECG) [16-

18]. If the condition is not diagnosed correctly, during testing and individuals are not treated in time, it can lead to 

CHF. 

Therefore, it is essential to apply new methods and technologies based on intelligent decision-making of disease 

diagnosis. One solution is using Artificial Intelligence (AI)-based methods in healthcare [19-22]. In particular, 

healthcare researchers try to design and imbed a computer-based diagnostic system using AI methods that can both 

diagnose on time and distinguish MID subjects from healthy subjects with a high accuracy. As the latest scientific 

achievement for the early diagnosis of diseases based on images and medical signals, the DL follows ML methods. 

The difference between machine learning [23] and deep learning [24] is specified in terms of feature extraction and 

input data classification so that in machine learning, feature extraction and classification operations are performed 
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separately. In contrast, these operations are conducted automatically and hierarchical in deep learning. The difference 

between machine learning and deep learning methods is shown in Figure 3 [25]. 

 

 
Figure 3.  The difference between ML and DL. 

The DL is a model of learning based on the representation that the model trains and builds intrinsic features of 

consecutive hidden layers of neurons. In other words, the countless hidden layers of Artificial Neural Network (ANN) 

structure are the reason for calling it “deep learning” [26].  

In general, the ANN model is derived from the structure of a human biological brain. This model includes an input 

layer, zero to three hidden layers as the middle layers, and an output layer. The Conventional ANN structure is 

presented in Figure 4. 
 

 
Figure 4.  The Conventional ANN structure. 

 

According to Figure 4, each neuron is joined to one another in the successive layer using an interconnection. Dendrites 

(input pulses), axon branch (output), a neuron (soma), cell nucleus (activation function), and synapses (weights) make 

a neural cell. The activation function in the artificial neural cells performs as a nucleus of a neuron that the input 

signals and its correlated weights from dendrites and synapses. Since the ANN structure is amenable to shift deviation, 

it may cause unpleasant effects in the classification performance. A model was developed called the Deep 

Convolutional Neural Network (DCNN), to enhance the capability of the ANN model with the number of ten to 

hundreds of hidden layers [27]. The state of the art of early diagnosis of diseases, the DCNN method has been known 
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as a crucial DL method on images and medical signals [27-35]. The Conventional DCNN structure is represented in 

Figure 5.  

 

Figure 5.  The Conventional DCNN structure [36]. 

Based on Figure 5, the DCNN method is widely used in learning applications based on an image set. Due to the 

automatic feature extraction mechanism of DCNN, helpful information can be found in the training sample. By using 

several convolutional, pooling, and fully-connected layers, DCNN is generally designed. The feature extraction is 

performed by convolving the input with convolutional kernels. The Pooling layer can decrease the computational 

complexity of the network without significant variation in the resolution of the feature map. Usually, in DCNN, by 

increasing the number of layers, the size of the pooling layers reduces. The max-pooling and average pooling are well-

known as pooling layers. The last layer of the DCNN is called fully-connected neurons or fully-connected layers used 

to classify data. The classes are recognized using a classifier in the fully-connected layer.   

Recently, studies have been conducted to diagnose MID using artificial intelligence-based methods, which we review 

in the current survey paper. Hence, the survey considers two categories of MID diagnosis methods: ML-based and 

DL-based.  

The rest of the survey sections are as follows: A systematic literature review is provided for diagnosing the MID in 

Section 2. Section 3 describes the results and discussion. Conclusions and open research paths will be presented in 

Section 4. In the following, the terminologies are expressed in Table 1. 
 

                             Table 1. Terminologies 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Myocardial Infarction Disease (MID) 

Heart Failure (CHF) 

Coronary Artery Disease (CAD) 

Physikalisch-Technische Bundesanstalt (PTB) 

Electrocardiogram (ECG) 

Artificial Intelligence (AI) 

Machine Learning (ML) 
Deep Learning (DL) 

Deep Convolutional Neural Network (DCNN) 

Artificial Neural Network (ANN) 

Fuzzy Logic (FL)  

Back Propagation Neural Network (BPNN) 

Bayesian Artificial Neural Network Hermite Expansion (BANN-HE) 

the Area Under the Curve (AUC) 

Naïve Bayes (NB) 

Body Surface Potential Maps (BSPM)  

Principal Component Analysis (PCA)  

Latent Topic Multiple Instance Learning (LTMIL)  
Discrete Cosine Transform (DCT)  

K-Nearest Neighbor (KNN) 

Hidden Markov Models (HMMs) 

Gaussian Mixture Models (GMMs) 

Probabilistic Neural Network (PNN) 

Multilayer Perceptron (MLP) 

Improved Bat Algorithm (IBA)  

Neural Network (NN)  

Radial Basis Function (RBF) 

Discrete Wavelet Transform (DWT) 

Analysis of Variance (ANOVA)  

Empirical Mode Decomposition (EMD)  
Flexible Analytical Wavelet Transform (FAWT)  

Least-Squares Support Vector Machine (LS-SVM) 

Bagging Trees (BTs) 

Genetic Algorithm (GA)  

Fold-Cross Validation (FCV) 

Sparse Autoencoder (SAE)  

Tree Bagger (TB)  

Dual-Q Tunable Q-factor Wavelet Transformation (Dual-Q TQWT) 

Stationary Wavelet Transform (SWT)  

Recurrent Neural Network (RNN)  
Fourier–Bessel series expansion-based empirical wavelet transform (FBSE-

EWT)  

Gramian Angular Difference Field (GADF) 

Principal Component Analysis Network (PCANet)  

Multiple-Feature-Branch Convolutional 

Bidirectional Recurrent Neural Network (MFB-CBRNN) 

Multi-Lead Residual Neural Network (ML-ResNet)  

