
EasyChair Preprint
№ 8841

Performance Evaluation of Query Plan
Recommendation with Apache Hadoop and
Apache Spark

Elham Azhir, Mehdi Hosseinzadeh, Faheem Khan and
Amir Mosavi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 18, 2022

Performance Evaluation of Query Plan Recommendation with

Apache Hadoop and Apache Spark

Elham Azhir 1,2, Mehdi Hosseinzadeh 3,4, Faheem Khan 5 and Amir Mosavi 6,*

1 Department of Computer Engineering, Science and Research Branch, Islamic Azad University,

Tehran 1477893855, Iran; e.azhir@mci.ir
2 Research and Development Center, Mobile Telecommunication Company of Iran, Tehran, Iran
3 Mental Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran 1449614535, Iran
4 Computer Science, University of Human Development, Sulaymaniyah 0778-6, Iraq
5 Department of Computer Engineering, Gachon University, Seongnam 13120, Korea
6 Faculty of Civil Engineering, Technische Universität Dresden, 01069 Dresden, Germany

* Correspondence: faheem@gachon.ac.kr (F.K.); amir.mosavi@mailbox.tu-dresden.de (A.M.)

Abstract: Access plan recommendation is a query optimization approach that executes new queries using prior

created query execution plans (QEPs). The query optimizer divides the query space into clusters in the mentioned

method. However, traditional clustering algorithms take a significant amount of execution time for clustering such

large datasets. The MapReduce distributed computing model provides efficient solutions for storing and pro-

cessing vast quantities of data. Apache Spark and Apache Hadoop frameworks are used in the present investiga-

tion to cluster different sizes of query datasets in the MapReduce-based access plan recommendation method. The

performance evaluation is performed based on execution time. The results of the experiments demonstrated the

effectiveness of parallel query clustering in achieving high scalability. Furthermore, Apache Spark achieved better

performance than Apache Hadoop, reaching an average speedup of 2x.

Keywords: access plan recommendation; parallel processing; Apache Hadoop; Apache Spark; big data; artificial

intelligence; soft computing; cloud computing; data science; MapReduce

1. Introduction

A query’s cost model includes local processing costs and communication costs between nodes in

distributed query processing [1–3]. The search space of possible query execution plans (QEPs) can be

fairly ample based on the complexity of the query. The query optimizer cannot efficiently search

through all possible QEPs to find the most efficient QEP. The access plan recommendation method is

introduced to decrease the query optimization costs by reusing the previously generated QEPs [4–6].

The access plan recommendation technique looks for textual similarities between the novel query and

prior ones in order to reuse prior executed query plans for future ones. In the presented process, the

query optimizer makes use of the likeness of query statements to execute new queries. However, clus-

tering large query sets becomes a problem for traditional clustering algorithms due to the high pro-

cessing time [7,8]. Various query plan prediction techniques are introduced [5,6] to identify the simi-

larity between the queries using traditional clustering algorithms. For instance, Zahir, et al. [6] pro-

posed an approach for recommending query plans that is efficient and effective. The SQL semantics

are used for similarity detection. The expectation-maximization (EM) and K-means algorithms are ap-

plied in the proposed method. In addition, association rule (AR), naive Bayes (NB), and support vector

machine (SVM) classification algorithms have been used in another study [5] for query plan prediction.

The findings demonstrate that the AR algorithm is more accurate than the SVM and NB techniques in fore-

casting. It can be observed that the presented approaches reduce the expenses related to optimizing.

Azhir, et al. [7] also presented a novel query plan recommendation technique depending on DBSCAN

and NSGA-II algorithms for enhancing prediction accuracy. The outcomes related to the suggested

method are compared to traditional K-means and DBSCAN. Based on the obtained outcomes, the pre-

sented approach achieves better performance in terms of accuracy. These papers aim to reuse previous

query plans. However, clustering large query sets is one of the major challenges for such conventional

clustering methods, due to the required processing time.

MapReduce is a distributed programming model for processing massive amounts of data [9,10].

