
EasyChair Preprint

№ 371

Puli - A Problem-Specific OMT Solver

Gergely Kovásznai, Csaba Biró and Balázs Erdélyi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 23, 2018



Puli � A Problem-Speci�c OMT solver∗

Gergely Kovásznai1, Csaba Biró2, and Balázs Erdélyi1

1 IoT Research Institute
2 Institute of Mathematics and Informatics
Eszterházy Károly University, Eger, Hungary

Abstract

In our previous papers, we investigated several aspects of applying Optimization Mod-
ulo Theories (OMT) solvers to Wireless Sensor Networks (WSNs). None of the solvers
we used in our experiments scaled enough for WSNs of common size in practice. This is
particularly true when investigating additional dependability and security constraints on
WSNs of high density.

In this paper, we propose an idea of speeding up the OMT solving process by taking into
consideration some resources in the systems and by applying regression analysis on those
resource values. For instance, in WSNs, the electrical charge in the batteries of sensor nodes
can be considered to be a resource that is being consumed as approaching the maximal
lifetime of the network. Another example is the knapsack problem where the remaining
capacity of the knapsack can be used as such a resource. We show how to integrate this
idea in search algorithms in the OMT framework and introduce a new OMT solver called
Puli. We present experiments with Puli on WSN and knapsack benchmarks, which show
remarkable improvements in the number of solved instances as well as computation time
compared to existing solvers. Furthermore, we show that further signi�cant improvement
can be realized on so-called monotonous problems, such as WSN optimization, for which
Puli can generate more precise assertions. We present Puli as a work-in-progress prototype
that we are planning to upgrade to an o�cial release soon, which we want to make publicly
available.

1 Introduction

Considering WSN (Wireless Sensor Network) problems, sensor devices are self-powered and,
therefore, have limited power supply. Therefore, it is crucial to apply energy e�cient protocols
to the sensor nodes by synchronizing their operations. To save energy, a sensor node might
eventually enter the sleep mode, in which its power consumption is typically the fraction of that
in the active mode. However, coverage (and other security constraints) should be maintained
during the entire lifetime of the WSN, therefore we typically want to generate a sleep/wake-up
scheduling which does not violate any of those constraints at any time and provides a maximal
lifetime for the WSN.

Satis�ability Modulo Theories (SMT) is a powerful tool to solve constraint satisfaction
problems in diverse application areas including software and hardware veri�cation, planning,
scheduling, etc. A few previous works apply SMT formalization to the aforementioned WSN
constraints and use SMT solvers to generate an appropriate sleep/wake-up scheduling for a
WSN. [9] focuses only on the coverage problem and reports experiments with the SMT solver
Z3 [6]. [7] addresses not only the coverage problem, but also the evasive constraint and the
moving target constraint, and utilizes the SMT solver Yices [8] for experiments. Note that

∗The research was supported by the grant EFOP-3.6.1-16-2016-00001 �Complex improvement of research

capacities and services at Eszterházy Károly University�



Puli � A Problem-Speci�c OMT solver G. Kovásznai, Cs. Biró, B. Erdélyi

both [9] and [7] are only interested in generating a sleep/wake-up scheduling that ful�lls the
aforementioned constraints, but none of them addresses the maximization problem of the WSN
lifetime, which makes them not as practical.

In [10], we generate Optimization Module Theories (OMT) benchmarks for WSNs and apply
OMT solvers to obtain a sleep/wake-up scheduling for a WSN that maximizes its lifetime. In
those experiments, we compare the results by OptiMathSAT [13], Z3 [3], and Symba [12].
We conclude there that �OptiMathSAT provides the most stable performance and scales the
best�. The follow-up paper [11] investigates further aspects of WSNs, in particular their density,
that makes the OMT solving process more challenging. We report on further benchmarks and
experiments with OptiMathSAT.

The aim of this paper is to improve the results of existing OMT solvers by taking into
consideration some resources in a WSN and then applying regression analysis on those resource
values. The idea can be generalized to extending an OMT problem with a de�nition of a re-
source function. Further improvement can be realized on so-called monotonous OMT problems.
Section 3 shows how to apply our resource-based regression analysis technique to WSN opti-
mization, which is actually a monotonous problem, and to combine it with linear search. We
introduce our work-in-progress OMT solver called Puli, and report on experiments with Puli,
OptiMathSAT, Z3 and Symba in Section 4. In Section 5, we demonstrate how to apply
the same idea to the knapsack problem, and then report on experiments. All the experiments
show remarkable improvements in the number of solved instances as well as computation time
compared to existing OMT solvers.