Automatic U-Net (AU-Net) 

Data Augmentation (DA) 

Multi-Lead Attention mechanism integrated with DCNN and Bidirectional 

Gated Recurrent Unit (MLA-DCNN- BiGRU)  
Guangdong Cardiovascular Institute (GCI) 
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2. A systematic literature review for MID diagnosis 

In this paper, a Systematic Literature Review (SLR) process is conducted for MID diagnosis based on the published 

papers between 2000 to 2021 from the Google Scholar search engine. Most papers are extracted from IEEE, Elsevier, 

and Springer databases. We used the Keywords to find papers such as myocardial infarction disease diagnosis, heart 

disease diagnosis, artificial intelligence techniques, machine learning (ML), and deep learning (DL). Forty-one papers 

were checked, of which 25 papers were run for ML methods, and 16 papers were performed for DL methods. The 

SLR process of MID diagnosis is shown in Figure 6. 
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Figure 6. The SLR process of MID diagnosis. 

Based on Figure 6, the performed studies for MID diagnosis have been described in Sections 2.1, 2.2, considering 

ML-based, and DL-based methods. 

2.1. ML-based methods 

The models have been trained with the part of the data to solve particular problems in machine learning. These models 

use probabilistic, statistical, and optimization techniques to learn from past experiences and recognize suitable patterns 

from varous datasets. In these models, the dataset is divided into training, testing, and validation categories. When a 

model is trained for classification problems, it exploits patterns in the training dataset to represent features to the 

target, allowing it to foresee according to new data. The training and validation sub-data are performed to renew the 

model on the interconnection between features and classes. In contrast, the test sub-data is performed to evaluate the 

model’s performance in getting forecasts on the unobserved datasets. Classical machine learning models such as 

Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), K-Nearest Neighbor 

(KNN), and Regression are used for disease classification. As the continues of enhancement of these classifiers, the 

ML DL ML DL ML DL ML DL 
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Other 
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Names of publishers for MID Diagnosis-Number of Citations 
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Google Scholar Engine 



6 
 

developed model, namely ANN, was made, which is derived from human biological neurons [13]. Hence, the studies 

that have been conducted based on the machine learning methods for diagnosing MID are as followed. 
Readdy et al. [41]  have acquired an accuracy of 79% and a specificity of 97% for MID diagnosis using 15 features of 

the V2- V4 chest lead QRS measurement and with the ANN-feedforward classification.  

Hedén et al. [67]  have used 1120 ECGs of MID patients, and 10,452 normal ECGs applying the ANN classification 

method and achieved a sensitivity of 95% and a specificity of 86.30%.  

Lu et al. [42]  designed a neuro-fuzzy method for the classification and diagnosis of MID on 12-lead ECG signals. 

Their proposed method includes Fuzzy Logic (FL) theory and Back Propagation Neural Network (BPNN). As a result, 

the proposed FL-BPNN method obtained an accuracy of 89.4% for MID and an accuracy of 95.0% for normal subjects.  

Haraldsson et al. [54]  have developed a 12-lead ECG-based MID diagnosis method using Bayesian Artificial Neural 

Network trained by Hermite Expansion coefficients called BANN-HE at the emergency department of the University 

Hospital in Lund, Sweden. Based on the BANN-HE method, the Area Under the Curve (AUC) is 83.4% on 2238 ECG 

signals. Moreover, an accuracy was obtained 94.0% for the MID subjects and 93.3% for subjects without MID through 

the original ANN. 

In [43] , the diagnosis of MID was studied by Zheng et al., using SVM, NB, and RF, on the 192 lead Body Surface 

Potential Maps (BSPM). The results demonstrate that the above methods regarding accuracy were obtained 82.8%, 

81.9%, and 84.5%, respectively. 

In a study by Arif et al. [44] , a BPNN method was proposed to diagnose and localization of MID on the PTB database. 

They achieved the classification accuracy of 93.7% using the BPNN method with the extracted features based on the 

Principal Component Analysis (PCA) technique. 

Sun et al.  [1] have presented a Latent Topic Multiple Instance Learning (LTMIL) method for MID diagnosis with 12 

ECG leads. They use Discrete Cosine Transform (DCT) bandpass filters for signal processing and five-order 

polynomial fitting to determine 74-dimensional feature spaces. They also have been developed the particle swarm 

optimizer for variable weighting, and it has been modeled as a Gaussian distribution, which means the heart rate 

distribution. The classification was done with SVM, NN, KNN, RF, and ensemble learning achieve the high accuracy 

of 90% by KNN ensemble combined with LTMIL.  

A study has been done by Arif et al. [37]  for the diagnosis and localization of MID using the KNN method on the 

20,160 ECG beats from the PTB database. In the experimental phase, they have used 10080 heartbeats for non-pruning 

training and 711 beats for pruning training performing the proposed method on half of the randomly selected pulses 

for MID automatic diagnosis. In the following, 36 dimensions of the feature vector were determined using the dual 

wavelet transform method on the ECG signals. Finally, dividing MID rates into 11 classes (10 classes for infarct site 

and 1 class for normal subjects, they have reached the sensitivity and specificity above 90% and the overall 

classification accuracy of 98.8%. The overall classification achieved an accuracy of 98.3% through the proposed 

method by pruning the training dataset.  

In [55] , Chang et al. have been studied MID diagnosis based on four chest lead (V1, V2, V3, and V4) with Hidden 

Markov Models (HMMs), Gaussian Mixture Models (GMMs), SVM, and Viterbi methods from the Taoyuan Armed 

Forces General Hospital located in Taiwan. In their study, 582 MID and 547 normal heartbeats were tested so that the 

results demonstrate that the combined HMMs and GMMs method has a maximum accuracy of 82.50% for the 

diagnosis of MID. 