MapReduce is an efficient method for clustering large query sets in a reasonable amount of time.

Apache Hadoop and Apache Spark [11] are two of the most popular frameworks used for executing

MapReduce programs. Apache Hadoop is a framework that is mainly used for scalable and distributed

processing in the cloud [10,12]. Hadoop processes huge quantities of data by dividing tasks into smaller

tasks [9]. It frequently writes and reads data from the disk. It can decrease the performance of the sys-

tem. However, Apache Spark provides in-memory computations for reducing the number of the

read/write cycle to disk [13]. We will go through a few clustering approaches that are built on parallel

structures in the following sections. Elsayed, et al. [14] proposed a novel model to cluster intensive data

documents. The WordNet ontology is used with bisecting K-means in order to utilize the semantic

relations between words. The proposed model is based on distributed implementation for the bisecting

K-means using the MapReduce programming model to improve document clustering results. The trial

results have revealed that lexical categories for nouns enhanced internal evaluation measures of docu-

ment clustering and decreased the document’s features. According to the trial outcomes, the proposed

approach obtained better results in text clustering than the typical K-means approach. Zewen and Yao

[15] presented a parallel text clustering algorithm for the cloud environment. In this paper, the classical

Jarvis–Patrick (JP) algorithm is implemented using the MapReduce programming model. In the pro-

posed method, the shared nearest neighbor (SNN) table of the JP algorithm is created using MapRe-

duce parallel processing. The results indicate the efficiency of the parallelization of the JP algorithm.

Furthermore, high scalability is a key benefit of the technique. In addition, Li, et al. [16] suggested a

new parallel method for clustering the text documents. The proposed algorithm is a parallel form of

sequential K-means based on neighbors (SKBN). This parallel method, called PKBN, uses data paral-

lelism in its three main phases, which are as follows: creating the neighbor matrix, choosing the primary

centroids grounded on ranks, and repeating the loop of the assignment phase and the update phase.

The neighbor matrix of the proposed algorithm is generated using a novel parallel pair-generating

technique called PG-New. The results proved that the decrease in communication overheads is ac-

corded to the PG-New. Furthermore, the scalability of PKBN is improved using the proposed parallel-

ism. This paper aims to enhance the recommendation time of the access plan recommendation method.

The term frequency (TF) method [17] and cosine measure with a feature representation of SQL query

language are used in the presented access plan recommendation method. In the present article, a parallel

MapReduce model is applied to sped up the query clustering operation in Apache Hadoop [18]. Fur-

thermore, the performance of the presented access plan recommendation method [18] is improved us-

ing the implementation in Apache Spark, which is a in-memory distributed data processing engine.

The following list underlines the article’s key contributions:

(i) Presenting a parallel query plan recommendation method using the MapReduce model.

(ii) Implementing the parallel query plan recommendation technique using Apache Hadoop and

Apache Spark distributed frameworks.

(iii) Evaluating the performance of the implemented algorithm with multiple-query datasets.

In Section 2, Apache Hadoop and Apache Spark distributed processing frameworks are presented.

The parallel query plan recommendation method is introduced in Section 3. Our test environment is

illustrated in Section 4. The findings of the simulation results are provided in Sections 5 and 6. Finally,

Section 7 reviews the main points and recommends some suggestions for future research.

2. Overview and Background

In this part, two commonly used cloud frameworks are presented. Hadoop is a framework for

storing and processing large quantities of data. It is based on the MapReduce programming model for

parallel processing. However, Spark is used for real-time data analysis and can achieve higher perfor-

mance than Hadoop MapReduce using the main memory.

2.1 Apache Hadoop

Apache Hadoop is an effective open-source platform for reliable, scalable, and distributed pro-

cessing of large amounts of data. This framework can work with thousands of nodes and several

petabytes of data. Generally, Hadoop has a set of modules for processing large quantities of distributed

data on different nodes across the Hadoop cluster. Therefore, Hadoop is considered a collection that

includes data gathering, storage, analysis, and maintenance services. There are two key parts in the

core of Hadoop [19]: (1) the storage part is called the Hadoop Distributed File System (HDFS), which

is responsible for partitioning, storing, and retrieving large files on a Hadoop cluster, and (2) the pro-

cessing part is called MapReduce, which is responsible for analyzing and processing distributed data.

