EasyChair Preprint
Ne 8639

‘j“‘ 220

Efficient Formalization of Simplification Orders

René Thiemann and Akihisa Yamada

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 11, 2022

Efficient Formalization of Simplification Orders

René Thiemann
University of Innsbruck, Austria

Akihisa Yamada

National Institute of Advanced Industrial Science and Technology, Japan

—— Abstract

The weighted path order (WPO) can simulate several simplification orders that are known in term
rewriting. By integrating multiset comparisons into WPO, we show that also the recursive path
ordering is covered. Moreover, we investigate how refinements of the classical simplification orders
can efficiently be integrated: we formally prove the refinements within WPO once and then get them
for free for the other simplification orders by the simulation property. Here, the most challenging
part was to show that a refined version of the Knuth—Bendix order can actually be simulated by
WPO. All of our proofs have been formalized in Isabelle/HOL.

2012 ACM Subject Classification Theory of computation — Logic and verification; Theory of
computation — Equational logic and rewriting

Keywords and phrases formalization, Isabelle/HOL, simplification order, termination analysis

Category invited paper

1 Introduction

Automatically proving termination of term rewrite systems has been an active field of research
for half a century. A number of simplification orders [2, 3] are classic methods for proving
termination, and these are still integrated in several current termination tools. Classical
simplification orders are Knuth—Bendiz orders (KBO) and lexicographic and recursive path
orders (LPO and RPO). The weighted path order (WPO) [6] was introduced as a simplification
order that unifies and extends classical ones.

When switching from theory to implementations in termination tools, limitations of the
applied simplification orders become visible while studying non-successful termination proofs.
Therefore several refinements of the original definitions of the orders have been developed to
make them more applicable and hence more powerful. At this point the question of soundness
arises, in particular whether the main properties of a simplification order are still maintained
after the integration of the refinements.

To solve this problem we propose to use formal verification, i.e., one should define the
orders within a proof assistant such as Coq or Isabelle and then perform the proofs within that
system. The advantage is that then re-checking of proofs is quite simple, and in particular a
change of a definition (e.g., triggered by some refinement) will immediately point to those
parts of the proof which need an adjustment.

The price of using formal verification is its overhead in comparison to a pure proof on
paper. In this work we present our approach to perform verification efficiently, namely by
exploiting the property that WPO subsumes several simplification orders:

Instead of formally verifying that KBO, LPO, RPO and WPO are simplification orders,
we just prove this fact for WPO and we formally verify that KBO, LPO and RPO are
instances of WPO. To this end, we slightly refine WPO itself by permitting multiset
comparisons.

https://orcid.org/0000-0002-0323-8829
https://orcid.org/0000-0001-8872-2240

Efficient Formalization of Simplification Orders

We further show that several refinements of simplification orders are sound for WPO,
and hence only have to integrate these refinements into one order, and automatically get
the refinements for the other orders, too.

We perform our formalization using Isabelle/HOL, based on IsaFoR, the Isabelle Formali-
zation of Rewriting [5]. As a result of this work we were able to completely remove the
formal proofs within IsaFoR that RPO is a simplification order (which entails that LPO is a
simplification) order, and we could also remove several formal proofs regarding KBO.

2 Preliminaries

We assume familiarity with term rewriting [1], but briefly recall notions that are used in the
following. A term built from signature F and set V of variables is either x € V or of form
f(t1,... tn), where f € F is n-ary and t1,...,t, are terms. A context C is a term with one
hole, and C[t] is the term where the hole is replaced by t. The subterm relation > is defined
by C[t] > t. A substitution is a function o from variables to terms, and we write to for the
instance of term ¢ in which every variable z is replaced by o(z).

A reduction pair is a pair (>,) of two relations on terms that satisfies the following
requirements: > is well-founded, = and > are compatible (i.e., 2 o = o 7 C), both are
closed under substitutions, and 77 is closed under contexts. If additionally > is transitive,
closed under contexts, and contains the strict subterm relation >, then > is a simplification
order. The trivial reduction pair is the one where = = () and = relates all terms.

A quasi-precedence is a preorder > on F, such that > := >\ < is well-founded. A
precedence is a quasi-precedence where > is the reflexive closure of >.

We use the following notation for common extensions of a pair of relations over terms to
pairs of relations over lists of terms.

=Ml and =™ are the strict- and non-strict order of the multiset extension of (>=,27),
where the lists are interpreted as multisets;
There are two variants of the lexicographic extension: the wunbounded lexicographic

extension is defined as [s1,...,8;,...] =" [t1,...,t;,... | iff 8; = t; and s; 75 t; forall j < i.
The bounded lexicographic extension is parametrized by some b € N, the bound, and it is
defined as [s1,...,8,] =90 [t1, ..., tp] iff [s1,...,80] =" [t1,.. ., tm] A(n=mVm <b).

There are similar definitions for 2='* and ='®¢*. We sometimes write ='*< and »-'** also
for the bounded lexicographic extension if the bound is clear from the context.

3 Structure of Simplification Orders

In this section we first define some quite generic relation (a simplified version of WPO) that
is a template of several simplification orders, and we will then see how KBO, LPO, RPO and
WPO fit into this framework. Moreover, we will also discuss refinements and their soundness.