Safdarian et al. [15]  investigated classification methods such as Probabilistic Neural Network (PNN), KNN, 

Multilayer Perceptron (MLP), and NB for the diagnosis and localization of MID. As a result, they achieved 94.74% 

accuracy for MID diagnosis using the NB classifier and the accuracy of 76.67% for MID localization using the PNN 

method. 

Kora et al. [38]  have improved a Bat Algorithm called (IBA) to extract the main features of each heartbeat from the 

PTB database, including 148 MID subjects and 52 normal subjects. The best features are extracted through the 

proposed algorithm and then applied to the backpropagation Levenberg–Marquardt Neural Network (LMNN) 

classifier input. As a result, the performance of the classifier is improved with the help of optimized features, so that 

the IBA method combined with LMNN regarding the accuracy of 98.9% performs better than the classification 

methods such as SVM, LMNN, scalar conjugate gradient neural network, and KNN for MID diagnosis.  

Sharma et al. [45]  have implemented multiscale energy and eigenspace approach for MID diagnosis. According to 

this approach, the wavelet decomposition of multi-lead ECG signals is applied to clinical components in different 

subgroups. Moreover, a frame with four beats from each ECG lead is used to diagnose a heart attack. In addition, out 

of 1074 subjects of MID and 1074 subjects of normal to determine the characteristics of 72-dimensional vectors of 

12-lead ECG signals, multilayer ECG frames are controlled. The ECG classification performed with applying SVM 

with Radial Basis Function (RBF) kernel, linear SVM, and KNN classifiers so that the best accuracy has been achieved 

96.0% for MID diagnosis. 
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Acharya et al. [56]  suggested a KNN classifier to classify normal and ml ECG signals, including 611,405 signals 

(125652 normal and 485.753MI) and Subjects (148 MID of 10 types and 52 normal) on the ECG signals from the 

PTB database. Each signal is subjected to four levels of Discrete Wavelet Transform (DWT) decomposition using 

Daubechies six wavelet basis function. Then 12 types of nonlinear properties are extracted from DWT coefficients. 

Finally, essential features are ranked based on their t-values and F-values doing t-test and Analysis of Variance 

(ANOVA) techniques. The ANOVA test was used to rank more than two characteristics of the class, namely normal 

and ten types of MID. The results of the proposed method show that the classification accuracy of the normal and MI 

classes is 98.80% based on 47 characteristics from lead 11 (V5). In addition, they achieved an accuracy of 98.74% for 

diagnosis and classification of 11 classes (10 types of MI and normal) based on 25 characteristics from 9lead (v3). 

Meanwhile, they obtained an accuracy of 99.97% for localization based on nine lead (v3). 

Acharya et al. [57]  have compared three methods such as DWT, Empirical Mode Decomposition (EMD), and DCT to 

diagnose of CAD and MID. In their study, ECG signals are subjected to DCT, DWT, and EMD to obtain the 

corresponding coefficients. These coefficients are reduced using the Locality Preserving Projection (LPP) method. 

Then, the LPP features are ranked with the help of the F-value. Finally, highly ranked coefficients are placed in the 

KNN classification to achieve the best classification performance. The highest accuracy rate of 98.5% is obtained 

through the DCT Coefficients combined with KNN on the ranked seven features.  

Kumar et al. [68]  have used a sample entropy in Flexible Analytical Wavelet Transform (FAWT) structure to diagnose 

MID on the ECG heartbeat signals. Firstly, the ECG signals are segmented into pulses. Then, FAWT is developed for 

each ECG beat to decompose them into sub-band signals. Sample entropy is determined from these sub-band signals, 

and it is given to different classifiers. Based on the FAWT combined with the least-squares support vector machine 

(LS-SVM) classifier, the highest classification accuracy of 99.31% was obtained compared to the RF, J48 decision 

tree, and BPNN classification methods. 

Khatun and Morshed [46]  studied the Bagging Trees (BTs) classification method to diagnose MID on the single-lead 

ECG data. The proposed method identifies the points P, Q, R, S, and T on the ECG signals automatically, so that were 

extracted 33 features, including 15 types of interval and 18 types of amplitude. Using the BTs method, MID is 

diagnosed with an accuracy of 99.7% based on a single lead ECG data (Lead V4). 

Acharya et al. [58]  have introduced the KNN classifier to classify MID on the lead II ECG signals from the PTB 

database. The essential features were selected using the improved binary particle swarm optimization method of the 

ECG signals. The selected features are graded utilizing ANOVA and relief methods. High-ranking features were 

applied to the DT and KNN methods. They gained 99.55% accuracy through the KNN method with 

contourlet transform based on the 20 selected features on the ECG signals. They also obtained 99.01% accuracy using 

shearlet transform with the same number of features.  

Dohare et al. [59]  tried to use the SVM with PCA reduction technique to diagnose MID based on 12-lead ECG signals 

so that each lead ECG is analyzed with the aid of composite lead. Meanwhile, the PCA method is utilized for reducing 

computational complexity and feature size. They achieved 98.33% accuracy using the SVM method on primary 

features 220, whereas they obtained 96.66% accuracy through the SVM with PCA.   

Diker et al. [47]  developed the SVM method combined with a Genetic Algorithm (GA) on the ECG signals from the 

PTB database to diagnose MID. In their study, identification of ECG signals is made using morphological features, 

time-domain, and DWT to diagnose MID subjects from normal. In total, 23 features were extracted. The results 

dedicate that nine features are identified by GA. In addition, the dimensions of the features were reduced from 23 to 

nine, and an accuracy of 87.8% is obtained on the nine selected features using SVM with GA, whereas an accuracy 

of 86.44 is achieved using SVM with 23 features.  