Hadoop is based on master-worker architecture for data storage and distributed processing using

HDFS and MapReduce. In the Hadoop cluster, there are a master node and several worker nodes. In

addition, a layered architecture is also used in Hadoop, with HDFS on the bottom layer and the MapRe-

duce layer on it. Hadoop offers parallel and distributed processing on big data sets through the MapRe-

duce model [10]. MapReduce is a programming model for parallel data processing that provides great

scalability on a Hadoop cluster [9].

2.2. MapReduce

MapReduce distributes input data across different machines. In the MapReduce model, the pro-

cessing operation is divided between several nodes. Therefore, MapReduce helps process big data

through distribution. Data are processed in parallel by several machines instead of one machine. This

means that the data processing time is greatly reduced. Figure 1 illustrates the MapReduce process.

First, the client sends MapReduce execution requests to the JobTracker. JobTracker splits jobs into tasks

among the cluster nodes. Furthermore, the JobTracker talks to the NameNode to find the DataNodes

that contain the data to be used in processing. TaskTrackers perform processing independently and in

parallel (Mapper).

Figure 1. The MapReduce process in Hadoop.

The MapReduce processing model includes the following two key phases: the map phase and the

reduce phase. As shown in Figure 2, the map phase takes key-value pairs as input and implements

some processing on this input. The results of the map phase are passed to the reduce phase in the form

of key/value pairs. Finally, the map phase’s findings are processed in the reduce phase.

Figure 2. Hadoop MapReduce framework.

2.3. Apache Spark

Apache Spark is a framework for processing batch and stream data in a distributed computing

manner. The Spark is introduced to increase processing speed and enhance complex processing. Spark

uses in-memory computing to speed up data processing, which is more efficient than the Hadoop

model. Spark speed is nearly 100 times faster than Hadoop when data are stored in memory and up to

tens of times faster than when all the data are not in memory. Apache Spark combines various modules,

such as MLib machine learning libraries, GraphX for large-scale graph analytics, Spark SQL for

relational data analysis, and Spark Streaming for streaming data analysis [20]. Iterative algorithms,

graph analytics, and interactive data analysis algorithms all perform better. Spark uses Hadoop YARN

or Apache Mesos as a cluster manager and it has a distributed storage system. Spark supports a wide

variety of distributed storage, including HDFS, Cassandra, OpenStack Swift, and Amazon S3. The re-

silient distributed dataset (RDD) and directed acyclic graph (DAG) execution engine are two key con-

cepts in Spark [11]. RDD is the first distributed memory abstraction provided by Spark. It provides in-

memory computation on large distributed clusters with high fault-tolerance. The Spark driver program

creates RDD and divides it among different nodes. Transformations and actions are two kinds of op-

erations executed by RDD. Transformations generated new datasets from the input RDD (map), and

actions return a value after performing calculations on the dataset (reduce). Spark can cache RDDs on

memory and repeat the MapReduce operation without performance overhead. Therefore, Spark has a

performance advantage for recursive algorithms. When an action is executed on an RDD by a user, a

DAG is created according to the transformation dependencies. This enhances the performance and

eliminates the multistage execution model of MapReduce.

3. Methodology

The access plan recommendation method uses earlier query plans for new queries. Initially, opti-

mal QEPs are generated for a query group in the system log. The output of the query optimizer is a set

of optimal QEPs of the existing queries. This technique transforms query statements into feature vec-

tors, which are then compared to verify how similar they are. Therefore, when a new query is created,

the query vector is produced using the query statement. Then, the similarity degree between the novel

query and the other ones placed in the clusters is calculated, and the ideal query plan is extracted. If

the query is not similar to the existing clusters, the optimizer generates the optimal query plan to up-

date the clustering. Query preprocessing, tokenizing, feature weighting based on TF, similarity meas-

urement, and plan recommendation are the five key stages of the access plan recommendation method.

