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Abstract - This paper describes Independent Component 

Analysis (ICA) based fixed-point algorithm for the blind 

separation of convolutive mixture of periodical signals. The 

proposed algorithm extracts independent periodical sources 

from their mixtures in frequency domain, where they are 

represented by their sets of harmonics. The individual 

harmonics are separated by referring to narrow frequency 

segments of the mixed signals, which include two harmonics 

each at most. The algorithm offers a simple solution to the 

permutation problem common to source separation using ICA. 
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1. INTRODUCTION 

 

The goal of Blind Signal Separation (BSS) is to estimate 

latent sources from their mixed observations without any 

knowledge of the mixing process. This challenging problem has 

bagged much research attention due to very wide area of 

applications.  

Mathematically, a BSS problem can be described as the 

process of estimating R original source signals 
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from their M  observed  mixed  signals derived from the sensors: 
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In the simplest case the mixing process produces instantaneous 

mixture, whereby the source signals are linearly combined with 

constant coefficients to produce the mixtures. A more challenging 

case is the convolutive mixing. The source signals undergo 

distortion by different systems generating the mixtures at the 

sensors: 
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where )(nh ji is an N-point impulse response of the FIR system 

between source i and sensor j.  

The corresponding relation in frequency domain is  
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where )( fH ji is the frequency response of the system between 

source i and sensor j.  

The problem of BSS for convolutive mixtures can be solved 

by extending ICA algorithms  developed for instantaneous 

mixtures. There are mainly two different approaches to solve the 

convolutive BSS  problem: in time domain [2], [3], [4], and in 

frequency domain [5], [6], [7]. The frequency domain solution is 

less complicated, involving multiplication rather than convolution. 

One method, first proposed by Smaragdis [5], converts the 

frequency domain convolutive mixture into instantaneous mixture 

for different frequency bins. STFT is applied to the observation 

signals, and the same frequency bin from successive segments are 

collected to form new observaton signals. Then, the unmixing 

matrix is sought for every frequency bin using fixed point ICA 

algorithm in complex domain. The source signals are restored a 

frequency at a time. 

Consider the case of two sources and two observations 

(M=R=2 in eq. 2). The convolutive mixture is formulated as 
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The ICA separates the signals in each frequency bin independently 

to provide the independent components, the restored signals: 
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where W(f) is the separating matrix for frequency f. 

One major problem with this frequency domain solution lies 

in the indeterminacy of scaling and permutation.  Scaling 

indetermincay means that the scaling of each frequency bin  can be 

different, leading to spectral deformations of the original source 

signals. Permutation indeterminacy means that the order of the 

restored signals may be different for different frequency bins, 

ending in mixed frequency content of the restored source signals. 

The main advantage of the proposed algorithm described in the 

following sections is in the simple solution to the permutation 

problem it offers. 

  

 

2. BSS FOR CONVOLUTIVE MIXTURE OF PERIODIC 

SIGNALS  

2.1 BSS for convolutive mixtures of sinusoidal signals 

Consider the case where the source signals are sinusoidal. 

Then, the convolutive mixture can be converted into instantaneous 

mixture, both in time and frequency.  

Remember, that when a system with a frequency response 

H(f) is operating on a complex sinusoidal signal 
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the output signal is  
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and in frequency domain  
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The same relations are applicable for real sinusoidal signals, if only 

half of the frequency range, ],0[  , is considered, and the second 

half is just the complex conjugate of the first half. 

Hence, for the case of two sinusoidal source signals, with 

frequencies
1f and

2f , and two sensors, the convolutive mixtures is 

formulated as: 
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Practically, since the sinusoidal signals are of a finite length, their 

transform, )(1 fS  and )(2 fS  are not exact impulses. The 

observation signals )(1 fX and )(2 fX , include each the two 

frequencies 
1f  and 

2f , see Fig. 1. 

Applying ICA algorithm for complex signals and coefficients to 

the observation signals, )(1 fX and )(2 fX  , results in restoring 

the separate sinusoidal signals. The particular algorithm used is the 

kurtosis-based RobustICA, offered by Zarzoso and Comon [8]. 