Han and Shi [60]  discussed SVM-RBF, SVM with polynomial, linear SVM, BTs, and BPNN methods for MID 

diagnosis on 148 subjects, 368 records, 28213 MID beats, and 5373 normal beats from the PTB database. They 

developed a combination of global energy entropy features based on Maximal Overlap Discrete Wavelet Packet 

Transform (MODWP) and local morphological features to extract features on the ECG signals. Then they suggested 

PCA, linear discriminant analysis, and locality preserving projection methods to reduce the number of features after 

the fusion of multi-lead ECG signals. The results dedicate that SVM-RBF with the 10 Fold-Cross Validation (FCV) 

technique has the best accuracy of 99.81% based on 18 features for the intra-patient pattern, as well as with the same 

method for the inter-patient pattern, 92.69% accuracy was gained based on 22 features.  

Zhang et al. [48]  presented staked Sparse Autoencoder (SAE) with Tree Bagger (TB) for diagnosing and locating MID 

from single-lead ECG signals from the PTB database. The feature extraction network in SAE-based diagnosis uses a 

layer-wise training strategy to avoid the vanishing gradient problem. It learns the optimal feature expression from the 

heartbeat without input tag. Hence, this method extracts deep, distinctive features from single-lead ECG signals. The 

TB classifier is designed to understand MID diagnosis combining the results of several decision trees and optimization 

of features. The experiments show that the accuracy of 99.90%, the sensitivity of 99.98%, and the specificity of 

99.52% are obtained using the SAE combined with the TB method. 
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Zeng et al. [61]  proposed the neural network method with RBF for early diagnosis of MID based on 12-lead and Frank 

XYZ leads ECG signal segments from the PTB database. Tunable quality factor wavelet transform, variational mode 

decomposition, and phase space reconstruction methods are assigned as nonlinear feature extraction methods to form 

cardiac vectors based on the synthesis of 12-lead ECG signals, and Frank XYZ leads. Ultimately, these feature vectors 

are forwarded into dynamical estimators, which are comprising RBF-neural network for the modeling, diagnosis, and 

classification of MID and healthy subjects. The proposed method has the best performance regarding the accuracy of 

97.98% using the 10-FCV technique. 

Kayikcioglu et al. [62]  developed SVM and KNN classification algorithms for ECG classification. Besides, the 

ensemble classification algorithms such as boosted trees, and BTs, Subspace KNN are used. Three databases are 

utilized such as MIT-BIH Arrhythmia database, the European ST-T database, and the Long-Term ST database. 

Moreover, these databases classified into four classes as Healthy, Arrhythmia, ST Depression, and ST Elevation. In 

their study, quadratic time-frequency distributions including smoothed Wigner-Ville, the Choi-Williams, the Bessel, 

and the Born-Jordan were applied on 5-lead ECG signals to extract the features. The results demonstrate that using 

the weighted KNN algorithm, a high accuracy of 94.23% is obtained based on the extracted features by the Choi-

Williams time distribution.   

Liu et al. [63]  proposed a single-beat MID diagnosis system using the Dual-Q Tunable Q-factor Wavelet 

Transformation (Dual-Q TQWT) denoising algorithm of ECG. The results were demonstrated that the proposed 

system with Dual-Q TQWT and wavelet packet tensor decomposition has better performance than DWT, EMD 

denoising methods. Also, a TB classifier was performed for the classification of MID records from normal records. 

Finally, they achieved 99.98% accuracy in beat level and 97.46% accuracy in record level for MID diagnosis using 

Dual-Q TQWT + DWPT + MPCA + TB system.  

In another study, Lin et al. [39]  designed a KNN classification model to diagnose MID from the PTB database. They 

utilized the Maximal Overlap Discrete Wavelet Packet Transform (MODWP) to decompose the ECG signal, extracted 

the variance, interquartile range, Pearson correlation coefficient, Hoeffding’s D correlation coefficient, and shannon 

entropy of the wavelet coefficients was performed. By using the proposed model, the accuracy of MID diagnosis was 

obtained 99.57%.  

2.2. DL-based methods  

Deep learning methods, unlike machine learning methods, have more hidden layers so that the number of the middle 

layers is about hundreds or more layers. DL methods can be performed by extensive data, unlike ML methods which 

conduct with a smaller dataset. 

Also, in DL methods, the input dataset passing each layer is transformed at each layer in sequence, until it is 

significantly different from its original state at the last layer. The transformation of the dataset is prompted through 

the reformed linear activation functions such as Relu, Sigmoid, softmax, and Hyperbolic Tangent. For example, 

Sigmoid function activation for binary classification and Softmax function for multi-class classification is used in the 

last network layer [13]. The DL-based models such as Deep Convolutional Neural Network (DCNN), Long Short-

Term Memory (LSTM), Recurrent Neural Network (RNN), and autoencoder network used for disease classification. 

Among these models, DCNN has better performance for processing and classifying signals compared to the ML 

methods [72]. Moreover, feature extraction and feature selection processes using DL methods are performed 

automatically, whereas these processes need to be handcrafted in standard ML methods.  Due to the mentioned 

descriptions for DL-based methods and ML-based methods, in this section, the related works to DL-based methods 

for MID diagnosis are review in detail.  

Acharya et al. [14]  implemented the 11 layer DCNN method for MID diagnosis on 10,546 normal signals and 40,182 

MID signals with and without noise, and Lead 2 ECG. As a result, the accuracy rates of MID diagnosis using the 

proposed DCNN method in terms of noise and without noise are obtained at 93.53% and 95.22%, respectively. 

However, their proposed method has been performed considering two ECG signals with noise and without noise, 

compared to the KNN classifier in [56] , that was made based on 12-lead ECG signals, which had a diagnostic accuracy 

of 98.80%.  