Accordingly, various stages are presented in Figure 3, and the way the presented method is converted

to reduce/map flows is explained in the following section.

Figure 3. The map-reduce-based access plan recommendation.

3.1. Query Preprocessing

In the presented method, the SQL statements are manipulated using the JSQL parser. In order to

enhance the clustering quality, a custom JSQL parser library (http://jsqlparser.sourceforge.net/, accessed

on 23 February 2020) and different normalization rules to increase the clustering quality are applied to

queries’ expressions [7]. The JSQL parser rewrites the queries’ text to eliminate string constants, table

aliases, column aliases, syntax sugar, and namespaces [21].

3.2. Query Tokenizing

The clustering algorithms divide data into different groups using a feature space. In the tokeni-

zation, the queries are represented in a feature space. Therefore, the tokenization process split the que-

ries’ texts into words. The words’ frequencies are also calculated as the queries’ features for clustering

in the next part. In the tokenizing stage, the parser breaks the query text into tokens. In addition, the

parser qualifies tokens by utilizing the SQL clauses, including FROM, SELECT, GROUP BY, WHERE,

and ORDER BY (Table 1).

Table 1. An example of SQL query tokenization.

Raw SQL Query Tokenized SQL

SELECT name

FROM instructor

WHERE salary > 90,000

AND salary < 100,000

SELECT name

FROM instructor

WHERE salary

3.3. Feature Weighting based on TF using MapReduce

The frequency of a word in a document is calculated using the TF method. In this paper, the TF

method assesses the importance of a feature in a query. In the presented access plan recommendation

method, the created tokens (features) are weighted by frequency. The number of times the feature f

appears in query q is shown as tf (f,q) [17]. In this stage, the term frequency algorithm computes the

weight of the word in the query vector using the frequency of each word [22]. Table 2 describes an

example of the TF calculation for a simple query. As shown in Tables 1–2, to calculate the weight of the

term “WHERE salary,” it appears twice in the query [17].

Table 2. An example of a feature vector.

Tokenized SQL Feature Vector

SELECT name

FROM instructor

WHERE salary

{‘SELECT name’ →1,

‘FROM instructor →1′,

‘WHERE salary’ →2},

The parallelized feature weighting algorithm in MapReduce is presented in Algorithms 1–3. First,

Algorithm 1 counts the number of each term in each query. Algorithm 2 calculates the whole terms of

each query. Then, Algorithm 3 calculates the weights of each feature by using the TF method.

Algorithm 1: The number of each term in every query

Input: query

Output: The total number of occurrences of each token (term) in every query

(queryID); ((term, queryID), sum)

1: class Mapper: A key/value pair is generated for each query.

2: function map (query)

3: for all term ∈ query.split() do//The query is divided into smaller units (term)

4: emit ((term, queryID), 1) //The number 1 is assigend as the value to each

term.

5: end for

6: end function

7: end class

1: class Reducer: The total number of occurrences of each term in a query is

counted.

2: function reduce ((term, queryID), counts [c1, c2, …])

3: sum = 0

4: for all count ∈ counts do

5: sum += count

6: end for

7: emit ((term, queryID), sum) //Key: term and queryID, Value:The number of

repetitions of a term in a query.

8: end function

9: end class

Algorithm 2: The total terms of each query

Input: The number of each token in each query ((term, queryID), sum)

Output: The total number of terms (sum) in a query ((queryID, N), (term, sum))

1: class Mapper: All terms in each query are grouped.

2: function map ((term, queryID), sum)

3: for all element ∈ (term, queryID) do

4: emit (queryID, (term, sum)) // Key: queryID, Value: The term and the

number of repetitions of each term in a query.

5: end for

6: end function

7: end class

1: class Reducer: The total number of terms in a query is computed.