Let > be some quasi-precedence. Let b € N be some bound which will be used as parameter
for bounded lexicographic comparisons in the upcoming definition. Let 7 : F — {lex, mul}
be a status. Let minimal be some property of constants, such that whenever ¢ is minimal
then f > cfor all f € F. Let (>, 72) be some reduction pair such that > is transitive, 7~ is a
preorder, and C[t] 7 ¢ for all terms ¢. We define a strict and a non-strict relation on terms
(>Rrot and Zrot) as follows: s =got ¢ iff

1. s>t or
2. sz~ tand

R. Thiemann and A. Yamada

a. s= f(s1,...,8,) and Fi € {1,...,n}. 8; ZRoT ¢, OF
b. s= f(s1,...,8n), t =g(t1,...,tm) and
i. Vje{l,...,m}. s =ror tj and
i.A. f>gor
B. f-gand 7(f) =7(g) and [s1,..., Sn] >;(()fr) [t1, ..y tm].

The relation s Zgot t is defined in the same way, where *ngr) in case 2.b.ii.B is replaced by

i;gfr), and there are two additional subcases in case 2:

c. s=x =t for some x € V, or

d. s=x €V and t = ¢ for some constant ¢ which is minimal.
Using this generic relation on terms we can now define common instances:

Classical LPO is obtained by

using the trivial reduction pair, so that 1 never applies and the condition in line 2 is
always satisfied;

requiring a precedence so that 2.b.ii.B is only applicable if f = g, i.e., only lists of the
same length are compared;

no constant is minimal, so case 2.d is just dropped;

7(f) =lex for all f € F.

Classical RPO is like LPO without the requirement on 7.
Classical KBO is similar to the setup of LPO, but

instead of the trivial reduction pair one defines (>, 7)) with the help of weight functions
and the multisets of variables of terms;

the structure of KBO and of (=goT, ZRoT) is slightly different since in KBO, condi-
tion 2.b.i is not present and case 2.a is also dropped; moreover in KBO there is one
additional case, namely whenever s ¢ V, € V and s 7 x, then both s =kgo = and
S iKBO x.

» Remark. The relation =g, defined above looks like a simplified form of WPO, e.g., the
status function m of WPO (for selecting arguments of each individual function symbol) has
been omitted. However, the original WPO does not completely subsume >goT, since the
status function 7 of >=go1 is not included in WPO and one would always compare lists of
terms lexicographically in WPO.

Let us now regard two refinements of the classical simplification orders. The first
refinement are quasi-precedences. When using quasi-precedences it becomes important to
use the bounded version of the lexicographic extension, since otherwise one would be able
to construct an infinite sequence fo(1) =grot f1(0,1) >rot f2(0,0,1) >grot ... by using a
quasi-precendence where f; > f; for all 7,5 and f; > 1 > 0 for all . The second refinement
are comparisons of the form x - ¢ in case 2.d. For LPO one requires that ¢ is least in
precedence among all symbols, in the same way as in >gor. By contrast, for KBO f > c is
only required for those f which are constants and have weight wg.

Note that activating both requirements — quasi-precedences and x - ¢ comparisons — is
sound for LPO, requires a special definition of lexicographic extensions for KBO, and is
unsound for RPO.

Efficient Formalization of Simplification Orders

» Example 1. Consider RPO with both refinements, i.e., (=, 7) is the trivial reduction pair.
Let > = F x F be the trivial precedence where all symbols are equivalent. Let 7(c) = lex and
7(d) = mul for two constants ¢,d € F. Then using case 2.d we have x ~rpo ¢, but d ZZrpo ¢
does not hold. Hence, closure under substitutions is violated.

» Example 2. Consider a KBO with precedence where all symbols are equivalent, a unary
function symbol f with weight 0, and arbitrary symbols g; with arity ¢ > 1. Then f(z) =kgo «;
however, for f(g;(t1,...,t:)) >keo gi(t1,...,t;) (closure under substitutions), only case
2.b.ii.B is applicable, i.e., one needs lexicographic comparisons [g;(t1, . . ., ;)] =80 [t1,- - - i)
with lists of arbitrary lengths, i.e., unbounded lexicographic comparisons, which usually
destroy well-foundedness in combination with unbounded arities.

The problem of Example 1 is easily fixed by just adding one more alternative to 2.b.ii:
2.b.ii.C. fzgand 7(f) # 7(g9) and m =0 (and n > 0 for s =got t)

That (>RroT, ZZRroT) really forms a reduction pair with this fix has been formally proven.
Actually, we have formalized an extended version of =gt that also includes the other features
of WPO, i.e., a status function 7 : F — N* and Refinements (2¢) and (2d) of WPO [6,
Section 4.2], and it is available in the archive of formal proofs [4]. It is the same definition
as if one would take the WPO definition of [6], add multiset comparisons via a status
7 : F — {lex,mul}, and add case 2.b.ii.C for symbols with different status.

» Theorem 3. (-RoT, ZRoT) @S a Teduction pair and »rot s a simplification order.