The algorithm returns the separated signals, as well as the 

estimated mixing matrix and the estimated extracting matrix. It 

turns out that the elements of the returned mixing matrix, A, 

closely resembles the values of the frequency responses involved at 

the frequencies of the sinusoidal sources. Namely, 
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Fig. 1 shows the input sinusoidal source, their convolutive 

mixtures, and the restored separated signal, both in time and 

frequency. In the simulation the four convolving systems were 

randomly selected. 

    
(a)            (b) 

Fig.1 Separating two sinusoidal source signals from their 

convolutive mixtures. (a) the observed mixed signals in frequency 

(b) the restored separated signals 

The results in time domain are demonstrated in Fig. 2.  

    
         (a)              (b) 

Fig.2 Separating two sinusoidal source signals from their 

convolutive mixtures – results in time (a) the observed mixed 

signals (b) the restored separated signals 

By varying the frequencies of the two sinusoidal source 

signals, the frequency response of the convolving systems can be 

estimated from the returned mixing matrix A. Fig. 3 shows the 

frequency response for two of the convolving systems, and their 

derivation from the returned mixing matrix.  

        
   (a)               (b)  

Fig.3 Estimating the frequency response of the convolving system 

from the returned mixing matrix A. (a) 
11H and its estimate (b) 

12H and its estimate 

 

2.2 BSS for convolutive mixtures of signals composed of a 

linear combination of sinusoidal components 

Once it is understood how two sinusoidal signals can be 

separated from their convolutive mixtures, the next stage is to try 

and separate two signals, composed each of several sinusoidal 

components at different frequencies, from their convolutive 

mixtures. Suppose 
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where the frequencies in 
1s and

2s are supposed to be different. 

The signals are convolutively mixed by four randomly selected 

systems, as in eq. (5). 

The proposed strategy is to divide the observation signals in 

frequency, )(1 fX and )(2 fX  , into consecutive short segments, 

such that in each segment there are at most two prominent 

frequencies, presenting two sinusoidal elements. This assumption 

is not too limiting, since the segment size in frequency may be 

reduced to meet the assumption.  

The ICA algorithm is then applied to each segment separately, and 

the restored separated signals are constructed by combining the 

separated signals from the different segments. Fig. 4 shows the 

results of separating two source signals, each with four sinusoidal 

components. 
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      (a) 

 
         (b)                 (c) 

               
             (d) 

Fig. 4 Separating two source signals, each with a few frequency 

components, from their convolutive mixtures. (a) the spectrum of 

the two mixed signals (b)-(c) dividing the two mixed signals into 

segments with two sinusoidal components each (d) the two 

separated signals in frequency. 

 

In each segment the algorithm separates the two sinusoidal 

components from the mixed signals. The permutation problem 

arises in the need to assign in each segment one frequency 

component to 
1s and the other to

2s . 

 

2.3 The Solution to the Permutation Problem 

 

It was found out, that if in a segment with two frequency 

components the frequency from 
1s is smaller than that from

2s , 

then the order of the returned mixing matrix A is as in eq. (6). 

Alternatively, if the frequency from 
1s is larger than that from

2s , 

then the columns of the returned mixing matrix are reversed, 

namely, 
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In both cases the sinusoidal components are separated. Still, the 

permutation problem arises as to whether to assign the separated 

component with the smaller frequency to 
1s or to 

2s . 

The solution found relies on the continuity of the frequency 

response of the convolving systems. It entails that the mixing 

matrices of consecutive segments should be similar. Namely, if in 

two consecutive segments the smaller frequency comes from the 

same source signal, the returned mixing matrices for these 

segments should be similar. Then, the smaller frequency in the two 

consecutive segments are assigned to the same source. 

Alternatively, if in one segment the smaller frequency belongs to 

one source and in the next segment it belongs to the second source, 

then the returned mixing matrix for the two segment differ 

significantly (due to the columns inversion). In that case, the 

smaller frequency in the second segment is assigned to the 

opposite source to that of the first segment. The results presented 

in Fig. 3-5 demonstrate that the permutation problem is resolved, 

assigning the sinusoidal components to the correct source signal. 