Reasat and Shahnaz [49]  devised a DCNN architecture that gives raw ECG signals from leads II and III, and AVF so 

that inferior myocardial infarction and normal signals are separated from each other. The proposed DCNN network is 

implemented based on a person-centered approach. According to this approach, DCNN was tested on one patient and 

was trained on the other patients. The diagnosis accuracy of the proposed method has increased compared to the  

Stationary Wavelet Transform (SWT) with KNN and the SWT with SVM [73] methods so that the best accuracy rate 

is gained 84.54% through DCNN than the above methods. 

Lui and Chow [64]  proposed a DCNN method combined with Recurrent Neural Network (RNN) on ECG (Lead I) 

records to diagnose MID. They have applied a family of RNN known as long short-term memory stacking decoding. 

The proposed method was compared with a pure DCNN and MLP classifier with hand-crafted features. The DCNN-
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RNN method has better performance than pure DCNN and MLP methods in terms of sensitivity with 92.4%, 

specificity of 97.7%, the positive predictive value of 97.2%, and F1 score of 94.6% for the MID diagnosis. 

Gupta et al. [40] have developed a deep learning model under the name of the modified ConvNetQuake neural network 

to identify ECG changes that may correctly classify cardiac conditions. The proposed ConvNetQuake model has been 

modified to obtain raw ECG records from both Leads (V6) and (VZ) simultaneously. Also, their proposed model is 

different from related works because their ECG records were entered into their neural network model that does not 

require handcrafted feature extraction or preprocessing. As a result, an accuracy of 99.43% was obtained using the 

developed DCNNQuake model, which demonstrates the level of cardiovascular surface performance for the diagnosis 

of MID after feeding only 10 seconds of raw ECG records to the proposed model. 

Baloglu et al. [65]  have presented a DCNN model with an end-to-end structure on the 12-Lead ECG signals for MID 

diagnosis. Their trained DCNN model had an impressive accuracy of 99.78% on Lead (V4) for MID diagnosis.  

Tripathy et al. [50]  designed a deep learning model with a least-square support-vector machine called DL-LSSVM, 

which is developed by the hidden layers of sparse auto-encoders. They have used the LSSVM method to diagnose 

MID based on the feature vector of 12-lead ECG signals. Meanwhile, they proposed a new approach named Fourier–

Bessel Series Expansion-based Empirical Wavelet Transform (FBSE-EWT) for the time-scale decomposition and the 

diagnosis of MID pathology of signals. The results dedicate that the combination of a DL-LSSVM model with FBSE-

EWT-based entropy features has the best accuracy of 99.74% for MID diagnosis. In addition, the accuracy rate of the 

hybrid method is increased by higher than 3% compared to the wavelet-based features for the diagnosis of MID.  

In a study by Zhang et al. [51] , three methods such as Gramian Angular Difference Field (GADF), Principal 

Component Analysis Network (PCANet i.e., the lightweight DCNN-like model), and Linear SVM were performed to 

extract crucial features from each image, and to diagnose MID automatically based on Lead II from the PTB database. 

Based on the Class-oriented scheme, achieved an accuracy of 99.49% (beat type: noise) and 98.44% (beat type: no 

noise) using GADF + PCANet + Linear SVM with 5-FCV, and the MID diagnosis accuracy reached 93.17% for the 

Patient-oriented scheme. 

Feng et al. [69]  proposed a multi-channel classification algorithm, which is the combination of a 16-layer DCNN and 

the LSTM net, to diagnose ECG signals of MID. Firstly, the proposed algorithm processes the raw signals to extract 

the various segments of the heartbeat. Then it is trained by the multi-channel DCNN and LSTM net to learn the 

obtained features automatically and perfect the ECG classification of MID. Using the 16-layer DCNN-LSTM method 

was gained a high accuracy rate of 95.4% without handcrafted features.  

Liu et al. [52]  suggested a new hybrid network named Multiple-Feature-Branch Convolutional Bidirectional Recurrent 

Neural Network (MFB-CBRNN) to diagnose MID based on 12 leads. In this proposed model, DCNN-based and RNN-

based structures are effectively combined. In addition, a bilinear long-short term memory network is applied to more 

summarize the features from the 12-lead ECG records. The used MFB-CBRN method had an accuracy of 99.90% for 

the class-oriented scheme and obtained an accuracy of 93.08% for the subject-oriented scheme on 12-lead ECG 

records. 

Strodthoff and Strodthoff [70]  used an ensemble method of Fully-Connected DCNN called DCNN-FC to diagnose 

the MID based on the PTB database considering the most proper clinical subjects of 12 leads. Based on the DCNN-

FC method, the sensitivity of 93.3% and specificity of 89.7% obtained using the 10-FCV technique with a sampling 

of patients.  

Han and Shi [12]  developed a Multi-Lead Residual Neural Network (ML-ResNet) model with three residual blocks 

and feature fusion for MID diagnosis based on 12-lead ECG signals from the PTB database. The results demonstrate 

that the ML-ResNet model gains an accuracy of 95.49% for the inter-patient scheme. In contrast, the accuracy is 

obtained 99.92% with the same method for the intra-patient scheme. 

Kim et al. [66]  utilized the DCNN models such as U-Net, including Semi-automatic u-Net, Automatic U-Net (AU-

Net), and automated encoder-decoder u-Net with Monte Carlo dropout sampling to estimate uncertainty in u-Net 

model fully automatic based on the cardiac perfusion image dataset for myocardial segmentation. Their results 

regarding average Dice similarity criterion using the proposed AU-Net method based on uncertainty estimation of 

0.806 (average ± standard deviation: ± 0.096) performs better than the semi-automatic and automatic u-Net models in 

terms of the same criterion with values of 0.808 (average ± standard deviation: ± 0.084) and 0.729 (average ± standard 

deviation: 0.147).  