4 Simulating Classical Simplification Orders

In the previous section we have already seen that LPO and RPO are just instances of the
WPO (assuming a definition of WPO that includes the status function 7). This covers quasi-
precedences and the x = ¢ refinement. However, such a relationship is not yet established for
KBO with refinements. In particular there are three major differences:

1. minimal constants in KBO are defined differently than in WPO,
2. there is a different syntactic structure, and
3. WPO uses the bounded lexicographic extension, but KBO uses the unbounded extension.

We will address these problems and show how properties of WPO can be transferred to KBO.

1. Recall that in KBO a constant ¢ is minimal if f > ¢ for all constants f of weight wy,
whereas in WPO f > c is required for all f € F. We solve this problem by changing the
quasi-precedence > of KBO into some quasi-precedence >’ in a way that

KBO-minimal constants w.r.t. > are WPO-minimal w.r.t. >’, and
~kgo and =kgo are unmodified when switching from > to >'.

2. For the syntactic differences, we prove that they do not affect the defined relations.

The additional case f(C[z]) =kgo = of KBO can be simulated since >=got is a simplifi-
cation order.

Assume that f(s1,...,8,) =kso f(t1,...,tmn) was shown by 2.b. Here we use some
properties of KBO to conclude f(si,...,sn) >kgo t; for all 1 < j < m. Hence, it does
not matter whether the condition in 2.b.i — which does not occur in the original KBO
definition — is added to the KBO definition.

R. Thiemann and A. Yamada

The definition of KBO does not contain case 2.a. However, as in the previous step
we utilize the property of KBO that the corresponding inference rule s; Zkgo t —
f(s1,...,8,) =kgo t is still valid for all ¢ € {1,...,n}.

Note that for the equivalence proof we already use some properties of KBO, i.e., these
must be proven before we are able to transfer properties of >go1 to KBO.

3. One cannot replace the unbounded lexicographic extension by a bounded one if function
symbols of unbounded arity are considered. However, whenever terms s and t are
compared, only finitely many symbols appear in s and ¢, and thus there is the maximum
arity b among them. For these terms there is no difference in whether b-bounded or
unbounded lexicographic extension is used.

We arrive at the following result.

» Theorem 4. Let a KBO with quasi-precedence > and some bound b be given. Then a
reduction pair (encoding the weight-function) and quasi-precedence =’ can be constructed
as parameters to =rot and Zrot (or to WPO), such that (s =kgo t) «— (s =RroT t) and
(s ZkBo t) <— (8 ZRrot t) for all terms s,t whose function symbols have arity below b.

» Corollary 5. For every KBO over a finite signature there exists an equivalent WPO.
» Corollary 6. KBO is transitive, closed under substitutions and well-founded.

Proof. Consider the set of terms {s,t,u, so,tc}, and define b as the maximum arity that
occurs within these terms. From Theorem 3 we conclude s =RroT t =RoT 4 — S =RoT © and
S >=RoT t — 80 =RoT to. By Theorem 4 and the choice of b, transitivity and closure under
substitutions of KBO are proved.

For well-foundedness of KBO, consider an infinite sequence t1 =kgo t2 >=kgo - ... Define
b’ as the weight of t;. Hence b’ is larger than the weight of all terms in the sequence. Since
the weight is an upper bound for the arities, b’ is also larger than the arities of all ¢;. Thus,
by Theorem 4 we know t1 >RoT t2 ™RoT - - - in contradiction to Theorem 3. |

As future work it remains to be clarified whether the addition of multiset comparisons to
WPO will improve the power of automated termination tools.

—— References

1 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,
1998. doi:10.1017/CB09781139172752.

2 Nachum Dershowitz. Orderings for term-rewriting systems. Theor. Comput. Sci., 17:279-301,
1982. doi:10.1016/0304-3975(82)90026-3.

3 Donald E. Knuth and Peter Bendix. Simple word problems in universal algebras. In Com-
putational Problems in Abstract Algebra, pages 263-297. Pergamon Press, New York, 1970.
do0i:10.1016/B978-0-08-012975-4.50028-X.

4 Christian Sternagel, René Thiemann, and Akihisa Yamada. A formalization of weighted path
orders and recursive path orders. Archive of Formal Proofs, 2021. https://isa-afp.org/
entries/Weighted_Path_Order.html, Formal proof development.

5 René Thiemann and Christian Sternagel. Certification of termination proofs using CelA.
In Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009,
Munich, Germany, August 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer
Science, pages 452—468. Springer, 2009. doi:10.1007/978-3-642-03359-9_31.

6 Akihisa Yamada, Keiichirou Kusakari, and Toshiki Sakabe. A unified ordering for termination
proving. Sci. Comput. Program., 111:110-134, 2015. doi:10.1016/j.scico.2014.07.009.

https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1016/B978-0-08-012975-4.50028-X
https://isa-afp.org/entries/Weighted_Path_Order.html
https://isa-afp.org/entries/Weighted_Path_Order.html
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1016/j.scico.2014.07.009

	1 Introduction
	2 Preliminaries
	3 Structure of Simplification Orders
	4 Simulating Classical Simplification Orders