2: function reduce (queryID, (term, sum))

3: N = 0 //N is the total

number of terms in a query.

4: for all tuple ∈ (term, sum) do

5: N = N + sum

6: end for

7: emit ((queryID, N), (term, sum))

8: end function

9: end class

Algorithm 3: The weights of each feature

Input: The total number of terms in a query ((queryID, N), (term, sum))

Output: The weights of each feature ((queryID), (term, tf))

1: class Mapper:

2: function map (queryID, N), (term, sum))

3: for all element ∈ (term, sum) do

4: emit ((term, (queryID, sum, N))

5: end for

6: end function

7: end class

1: class Reducer: The term frequency is calculated.

2: function reduce ((term, (queryID, sum, N))

3: for all element in (queryID, sum, N) do

5: tf = sum/N;

6: end for

7: emit ((queryID), (term, tf));

8: end function

9: end class

3.4. Similarity Measurement using MapReduce

In the presented method, the Cosine similarity [23] is applied to find similar queries. To measure

the similarity between the two query vectors 𝑞1⃗⃗ ⃗ and 𝑞2⃗⃗⃗⃗ , the cosine of the angle between 𝑞1⃗⃗ ⃗ and 𝑞2⃗⃗⃗⃗ is

calculated using (2) [23].

𝑐𝑜𝑠(𝑞1, 𝑞2) =
𝑞1⃗⃗ ⃗ . 𝑞2⃗⃗⃗⃗

|𝑞1⃗⃗ ⃗| × |𝑞2⃗⃗⃗⃗ |
=

∑ 𝑤𝑖,1 × 𝑤𝑖,2
𝑡
𝑖=1

√∑ 𝑤2
𝑖,1

𝑡
𝑖=1 × √∑ 𝑤2

𝑖,2
𝑡
𝑖=1

(

1

)

where the weight of the words in each query vector is divided by the length of the words in that query.

Algorithm 4 may be used to compute the Cosine similarity between the produced query vectors in

parallel [22].

3.5. Plan Recommendation

In this part, the recommendation process is performed; for a new query, the query is assigned to

one cluster according to its detected similarity. The recommendation is made using the identified sim-

ilarities between the novel query and the old ones whose access plans are accessible in the memory. If

a similarity is identified, the recommender system suggests that the query optimizer reuses the old

query execution plan to execute the new incoming query. DBSCAN is a clustering method based on

density that can find clusters of any shape. In the introduced recommender system, DBSCAN cluster-

ing is performed from the precomputed distance matrix. A few main definitions of DBSCAN are [24]

as follows:

Definition 1. The 𝐸𝑝𝑠 neighborhood of a point 𝑝 is a set of points within distance 𝐸𝑝𝑠 from point 𝑝. It can

be expressed as 𝑁𝐸𝑝𝑠(𝑝) = {𝑞 ∈ 𝐷 |𝑑𝑖𝑠(𝑝, 𝑞) ≪ 𝐸𝑝𝑠}.

Definition 2. 𝑝 is directly density-reachable from the point 𝑞 if 𝑝 is in the 𝐸𝑝𝑠 radius of 𝑞 (i.e., 𝑝 ∈

 𝑁𝐸𝑝𝑠(𝑞)) and 𝑞 is a center object (i.e., |𝑁𝐸𝑝𝑠(𝑞)| ≫ 𝑀𝑖𝑛𝑝𝑡𝑠).

Definition 3. 𝑝 is density reachable from the point q if there is a directly density reachable connection between

two points.

The DBSCAN clustering technique starts by choosing a random point p and then retrieving den-

sity-reachable points from point p. The algorithm creates a cluster if p is a core object. If no point can

be reached using density from point p, the algorithm moves on to the subsequent point in the given

dataset. This technique is carried out for each of the points. To divide queries into similar clusters, the

R DBSCAN package is used [25].

Algorithm 4: The Cosine similarity of the produced query vectors

Input: query vectors

Output: The Cosine similarity between the produced query vectors

1: class Mapper: The key/value pair is formed.