Natesan et al. [53]  developed DCNN with Data Augmentation (DA), DCNN without DA, and DCNN with noise to 

classify MID based on multi-lead signals from the PTB database. The results dedicate that the DCNN method with 

DA has more accuracy of 94.98% than DCNN without DA, and DCNN with the noise of 90.34% and 90.93%, 

respectively.  

Fu et al. [71]  designed a new MID diagnosis mechanism called a Multi-Lead Attention mechanism integrated with 

DCNN and Bidirectional Gated Recurrent Unit (MLA-DCNN- BiGRU) framework on 12-lead ECG signals from the 

PTB database. To enhance the performance of MID diagnosis through the MLA mechanism, weights are automatically 
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gained and assigned due to the contribution of each lead for different leads. The two-dimensional DCNN module uses 

the related properties among leads. Also, Discriminative Spatial Features (DSFs) are extracted by the DCNN module. 

Meanwhile, the BiGRU module extracts Essential Temporal Features (ETFs) within each lead. DSFs and ETFs are 

combined for classification. According to the intra-patient scheme and inter-patient scheme, using the proposed MLA-

DCNN-BiGRU mechanism, an accuracy of MID diagnosis obtained 99.93% for the Intra-Patient scheme, and an 

accuracy of diagnosis of MID was achieved 96.5% for the inter-patient scheme.  

In another study, Tadesse et al. [11] researched an end-to-end DL approach to diagnose MID and normal subjects. In 

addition, the occurrence-time is expressed as acute, recent, and old classes of MID subjects by deep multi-lead ECG 

fusion through 12-lead ECG signals in Guangdong Cardiovascular Institute (GCI). Based on the proposed DL 

approach, three diagnosis modeling techniques are extended, such as spectral, longitudinal, and spectral-longitudinal. 

The Dens-LSTM method was utilized for classifying the data. Moreover, they used transfer learning architectures, 

including GoogLeNet and MnasNet to feature encoding, decreasing computational overhead and complexity, and 

reduced net training loss rate. The obtained results demonstrate that between three modeling techniques, the spectral-

longitudinal is the best technique regarding the AUC criterion with 85.2% using MnasNet features from the GCI 

database. In contrast, the accuracy of 73.2% using the Longitudinal technique is better than other techniques. 

Moreover, the Spectral-Longitudinal method combined with the Dens-LSTM classifier has the best AUC of 94% 

compared to the other techniques from the PTB Database.  

Diagnosis of MID, CAD, CHF, and Normal was presented by Jahmunah et al. [13] using DCNN and Gabor-Filter 

DCNN models on Lead II ECG signals. The Gabor filter was used to classify MID and normal subjects so that in the 

DCNN model, eight Gabor filters were replaced with the convolution layer to reduce computational complexity. 

According to the Gabor-Filter DCNN model, for four classes MID, CAD, CHF, and normal, an average accuracy rate 

was obtained 99.55%, and accuracy of 98.74% was gained using DCNN. In addition, the accuracy was obtained 

99.68% using the Gabor-DCNN model of MID diagnosis, and the accuracy was achieved 99.95% through the DCNN 

model. 

3. Results and Discussion 

In this section, firstly, the results for ML-based and DL-based methods are presented in Tables 2 and 3, respectively. 

Then the trend of conducted researches during different years for MID diagnosis is discussed in detail. 
 

Table 2. MID diagnosis using ML-based methods. 

ACC (%) Code 

Environment  

 

Dataset No. K-FCV  Methods No. Citations-

Publishers 

References No. 

79 Custom program 

developed at 

Glasgow Royal 
Infinnary and 

Siemens Elema AB 

(Solna, Sweden) 
 

Leads: v2-v4 

Subjects:  

272 MID, 
479 Normal  

NC 

 

ANN 39-IEEE Readdy et al., 

[41]   
1 

N/A 

 

JETNET 3.0 

package 

 

Leads: 12 leads 

Subjects: 1120 MID, 
10452  Normal from 

PTB database 

8-FCV 

 

ANN 

 

195- Other Hedén et al., [67]  2 

89.4 for 

MID, 95.0 
for Normal 

NC 

 

Leads: Lead 12 

subjects:  
20 normal, 

104 MID 
 

NC 

 

FL-BPNN 

 

70- IEEE Lu et al., [42]  3 

94 for MID, 

93.3 for 

Normal 

The bootstrap: A 

tutorial. Chemometr 

Intell Lab System 
 

Leads: 12 leads 

subjects: 2238 ECGs; 

 699 men and 420 
women for MID 

group, 578 men and 

541 women for  
Normal group  
 

3-FCV ANN 115-Elsevier Haraldsson et al., 

[54]  
4 

84.5 

 

Weka package 

 

Leads: 192 lead 

BSPM 
Subjects: 116; 57 

MID, 59 Normal 
from PTB database 

10-FCV Random 

Forest 
 

17-IEEE Zheng et al., [43]  

 
5 
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93.7 Matlab  

 

Leads:12 leads 

Subject:148 MID and 
52 Normal from PTB 

database 

NC BPNN+ 

PCA 
 

47-IEEE Arif et al. [44]  6 

90 Matlab  

 

Leads:12 leads  

Subject: 369 MID, 79 
Normal from PTB 

database 

10-FCV KNN 

ensemble+
LTMIL 

 

169-IEEE Sun et al.  [1]  7 

98.3% NC Leads: 12 leads 
Subjects: 10 types of 

MID, 1 Normal from 

PTB database 
 

10-FCV KNN 148-Springer Arif et al. [37]  8 

85.71 

 

Matlab 

 

Leads: lead (V1-V4) 

Subjects: 1129 
samples of heartbeats; 