2 Preliminaries

Satis�ability Modulo Theories (SMT) is the decision problem of checking satis�ability of logical
formulas with respect to some background theory. Optimization Modulo Theories (OMT) is an
extension of SMT which allows to �nd models that optimize given objective functions. Common
theories include the theory of integers, reals, �xed-size bit-vectors, etc. The logics that one could
use might di�er from each other in the linearity or non-linearity of arithmetic, the presence or
absence of quanti�ers, or in the presence or absence of uninterpreted functions. In this paper,
we are using the quanti�er-free logic of linear integer arithmetic with uninterpreted functions
(QF_UFLIA). The SMT-LIB format [1], as the common input format for SMT solvers, de�nes
the syntax for QF_UFLIA formulas, where the most important features are as follows: (1) No
quanti�ers ∀ and ∃ are allowed to be used. (2) Every expression must be of type integer or
Boolean. (3) Only the arithmetic operations addition, subtraction, multiplication, division, and
comparison can be used. (4) For the sake of linear arithmetic, expressions with multiplication
are allowed to be used only in the format c ∗ t where c is a constant. (5) It is allowed to use
uninterpreted function symbols, i.e., to specify only the signature for such a function symbol.

Given the number n ≥ 1 of the sensor nodes, let ri denote the range of the ith sensor node.
The greater the range is, the shorter the lifetime of the sensor node is, denoted by Li. The
objective for the sensor nodes is to cover a set of m ≥ 1 points of interest. Let di,j denote
the physical distance between the ith sensor node and the jth point. Let wi,t be a Boolean
variable that denotes whether the ith sensor node is awake at the tth time interval. T denotes
the lifetime of the WSN, thus the objective function is max : T .

We de�ne the following constraints on a WSN:

• Lifetime constraint. For each sensor node, the number of time intervals at which the

2



Puli � A Problem-Speci�c OMT solver G. Kovásznai, Cs. Biró, B. Erdélyi

node is awake must not exceed the node's lifetime.

∀i (1 ≤ i ≤ n).

T∑
t=1

wi,t ≤ Li

• Coverage constraint [14, 5, 4]. Every point must be covered by at least K ≥ 1 sensor
nodes at any time.

∀j, t (1 ≤ j ≤ m, 1 ≤ t ≤ T ).
∑
i∈Sj

wi,t ≥ K

where Sj = {i | di,j ≤ ri}.

• Evasive constraint [2, 7, 10]. Each sensor node must not stay active for more than
E ≥ 1 consecutive time intervals.

∀i, t (1 ≤ i ≤ n, 1 ≤ t ≤ T − E).

t+E∑
t′=t

wi,t′ ≤ E

• Moving target constraint [7, 10]. Some of the points are considered to be critical
points, which must not be covered by the same sensor for more than M ≥ 1 consecutive
time intervals.

∀j ∈ CR, ∀i ∈ Sj , ∀t (1 ≤ t ≤ T −M).

t+M∑
t′=t

wi,t′ ≤M

where CR ⊆ [1,m].

Note that all the aforementioned constraints are linear arithmetic constraints. All the
variables whose value depends on T are represented as uninterpreted functions. For the sake
of the feasibility of the solving process, it is advisable to avoid quanti�ers by unrolling them.
Therefore, all the aforementioned constraints can be encoded as QF_UFLIA formulas.

3 Search Strategies

3.1 Boosting Linear Search by Regression

How to look for the maximal lifetime for a WSN? We can start with setting the lifetime T to the
lowest possible value 1, generating an SMT-LIB instance for the given WSN of lifetime T , and
checking if that instance is satis�able (SAT). If it is, we can increase the lifetime and repeat
the process again. This loop stops when we �nd the �rst unsatis�able (UNSAT) instance. The
maximal lifetime corresponds to the SAT instance just before the �rst UNSAT one in the row.

Of course, this is just a naive linear search which is not yet competitive with existing, more
sophisticated OMT solving approaches. The problem is that we solve all the SAT instances
for each possible T . To boost the search, we should not solve all the SAT instances if certain
instances can safely be skipped. For this reason, we use regression analysis, in order to estimate
at which T a WSN runs out of its resources and stops working.