2: function map (queries)

3: for i = 0 to n //Where n is

the total number of queries.

4: for j = i + 1 to n

5: emit ((q [i].id, q[j].id), (q[i].tf, q[j].tf)) //The term frequency values are

assigned as the value.

6: end for

7: end for

8: end function

9: end class

1: class Reducer: The Cosine similarity is calculated for each pair of queries.

2: function reduce ((q1, q2), (q1.tf, q2.tf))

3: 𝑐𝑜𝑠𝑖𝑛𝑒 = 𝑠𝑢𝑚 (𝑞1. tf × 𝑞2. tf)/(𝑠𝑞𝑟𝑡 (𝑠𝑢𝑚 (𝑞1. 𝑡𝑓)2) × 𝑠𝑞𝑟𝑡 (𝑠𝑢𝑚 (𝑞2. 𝑡𝑓)2)

4: emit ((q1, q2), cosine)

5: end function

6: end class

4. Experimental SetUp

Several experiments are conducted to evaluate the effectiveness of the presented parallel access

plan recommender system. The employed set-up for experiments is presented in this part. Virtualbox

6.1.16 was used to create the virtual environment in a physical system, with 16 GB of RAM and a 2.8

GHz Intel Core i7 processor. The tests were carried out on a Hadoop cluster with varying numbers of

virtual nodes. One node is the master, while the others are workers. On the master and worker nodes,

the Red Hat (64bit) Linux Operating System (OS) is installed. The master node has four virtual cores

and eight gigabytes of memory. Each worker node has two virtual cores and three gigabytes of RAM.

In addition, Hadoop 2.8.0 was installed. The IIT Bombay dataset [26] is also used to create simple se-

lection query sets. Therefore, the bind variables of the queries are substituted with different data val-

ues. Table 3 contains three query sets. A distinct hash value is assigned to a query’s QEP when it is run

in Oracle. Each query set is manually classified based on the distinctive value of its QEPs. The S2 query

set, for instance, has 593 queries divided into 14 classes.

 Table 3. Features of the generated query sets.

Features Dataset
Number of

Classes

Number of

Individuals

 S1 7 235

Selection S2 14 593

 S3 18 1150

5. Results

The performance of the presented parallel access plan recommendation method is evaluated using

both Hadoop [27] and Spark frameworks in terms of execution time. The presented algorithm is eval-

uated on the three created query sets described in Table 3. Table 5 demonstrated the presented tech-

nique’s implementation time for various numbers of queries with diverse worker nodes. As shown in

Table 4, Hadoop took a long time on the data sets with large query sizes. However, it performs better

when the number of queries is reduced. Similar results were also obtained from Spark. In Spark’s case,

the results were not significantly different when we reduced the number of queries.

Table 4. Run-time (Seconds) of Hadoop and Spark with the change in number of queries.

Number of Worker

Nodes

Number of

Queries
Hadoop Spark

 235 59 39

1 593 152 58

 1150 260 105

 235 57 25

3 593 150 43

 1150 255 92

 235 51 19

5 593 130 33

 1150 224 71

 235 45 15

7 593 119 25

 1150 197 50

 235 45 11

9 593 119 22

 1150 190 42

Because of Hadoops’ inherent nature of using disk I/O for its computation, which increases Ha-

doop execution time as the data size increases, it is more beneficial to use Spark instead of Hadoop for

large datasets. Figure 4 shows that multi-node cluster implementation always outperforms the stand-

alone implementation. Therefore the MapReduce model performs better in the distributed mode rather

than on a single machine. Furthermore, it is obvious that memory-based Spark performs better than

disk-based MapReduce for all query sets. The outcomes revealed that the speedup value is enhanced

along with the number of nodes in Hadoop and Spark. However, Apache Spark scales performed better

than Hadoop when the number of nodes was enhanced.

Figure 4. Run-time of Hadoop on different nodes.

The query optimization problem in large-scale and distributed databases is NP-hard in nature.