582 MID, 547 Normal 

NC HMMs + 

GMMs  
 

102- Elsevier Chang et al. [55]  9 

94.74 MATLAB  

 

Leads: 12 leads 

Subjects: 290; 52 

Normal 

148 MID from PTB 

database 
 

NC 

 

NB 75-Other Safdarian et al., 

[15]  
10 

98.9 Matlab Leads: lead 3 

Subjects: 52 Normal 

148 MID from PTB 
database 
 

NC IBA+LMN

N 

60-Springer Kora et al., [38]  11 

96.0 Matlab Leads: 12 leads 

Subject:  
200, 148 MID, 52 

Normal from PTB 

database 

10-FCV SVM-RBF 189-IEEE Sharma et al., 

[45]  
12 

98.74 NC Leads: 12 leads 

Subject:  

52 normal, 148 MID 
from PTB database 
 

10-FCV DWT 

Coefficient

s+KNN 

128-Elsevier Acharya et al., 

[56]  
13 

98.5 NC Leads: lead 2 
Subject:  

148 MID, 52 Normal 

from PTB database 
 

10-FCV DCT 
Coefficient

s+KNN 

143- Elsevier Acharya et al., 
[57]  

14 

99.31 Matlab Leads: lead 2 

subjects:  
52 Normal and 148 

MID from PTB 

database 
 

10-FCV LS-SVM 83-Other Kumar et al., [68]  15 

99.7 Matlab  Leads: 12 leads 

subjects: 79 normal, 
346 MID from PTB 

database 

10-FCV BTs 9-IEEE Khatun and 

Morshed, [46]  
16 

 

99.55 NC Leads: 12 leads 

Subjects: 148  MID, 
52 Normal from PTB 

database 

10-FCV CWT-based 

controlet+
KNN 

66- Elsevier Acharya et al., 

[58]  
17 

96.66 Matlab Leads: 12 leads 
subjects: 290, 60  

MID, 60 Normal 

from PTB database 

10-FCV SVM+PCA 62- Elsevier Dohare et al., 
[59]  

18 

87.8 NC Leads: 12 leads 
subjects: 290; 148 

MID, 52 Normal 

from PTB database 

10-FCV GA+SVM 21-IEEE Diker et al., [47]  19 

99.81 Matlab Leads: 12 leads 

subjects: 148 MID, 

52 Normal from PTB 
database 

10-FCV SVM-RBF 27- Elsevier Han and Shi, [60]  20 

99.90 NC Leads: lead 2 

subjects: 368 records 

from 148 MID, 80 
records from 52 

Normal from PTB 

database 
 

10-FCV SAE+TB 13-IEEE Zhang et al. [48]  21 
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97.98 Matlab Leads: 12 leads  

Subjects: 290, 148 
MID, 52 Normal 

from PTB database 
 

10-FCV RBF- 

neural 
network 

4- Elsevier Zeng et al., [61]   22 

94.23 NC leads: lead (V1-V5) 
Subjects: European 

ST-T (17 persons, 70 

ECG recordings, 70 
men), MIT-BIH  

Arrhythmia (46 

different patients) and 
Long-Term ST (17 

persons, 70 ECG 
recordings, 70 men)  
 

10-FCV Weighted 
KNN 

6-Elsevier Kayikcioglu et 
al., [62]  

23 

99.98 in 

beat level, 

97.46 in 

record 

level 

Matlab Leads: 12 leads and 

3 Frank leads (VX, 

VY, VZ) 

Subjects: 290 

subjects 

, 209 men, 

78 Normal, 328 MID 

from PTB database 

10-FCV Dual-Q 

TQWT + 

DWPT + 

MPCA + 

TB 

11- Elsevier Liu et al. [63]  24  

99.57 Matlab Leads: 12 Leads 

subjects: 148 MID 

and 52 Normal from 
PTB database 

10-FCV KNN 1-Springer Lin et al., [39]  25 

NC: not considered  

Based on Table 2, between the proposed methods, Dual-Q TQWT + DWPT + MPCA + TB is the best method 

regarding accuracy rates of 99.98% in beat level and 97.46% in record level for MID diagnosis from the PTB database.  

Table 3. MID diagnosis using DL-based methods. 

ACC(%) Code 

Environment  

 

Dataset No. K-FCV  Methods No. Citations-

Publishers 

References No. 

93.53 with 
noise, 95.22 

without noise 

NC Leads: lead 2 
subjects: 200 

subjects; 148 

MID, 52 Normal 
from PTB 

database 
 

10-FCV  DCNN 448-Elsevier Acharya et al., 
[14]  

1 

84.54 Python Leads: Lead 2, 3 

and AVF 

Subjects: 148 
MID, 52 Normal 

from PTB 

database 

NC DCNN 39-IEEE Reasat and 

Shahnaz, [49]  
2 

NC NC Leads: lead 1 

Subjects: 290 

subjects with 
209 males and 

81 women; 148 

MID and 52 
Normal from 

PTB database 

10-FCV DCNN-RNN 37- Elsevier Lui and Chow, 

[64]  
3 

99.43 for 
record-wise 

split, 97.83 for 

patient-wise 
split 

Python Leads: 12 leads 
along with 3 

Frank leads 

Subjects: 290; 
52 Normal, 148 

MID from PTB 

database 

100-FCV DCNNQuak 4-Springer Gupta et al., [40] 4 

99.78 Python Leads: 12 leads 
Subjects: 52 

Normal, 148 

MID from PTB 
database 

NC DCNN 124-Elsevier Baloglu et al., 
[65]  