Our approach works for any OMT problem over QF_UFLIA with a single objective func-
tion if the de�nition of a resource function fres is provided, in order to obtain data points

3



Puli � A Problem-Speci�c OMT solver G. Kovásznai, Cs. Biró, B. Erdélyi

(
T, fres(T )

)
for regression analysis where T is the current value for the objective function. For

a WSN, the charge of the batteries of sensor nodes can be considered to be such a resource,
which is continuously decreasing until draining. This is estimated by the following resource
function:

n∑
i=1

Li −
n∑

i=1

T∑
t=1

wi,t

The value of the resource function is obtained by summing the lifetime of all the sensor nodes
(which is the theoretical maximum of the network's lifetime), and then subtracting the sum of
the time intervals that have been used up so far. In fact, this is an estimation of how long the
network will be operational from now on, i.e., how much charge is left in the batteries.

For our approach, it is also necessary to de�ne a resource target value for the regression
function, which we expect to be taken close to the optimum of the objective function. For a
WSN, the resource target value is 0.

We have introduced two solver-speci�c options to SMT-LIB: opt-resource-fun for de�ning
the resource function and opt-resource-target for de�ning the resource target value. Both
options can be interpreted by our solver, Puli. For the WSN problem, these options are
speci�ed as follows:

(define -fun resource -fun () Int

(-

(+ L0 L1 ...)

(+ (w 0 0) (w 0 1) ...)

))

(set -option :opt -resource -fun resource -fun)

(set -option :opt -resource -target 0)

Algorithm 1 shows how the boosted linear search works for maximization.1 One must specify
the lower bound lb for T as an input parameter. Di�erent SMT-LIB instances are generated for
di�erent T values in a loop, an underlying SMT solver is called with those instances, and the
results of those calls are saved in a pool of (T, result) pairs, where result ∈ {SAT,UNSAT}. The
functions SaveResult and LoadResult save and load data into/from this pool, respectively.
If the current instance is SAT resp. UNSAT, then T is incremented resp. decremented, and a
new iteration is about to start. There are two possible exits from the loop: (1) if the instance
for lb is UNSAT, then there exists no optimum; (2) if the instance for T is SAT and that for
T + 1 is UNSAT, then the optimum is T .

Otherwise, if the current instance is SAT, the algorithm makes the SMT solver return the
value resource of the resource function and saves a new point (T, resource) for regression
analysis. If regression provides more than one root, we select the minimum root T ′ among all
T ′ > T . Then we run a check on T and T ′ to decide (1) if it is worth to do a jump in the value
of T instead of simply incrementing it, and (2) to what exact value to jump.

Some additional details about functions used in Algorithm 1:

GenerateSmtlib(T ): An assertion on the value of the objective function fobj is added. For
maximization, this assertion is fobj ≥ T , by default. Section 3.3 introduces a special class
of optimization problems for which this assertion can be more speci�c.

SmtSolve(smtlib): The prototype of Puli uses Z3 as the underlying SMT solver.

RegressionOnResourcePoints(): The prototype of Puli uses linear regression.

1 From this, the algorithm for minimization can be obtained easily.

4



Puli � A Problem-Speci�c OMT solver G. Kovásznai, Cs. Biró, B. Erdélyi

Algorithm 1 Puli's algorithm for maximization

1: procedure Maximization(lb)
2: T ← lb
3: while true do
4: if LoadResult(T ) = SAT then
5: increment T
6: else if LoadResult(T ) = UNSAT then
7: if T = lb then
8: return null
9: end if
10: decrement T
11: else
12: smtlib← GenerateSmtlib(T )
13: (T, result, resource)← SmtSolve(smtlib)
14: SaveResult(T, result)
15: if result = SAT then
16: if LoadResult(T + 1) = UNSAT then
17: return T
18: end if
19: SaveResourcePoint(T, resource)
20: regression← RegressionOnResourcePoints()
21: T ′ ← minimum root of regression where T ′ > T
22: if ConditionForJump(T, T ′) then
23: T ← Jump(T, T ′)
24: end if
25: end if
26: end if
27: end while
28: end procedure

ConditionForJump(T, T ′),Jump(T, T ′): The prototype of Puli employs a simple jump
strategy for the sake of skipping the most possible SAT instances and hitting the least
possible UNSAT instances.

3.2 Binary Search

To look for the maximal lifetime for a WSN, we can apply binary search as well, if an upper
bound for the objective function is known. For a WSN, the upper bound ub can be de�ned as∑n

i=1 Li.

Our binary search algorithm works as follows: T = lb+ub
2 is calculated, for which we call

GenerateSmtlib(T ). If, for the resulting instance, the underlying SMT solver returns SAT,
we set lb = T + 1, otherwise ub = T − 1.