The query optimizer’s complexity increases with the complexity of the query. Therefore, the large space

of alternative query plans should be explored by the query optimizer to generate optimal QEPs. Rec-

ommendation-based methods help the query optimizer to recognize similarities between old and fu-

ture queries. An efficient parallel processing method based on MapReduce is used in this paper to

increase the efficiency of the proposed access plan recommendation method [7]. The presented MapRe-

duce algorithm is executed on different query sets. The trial outcomes have shown that the presented

parallel recommendation method can process large query sets with time-efficiency. As shown in Figure

4, as the number of queries increases, the efficiency of parallel computing will be higher. The results

have shown that the speedup increases with the number of queries. It was also concluded that the

proposed method in the Spark platform could more effectively solve the large-scale query set pro-

cessing with reasonable processing time.

6. Conclusions

This paper aimed to enhance the recommendation time in the access plan recommendation

method. For this purpose, the access plan recommendation method was implemented with two com-

mon cloud-based frameworks, Apache Hadoop and Apache Spark. First, the query expression was

standardized, and query vectors were generated. Then, parallelized feature weighting and similarity

measurement algorithms were designed to create the queries’ weight matrix. At last, the recommenda-

tion was made using the DBSCAN clustering algorithm. The performances of Hadoop and Spark were

compared by investigating the execution time. Several experiments were performed with different

cluster nodes and query sets. The experiments showed that Spark outperforms Hadoop in all cases due

to its efficient utilization of main memory. However, Apache Hadoop was more cost-effective. Future

work is recommended to investigate the performance of other clustering and classification algorithms

for query plan recommendations regarding execution time and accuracy. Furthermore, additional tests

will be beneficial in evaluating the suggested strategy’s performance for more complicated query sets.

Finally, the optimization of the MapReduce process using the partitioning and indexing techniques can

be addressed by future works.

0

50

100

150

200

250

300

Hadoop Spark Hadoop Spark Hadoop Spark Hadoop Spark Hadoop Spark

1 Worker Node 3 Worker Nodes 5 Worker Nodes 7 Worker Nodes 9 Worker Nodes

R
u

n
ti

m
e

(S
ec

o
n

d
s)

235 queries

593 queries

1150 queries

Author’s Contributions: Conceptualization, E.A. and M.H.; Methodology, E.A. and M.H.; Software, E.A.; Valida-

tion, E.A., F.K. and A.M.; Resources, E.A.; Data Curation, E.A. and A.M.; Writing—Original Draft Preparation,

E.A.; Writing—Review and Editing, E.A. and F.K.; Visualization, E.A.; Supervision, A.M.; Project Administration,

F.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Singh, V. Multi-objective Parametric Query Optimization for Distributed Database Systems. In Proceedings of Fifth

International Conference on Soft Computing for Problem Solving; Springer: Singapore, 2016; pp. 219-233.

2. Han, M.; Youn, J.; Lee, S.-G. Efficient query processing on distributed stream processing engine. In Proceedings of

the 11th International Conference on Ubiquitous Information Management and Communication, Beppu, Japan, 5–

7 January 2017; p. 29.

3. Panahi, V.; Navimipour, N.J. Join query optimization in the distributed database system using an artificial bee

colony algorithm and genetic operators. Concurr. Comput. : Pract. Exp. 2019, 31, e5218.

4. Ghosh, A.; Parikh, J.; Sengar, V.S.; Haritsa, J.R. Plan selection based on query clustering. In Proceedings of

VLDB’02: Proceedings of the 28th International Conference on Very Large Databases, Hong Kong, China, 20–23

August 2002; pp. 179–190.

5. Zahir, J.; El Qadi, A. A recommendation system for execution plans using machine learning. Math. Comput. Appl.

2016, 21, 23.