5 
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99.74 NC Leads: 12 leads 

Subjects: 290, 
148 MID, 52 

Normal from 

PTB database 
 

5-FCV DL-LSSVM 46-IEEE Tripathy et al., 

[50]  
6 

93.17 for 

patient-oriented 

scheme, 99.49 
for class-

oriented scheme 

with noise, 
98.44 for class-

oriented scheme 

with noise 

Matlab Leads: lead 2 

Subjects: 290, 

52 Normal, 148 
MID from PTB 

database 

 
 

 

5-FCV GADF+PCANe

t+Linear SVM 

6-IEEE Zhang et al., [51]  7 

95.4 Python Leads: lead 1 

Subjects: 148 

MID, 52 Normal 

from PTB 

database 
 

10-FCV 16-layer 

DCNN+LSTM 

18-Other Feng et al., [69]  8 

99.9 for class-

oriented 

scheme, 93.08 
for subject-

oriented scheme 

Python Leads: 12 leads 

Subjects: 148 

MID, 52 Normal 
from PTB 

database 
 

5-FCV MFB-CBRNN 23-IEEE Liu et al. [52]  9 

NC Python Leads:12 leads 
Subjects: 127 

MID, 52 Normal 
 

10-FCV DCNN-FC 76-Other Strodthoff and 
Strodthoff, [70]  

10 

95.49 for inter-

patient scheme, 

99.92 for intra-
patient scheme 

Python Leads: 12 leads  

Subjects: 52 

Normal, 113 
MID from PTB 

database 

5-FCV ML-ResNet 26-Elsevier Han and Shi, [12]  11 

NC NC Leads: NC 
Subjects: 35 

subjects; 14 

coronary artery 
disease, 8 

hypertrophic 

cardiomyopathy, 
and 13 Normal 

NC AU-Net 8- Elsevier Kim et al., [66]  12 

94.98 NC Leads: 12 leads  

Subjects: 148 
MID, 52 Normal 

from PTB 

database 

NC DCNN+DA 3-IEEE Natesan et al., 

[53]  
13 

99.93 for intra-
patient scheme, 

96.5 for inter-

patient scheme 

Python Leads: 12 leads 
Subjects: 148 

MID, 52 Normal 

from PTB 
database 
 

5-FCV MLA-DCNN-
BiGRU 

7-Other Fu et al., [71]  14 

73.2 based on 
GCI database 

NC Leads: 12 leads 
Subjects: 148 

MID, 52 Normal 

from PTB 
database; 11853 

MID, 5528 

Normal from 
GCI database 
  

 

10-FCV Longitudinal+
MnansNet 

0-Other Tadesse et al., 
[11] 

15 

 

99.95 Python Leads: Lead II 

Subjects: 148 
MID, 52 Normal 

from PTB 

database 
 

10-FCV DCNN 0-Elsevier  

Jahmunah et al. 
[13] 

16 

NC: not considered  

According to table 3, the DCNN method has the highest accuracy of 99.95 compared to other methods for MID 

diagnosis from the PTB database.  
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As resulted from Tables 2 and 3, the deep learning methods have been more used in recent years, so that no paper in 

2021 was run by machine learning methods. Moreover, the number of citations for the published papers in the Elsevier 

database is higher than the number of the published papers in other databases. The journal of Information Science has 

the most citations of 449 for paper [14] . Moreover, the conducted researches process during different years is depicted 

in Figure 4. 

  

Figure 6. The number of conducted papers for MID diagnosis using ML-based methods between 1992 and 2020. 

Figure 6 demonstrates the annual distribution of 25 papers together with a linear trend line. The large Ascending 

gradient of the trend line shows more published papers in recent years. Furthermore, only one paper was published 

from 1992 to 2010 annually. From 2010 to 2012, 3 papers were published. From 2012 to 2017, there is a trend of 

relative changes in the number of papers. Then, in 2018 and 2019, there were two papers each year. Finally, in 2020, 

four papers were published.  

 

Figure 7. The number of papers for MID diagnosis using DL-based methods between 2017 and 2012. 

According to Figure 7, the annual distribution of 16 papers together with a polynomial trend line. Two papers were 

published in 2017, and in 2018, one paper was conducted.  The number of papers had reached seven. Eventually, from 

2019 to 2021 had decreased to two papers with a moderate gradient. 

In general, we observe an average increase in the number of papers of MID diagnosis using ML and DL methods.  

4. Conclusions and Open Research Paths 

Myocardial infarction has the highest mortality of cardiovascular diseases. To diagnose MI about its occurrence time 

is vital to the medical interventions to help CVD patients. Because of the cost and delay of getting blood sample tests 

from the laboratory, using the electrocardiogram (ECG) signals is another conventional clinical trial currently used to 

screen MID patients. Nevertheless, using ECG is time-consuming and tends to subjective bias. Hence, Machine 

Learning (ML) and Deep Learning (DL) methods are used to overcome the above challenges for MID diagnosis 

automatically. Using the ML methods, feature extraction and selection of ECG signals need to be handcrafted. These 

operations are performed automatically in Deep Learning (DL) methods. Therefore, we review the methods based on 

ML and DL that are used to diagnose MID. We collected the papers assigning keywords such as myocardial infarction 

disease diagnosis, heart disease diagnosis, artificial intelligence techniques, machine learning, and deep learning from 
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the Google scholar engine. Twenty-five papers are using ML methods, and 16 papers are regarding DL methods. The 

DCNN methods have resulted in the highest accuracy for MID diagnosis in deep learning. As a result, most researchers 

have tended to use DL methods in recent years. As open research paths, there are some aspects; one is to improve the 

diagnosis accuracy for MID using DL methods. Also, enhancing the time of preparing input signals and preprocessing. 

Furthermore, to automate the input preparation, reducing noises, and conducting output to achieve a fully automated 

process. Therefore, using the DL methods in portable devices to convey to the patients easily. 
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