3.3 Monotonous Problems

We call an OMT problem monotonous if, as incrementing the value of the objective function,
all the resulting SMT instances are SAT until exceeding the optimum. That is, there exists no

5



Puli � A Problem-Speci�c OMT solver G. Kovásznai, Cs. Biró, B. Erdélyi

UNSAT instance below the optimum. For instance, the optimization of WSNs is a monotonous
problem. For such problems, the assertion that GenerateSmtlib(T ) introduces can assign an
exact value to the objective function: fobj = T .

Puli is able to deal with monotonous and non-monotonous OMT problems as well. Dealing
with WSN optimization as a monotonous problem speeds up Puli's solving signi�cantly, as our
experiments show.

4 Experiments and Results

We run experiments on the WSN benchmarks from the paper [11], for four di�erent constraint
settings and three di�erent density groups. Experiments were run on 3.6 GHz 8-core CPU with
8 GB memory. The wall clock time limit was set to 1200 seconds and the memory limit to
3 GB. Then we run Puli's linear search boosted by regression, Puli's binary search, and the
solvers OptiMathSAT, Z3 and Symba.

Tables 1, 2 and 3 summarize the results of our experiments for the three di�erent density
groups, respectively. The columns show the total number of solved SAT/UNSAT instances, the
number of timeouts (#TO), the average optimum found for the SAT instances (Optimum), and
the average runtime resp. memory consumption (Time resp. Space).

It is clearly visible that Puli provides an remarkably stable performance: it can solve almost
all instances with signi�cantly low runtime and less memory. Among the three other solvers,
OptiMathSAT has the most stable performance, as it was already shown in [10]. Compared to
OptiMathSAT, Z3 and Symba are worth to use on the easier benchmarks, i.e., the ones with
lower density and fewer constraints, but their performance signi�cantly declines as benchmarks
getting harder.

5 Another Example: the Knapsack Problem

For further experiments, we generated OMT benchmark instances for the 0-1 knapsack problem
as follows. Given the number n ≥ 1 of items to put in the knapsack. Let wi and vi denote the
weight and the value of the ith item, respectively. The maximum weight capacity is denoted by
wLimit. Let xi be a Boolean variable that denotes if the ith item is put in the knapsack.

A single constraint is needed to be asserted:

n∑
i=1

wixi ≤ wLimit

The objective function is

max :

n∑
i=1

vixi

We de�ne the resource function as the remaining capacity in the knapsack, as follows:

wLimit−
n∑

i=1

wixi

In the SMT-LIB instances, our solver-speci�c options are used as follows:

6



Puli � A Problem-Speci�c OMT solver G. Kovásznai, Cs. Biró, B. Erdélyi

Constraint settings #SAT/UNSAT #TO Optimum Runtime Space

Puli's linear search
allon 19/0 1 30.5 63.1 75.1
evasive o� 20/0 0 35.5 3.4 66.4
moving target o� 20/0 0 49.5 6.4 72.5
evasive moving o� 20/0 0 55.7 7.9 63.6

Puli's binary search
allon 19/0 1 30.5 63.7 71.0
evasive o� 20/0 0 35.5 3.4 62.0
moving target o� 20/0 0 49.5 5.8 66.4
evasive moving o� 20/0 0 55.7 3.6 57.0

OptiMathSAT

allon 19/0 1 30.5 173.9 430.6
evasive o� 20/0 0 35.5 51.0 293.3
moving target o� 18/0 2 48.2 285.2 422.6
evasive moving o� 18/0 2 53.0 273.4 374.9

Z3

allon 10/0 10 8.6 605.8 554.7
evasive o� 20/0 0 35.5 64.1 388.3
moving target o� 16/0 4 47.2 292.9 614.5
evasive moving o� 20/0 0 55.7 8.7 138.7

Symba

allon 10/0 10 13.1 654.4 684.4
evasive o� 20/0 0 35.5 152.8 421.4
moving target o� 12/0 8 39.9 632.0 710.5
evasive moving o� 20/0 0 55.7 118.0 187.8

Table 1: Results for di�erent constraint settings for WSNs of 40-50% density.

(define -fun resource -fun () Int

(-

wLimit

(+ (* w0 x0) (* w1 x1) ...)

))

(set -option :opt -resource -fun resource -fun)

(set -option :opt -resource -target 0)

Note that the knapsack problem is a non-monotonous OMT problem in general. Therefore,
we cannot assign exact values to the target function in each iteration and, thus, we can expect
longer runtimes.