6. Zahir, J.; El Qadi, A.; Mouline, S. Access plan recommendation: A clustering based approach using queries

similarity. In Proceedings of 2014 Second World Conference on Complex Systems (WCCS), Agadir, Morocco, 10–

12 November 2014; pp. 55–60.

7. Azhir, E.; Navimipour, N.J.; Hosseinzadeh, M.; Sharifi, A.; Darwesh, A. An automatic clustering technique for

query plan recommendation. Inf. Sci. 2020, 545, 620–632.

8. Azhir, E.; Navimipour, N.J.; Hosseinzadeh, M.; Sharifi, A.; Darwesh, A. An efficient automated incremental

density-based algorithm for clustering and classification. Future Gener. Comput. Syst. 2020, 114, 665–678.

9. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113.

10. Shabestari, F.; Rahmani, A.M.; Navimipour, N.J.; Jabbehdari, S. A taxonomy of software-based and hardware-

based approaches for energy efficiency management in the Hadoop. J. Netw. Comput. Appl. 2019, 126, 162–177.

11. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin,

M.J. Apache spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65.

12. Singh, S.; Rathi, V.K.; Chaudhary, B. Big data and cloud computing: Challenges and opportunities. Int. J. Innov.

Eng. Technol. 2015, 5.

13. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working sets.

HotCloud 2010, 10, 95.

14. Elsayed, A.; Mokhtar, H.M.; Ismail, O. Ontology based document clustering using mapreduce. arXiv 2015,

arXiv:1505.02891.

15. Zewen, C.; Yao, Z. Parallel text clustering based on mapreduce. In Proceedings of 2012 Second International

Conference on Cloud and Green Computing, Xiangtan, China, 1–3 November 2012; pp. 226–229.

16. Li, Y.; Luo, C.; Chung, S.M. A parallel text document clustering algorithm based on neighbors. Clust. Comput. 2015,

18, 933–948.

17. Makiyama, V.H.; Raddick, J.; Santos, R.D. Text Mining Applied to SQL Queries: A Case Study for the SDSS SkyServer;

SIMBig, Cusco, Peru: 2015; pp. 66–72.

18. Azhir, E.; Navimipour, N. J.; Hosseinzadeh, M.; Sharifi, A.; Darwesh, A. A technique for parallel query

optimization using MapReduce framework and a semantic-based clustering method. PeerJ Comput. Sci. 2020, 7.

19. Basha, S.A.K.; Basha, S.M.; Vincent, D.R.; Rajput, D.S. Challenges in storing and processing big data using Hadoop

and Spark. In Deep Learning and Parallel Computing Environment for Bioengineering Systems; Elsevier: Amsterdam,

The Netherlands, 2019; pp. 179-187.

20. Ryza, S.; Laserson, U.; Owen, S.; Wills, J. Advanced Analytics with Spark: Patterns for Learning from Data at Scale;

O’Reilly Media, Inc.: 2017.

21. Kul, G.; Luong, D.T.A.; Xie, T.; Chandola, V.; Kennedy, O.; Upadhyaya, S. Similarity metrics for sql query

clustering. IEEE Trans. Knowl. Data Eng. 2018, 30, 2408–2420.

22. Victor, G.-S.; Antonia, P.; Spyros, S. Csmr: A scalable algorithm for text clustering with cosine similarity and

mapreduce. In Proceedings of IFIP International Conference on Artificial Intelligence Applications and

Innovations, Rhodes, Greece, 19–21 September 2014; Springer: Berlin/Heidelberg, Germany, pp. 211–220.

23. Nguyen, L.; Amer, A.A. Advanced Cosine Measures for Collaborative Filtering. Adapt. Pers. 2019, 1, 21–41.

24. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases

with Noise; Kdd, Portland, Oregon: 1996; Volume 96, pp. 226–231.

25. Hahsler, M.; Piekenbrock, M.; Doran, D. dbscan: Fast density-based clustering with R. J. Stat. Softw. 2019, 91, 1–30.

26. Chandra, B.; Chawda, B.; Kar, B.; Reddy, K.M.; Shah, S.; Sudarshan, S. Data generation for testing and grading

SQL queries. VLDB J. 2015, 24, 731–755.