 

2.4 BSS for convolutive mixtures of multiple periodic signals 

 

Previous sections have dealt with the separation of two 

convolutively mixed periodic source signals. The expansion of the 

method to the case of multiple periodic source signals has been 

examined. When all source signals are periodic signals, they are 

properly separated from their convolutive mixture regardless of 

how many they are. Moreover, the permutation problem is 

resolved, similarly to the two-signals case: there is a strict 

correlation between the order of frequencies and the order of the 

columns in the coefficients matrix returned. For example, in case 

of 3 sinusoidal source signals with frequencies 321 fff  , the 

columns of the mixing matrix A returned  are arranged with the 

coefficients of the 3rd signal first. 

Fig. 5 displays the results of applying the method to 3 

sinusoidal source signals. 

      
(a)              (b) 

                          
     (c) 

Fig. 5 Separating three sinusoidal source signals from their 

convolutive mixtures. (a) The original three source signals. (b) The 

three  mixed signals (c) The three separated restored signals. 

    

3. EXPERIMENTAL RESULTS 

The algorithm presented has been applied to two more cases: 

the convolutive mixture of two periodic square wave source signals 

with different periods, and to the convolutive mixture of two 

musical notes played by string instruments. 

Fig. 6-7 shows the results obtained for BSS of a convolutive 

mixture of two square-wave source signals with different periods. 

Fig. 6 shows the results in frequency domain, and Fig. 7 shows the 

results in time.  
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It can be seen that the scaling problem of  ICA is not resolved, 

and the amplitude of the different harmonics is not accurate. 

 

 
(a)                                              (b) 

                               
         (c) 

Fig. 6 Separating two square wave source signals from their 

convolutive mixtures. (a) The original spectrum of the two source 

signals. (b) the spectrum of  the two mixed signals (c) the spectrum 

of the two separated signals.  

   
(a)                     (b) 

Fig. 7 Separating two square wave source signals from their 

convolutive mixtures – results in time (a) The original square wave 

signal 
1s and the restored signal (b) The original square wave 

signal 
2s and the restored signal 

 

It can be seen that the scaling problem of ICA is not resolved, and 

the amplitude of the different harmonics are not accurately 

restored. 

Fig.8-9 show the results obtained for BSS of a convolutive 

mixture of two musical notes source signals. The peaks in 

frequency of the musical note signal are wide due to two reasons: 

the signals are semi-periodic, since their amplitude decays with 

time. Secondly, the note is of a finite length. Because of these wide 

peaks, a peak may be broken erroneously into two consecutive 

segments, if a fix segmentation size is used. 

This problem may be avoided if segmentation is dictated by the 

peaks, namely, a segment is chosen around the peaks rather than 

choosing segments of fixed frequency range. 

          
   (a) 

 
(b)               (c) 

Fig. 8 Separating two musical notes source signals from their 

convolutive mixtures. (a) The spectrum of the mixed signals (b) the 

spectrum of the source signal 
1s and the restored signal (c) The 

spectrum of source signal 
2s and the restored signal 

 

    
 

Fig. 9 Separating two musical notes source signals from their 

convolutive mixtures – results in time: The original musical note 

signal 
1s (top) and the restored signal (bottom) 

 

 4. CONCLUSIONS 

In this paper we proposed a method to blindly separate 

periodic signals from their convolutive mixtures. It relies on the 

kurtosis-based fixed-point ICA algorithm operating on the mixed 

signals in frequency domain. Mainly, the spectrum of the mixed 

signals is subdivided into segments, and each segment is dealt with 

separately to restore the source signals. The main advantage of the 

proposed method is in the simple solution it provides to the ICA 

permutation problem. We validated the performance of our method 

on artificially generated periodic signals, as well as on real periodic 

signals of musical notes. The results indicate that the proposed 

method is able to separate the mixed signals into close estimates of 

the source signals. Future endeavors are to expand the method to 

work on mixtures of more than two source signals, and to try and 

solve the unresolved scaling problem, still harming the results. 
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