5.1 Further Experiments

Table 4 shows the results of the preliminary experiments with the knapsack problem, only
against OptiMathSAT. The number of items is 150, the values and the weights of items are
random numbers between 1 and 100. The knapsack's capacity is set to the 70% of the total
weight of all the items.

The results show that Puli outperforms OptiMathSAT by at least one order of magnitude
on those instances.

7



Puli � A Problem-Speci�c OMT solver G. Kovásznai, Cs. Biró, B. Erdélyi

Constraint settings #SAT/UNSAT #TO Optimum Runtime Space

Puli's linear search
allon 19/0 1 80.2 79.9 122.3
evasive o� 20/0 0 80.7 14.5 92.6
moving target o� 20/0 0 82.9 44.9 102.7
evasive moving o� 20/0 0 84.3 23.7 69.8

Puli's binary search
allon 19/0 1 80.2 75.5 117.6
evasive o� 20/0 0 80.7 10.9 86.4
moving target o� 20/0 0 82.9 17.9 95.5
evasive moving o� 20/0 0 84.3 6.6 62.8

OptiMathSAT

allon 16/0 4 78.8 327.2 613.0
evasive o� 19/0 1 80.2 190.7 405.0
moving target o� 16/0 4 81.6 397.0 483.4
evasive moving o� 18/0 2 83.9 522.7 625.8

Z3

allon 6/0 14 51.0 858.8 1029.7
evasive o� 16/0 4 75.1 325.1 592.3
moving target o� 13/0 7 78.8 525.5 672.4
evasive moving o� 20/0 0 84.3 11.9 143.3

Symba

allon 7/0 13 54.2 924.5 962.0
evasive o� 15/0 5 77.6 573.4 712.8
moving target o� 9/0 11 71.7 794.7 755.2
evasive moving o� 20/0 0 84.3 127.7 197.2

Table 2: Results for di�erent constraint settings for WSNs of 60-70% density.

6 Conclusion

In this paper, we proposed the idea of speeding up the OMT solving process by taking into
consideration a resource function in the system to optimize and by applying regression analysis
on those resource values. Furthermore, we introduced a class of OMT problems, the so-called
monotonous problems, for which the solving process can be further boosted.

We introduced a new OMT solver called Puli and reported experiments on di�erent OMT
benchmarks for WSNs and for the knapsack problem. The results show that Puli signi�cantly
outperforms the OMT solvers OptiMathSAT, Z3 and Symba on those benchmarks. In gen-
eral, Puli can solve any QF_UFLIA problem with a single objective function and can apply
its the regression-based boosting if the de�nition of a resource function is provided. For this,
we introduced two solver-speci�c options to SMT-LIB: opt-resource-fun for de�ning the re-
source function and opt-resource-target for de�ning the resource target value. Both options
can be interpreted by Puli.

All the benchmarks and the log �les are available at https://iot.uni-eszterhazy.hu/en/research/
tools. As future work, we are going to implement Puli in C/C++ as well and to make an o�-
cial release publicly available. Now that we have an OMT solver scales enough, we are planning
to generate benchmarks for WSNs of larger size and of more complex model. We are also plan-
ning to formalize other optimization problems, for instance, the problem of �nding the minimal
spanning tree in a graph, which is of great importance in identifying the backbone of a network.
Furthermore, we want to experience with pseudo-Boolean variables and ILP solving.

8

https://iot.uni-eszterhazy.hu/en/research/tools
https://iot.uni-eszterhazy.hu/en/research/tools


Puli � A Problem-Speci�c OMT solver G. Kovásznai, Cs. Biró, B. Erdélyi

Constraint settings #SAT/UNSAT #TO Optimum Runtime Space

Puli's linear search
allon 20/0 0 119.3 93.4 184.2
evasive o� 20/0 0 119.3 53.5 126.5
moving target o� 20/0 0 119.3 141.1 135.9
evasive moving o� 20/0 0 119.3 40.5 75.0

Puli's binary search
allon 20/0 0 119.3 42.3 176.0
evasive o� 20/0 0 119.3 23.3 119.2
moving target o� 20/0 0 119.3 35.8 127.8
evasive moving o� 20/0 0 119.3 11.4 67.5

OptiMathSAT

allon 20/0 0 119.3 192.8 678.9
evasive o� 19/0 1 120.8 190.5 457.9
moving target o� 18/0 2 117.6 619.5 631.7
evasive moving o� 14/0 6 116.8 794.5 847.2

Z3

allon 9/0 11 117.8 774.7 1198.8
evasive o� 17/0 3 119.5 441.8 716.4
moving target o� 12/0 8 119.3 589.5 699.6
evasive moving o� 20/0 0 119.3 13.3 126.1

Symba

allon 4/0 16 125.0 1098.8 1238.5
evasive o� 17/0 3 117.6 583.5 727.7
moving target o� 11/0 9 123.2 820.2 763.5
evasive moving o� 20/0 0 119.3 155.0 171.4

Table 3: Results for di�erent constraint settings for WSNs of 80-90% density.

Solver #SAT/UNSAT #TO Optimum Runtime Space

Puli's linear search 30/0 0 6996.3 32.3 45.4
Puli's binary search 30/0 0 6996.3 3.3 45.9
OptiMathSAT 30/0 0 6996.3 103.6 110.7

Table 4: Results for the knapsack problem.

References

[1] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB standard: Version 2.6. Tech-
nical report, Department of Computer Science, The University of Iowa, 2017. Available at
www.SMT-LIB.org.

[2] Zinaida Benenson, Felix C. Freiling, and Peter M. Cholewinski. Advanced evasive data storage
in sensor networks. In Proc. Int. Conf. on Mobile Data Management, MDM'07, pages 146�151.
IEEE Computer Society, 2007.

[3] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. µZ - an optimizing SMT solver. In
Proc. Int. Conf. for Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 9206 of LNCS, pages 194�199. Springer, 2015.

[4] Mihaela Cardei. Coverage problems in sensor networks. In Handbook of Combinatorial Optimiza-
tion, pages 899�927. Springer, 2013.

[5] Mihaela Cardei and Ding-Zhu Du. Improving wireless sensor network lifetime through power aware

9



Puli � A Problem-Speci�c OMT solver G. Kovásznai, Cs. Biró, B. Erdélyi

organization. Wireless Networks, 11(3):333�340, 2005.

[6] Leonardo De Moura and Nikolaj Bjørner. Z3: An e�cient SMT solver. In Proc. Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), TACAS'08/ETAPS'08,
pages 337�340. Springer-Verlag, 2008.

[7] Qi Duan, Saeed Al-Haj, and Ehab Al-Shaer. Provable con�guration planning for wireless sensor
networks. In Proc. 8th Int. Conf. on Network and Service Management (CNSM) and Workshop
on Systems Virtualization Management (SVM), pages 316�321, 2012.

[8] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Proc. Int. Conf. on
Computer-Aided Veri�cation (CAV), volume 8559 of Lecture Notes in Computer Science, pages
737�744. Springer, 2014.

[9] Weiqiang Kong, Ming Li, Long Han, and Akira Fukuda. An SMT-based accurate algorithm for the
K-coverage problem in sensor network. In Proc. 8th Int. Conf. on Mobile Ubiquitous Computing,
Systems, Services and Technologies (UBICOMM), pages 240�245, 2014.

[10] G. Kovásznai, Cs. Biró, and B. Erdélyi. Generating optimal scheduling for wireless sensor networks
by using optimization modulo theories solvers. In Proc. Int. Workshop on Satis�ability Modulo
Theories (SMT), volume 1889 of CEUR, pages 15�27, 2017.

[11] G. Kovásznai, B. Erdélyi, and C. Biró. Investigations of graph properties in terms of wireless
sensor network optimization. In 2018 IEEE International Conference on Future IoT Technologies
(Future IoT), pages 1�8. IEEE, 2018.

[12] Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gur�nkel, and Marsha Chechik. Symbolic op-
timization with SMT solvers. In Proc. ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 607�618. ACM, 2014.

[13] Roberto Sebastiani and Patrick Trentin. OptiMathSAT: A tool for optimization modulo theories.
In Proc. Int. Conf. on Computer-Aided Veri�cation (CAV), volume 9206 of LNCS, pages 447�454.
Springer, 2015.

[14] Di Tian and Nicolas D. Georganas. A coverage-preserving node scheduling scheme for large wireless
sensor networks. In Proc. Int. Workshop on Wireless Sensor Networks and Applications, WSNA'02,
pages 32�41. ACM, 2002.

10


	Introduction
	Preliminaries
	Search Strategies
	Boosting Linear Search by Regression
	Binary Search
	Monotonous Problems

	Experiments and Results
	Another Example: the Knapsack Problem
	Further Experiments

	Conclusion

