ﬁ EasyChair Preprint

Ne 14546

Extending Polygeist to Generate OpenMP SIMD
and GPU MLIR Code

Arun Thangamani, Vincent Loechner and Stéphane Genaud

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 26, 2024

Extending Polygeist to Generate OpenMP SIMD
and GPU MLIR Code

Arun Thangamani*, Vincent Loechner, and Stéphane Genaud

University of Strasbourg and Inria, France.
{thangamani,loecher,genaud}@unistra.fr

Abstract. The state-of-the-art source-to-source polyhedral schedulers
annotate loops that can be vectorized with directives, which are merely
recommendations to the compiler. However, standard compiler auto-
vectorizers may fail to vectorize them because of the complexity of the
loops structure or nested statements in the restructured code. The Polygeist
compilation framework can generate polyhedral optimized (tiling and
parallel loops) MLIR code, but it neither annotates the loops with vec-
torization directives nor auto-generates the vectorized code.

In this paper we describe a proposal to extend Polygeist to generate
OpenMP SIMD MLIR code for vector loops. We also want to further
extend the code generation process to support GPU MLIR code thereby
targeting accelerated architectures.

Keywords: loop optimization - MLIR - compilers - polyhedral tech-
niques - heterogeneous architectures

1 Introduction and Motivation

Loop optimizations are a main topic in compilers as the computation of many
applications mostly revolves around complex or nested loop structures. Gener-
ating an efficient code for these loop structures results in a significant reduction
in execution time by reaping the benefits of parallelism, data locality, and many
others. The polyhedral optimization techniques are efficient in optimizing nested
loop structures. They (i) extract the polyhedral structure, (ii) find an optimizing
schedule for the polyhedral representation, and (iii) finally convert the optimized
polyhedra into code. There are many open-source polyhedral schedulers avail-
able like Pluto [1], PoCC [8], Polly [2], and PPCG [12]. These schedulers do three
loop transformations with the polyhedral information: (i) loop tiling, (ii) paral-
lelization, and (iii) vectorization. Tiling is achieved by re-structuring the loop
nests, parallel loops are expressed by inserting parallel for OpenMP direc-
tives, and vectorization opportunities are marked with vectorizaion directives
by some compilers. This latter directive is merely a recommendation for the
back-end compilers to vectorize the upcoming loop structure but we observed
that in few cases standard compilers do not actually vectorize it. We carried

* Arun Thangamani is a 3"¢ year PhD student at University of Strasbourg, France.

2 A. Thangamani, et al.

(a) cgeist (b) polymer-opt (C>
Cl Clang _ e MLIR Open [T
(d) Open SCoP +
(f) @ MLIR + w Vector dire @

LLVM
< mlir- |

2 Vector
simd ii) AST
(— LLvM | “CPU [[translate 3 convertor < anno. v S
LLVM
< < v mlir-opt /{ MLIR. gen.

GPU MLIR GPU
()
PU host/device
code

Fig. 1: Overview of Polygeist compilation-flow being modified by our proposed
technique. Green arrows show our extended/modified version of CPU code gen-
eration. Red arrows show our newly proposed GPU code generation

out a detailed study on polyhedral schedulers [10] and found that the main rea-
sons reported by compilers to not vectorize the marked code were, for example:
(i) could not determine the number of loop iterations, (ii) multiple nested loops,
(iii) complex loop statements (like function calls, irregular control flow, and
pointer/array deference), (iv) control flow inside loops, and (v) inner-loop count
not invariant. Further, in a few cases the vectorization is not applied because the
vector cost-model of the back-end compiler estimates that it is not profitable.
Thus, we are not able to fully reap the benefits of polyhedral techniques.

1.1 Polygeist

MLIR [4] is a part of the LLVM [3] framework and it offers a means to express
code operations and types through an extensible set of common intermediate
representations (IR), called dialects, each dedicated to a specific concern at
different levels of abstractions. Lowering a dialect in MLIR refers to the pro-
cess of transforming operations and constructs from a higher-level dialect into a
lower-level representation that is closer to the target execution environment or
hardware platform. Polygeist [5] is a compilation tool that lowers C/C++ to Poly-
hedral MLIR code. Figure 1 shows the Polygeist compilation process (in gray,
excluding the simd converter and GPU code generator). It takes an input source
program, and (a) extracts the high level-information using clang and generates
a Clang AST, (b) with a code generator named cgeist, Polygeist generates MLIR,
equivalent code from the Clang AST, (c¢) with a built-in tool named polymer-
opt, the polyhedral representation is extracted (via SCoP Extractor), and using
Pluto (or another external polyhedral scheduler) the extracted polyhedral repre-
sentation is optimized for loop tiling and parallelization, (d) from the optimized
OpenSCoP file, the CLooG code generator emits an AST which serves as an input
for cgeist to generate MLIR code. Cgeist retains the information of the parallel
loop identified by Pluto by marking it with the scop.parallel loop attribute,
(e) an MLIR pass lowers the scop.parallel attribute loop to an OpenMP par-
allel loop, (f) finally the lowered MLIR code is translated into LLVM IR, that is
passed to LLVM to generate an object file.

Extending Polygeist to Generate OpenMP SIMD and GPU MLIR Code 3

1| #pragma scop

2 for (i = 0; i < n; i++) {
)| for (j = 0; j <= i; j++)
1 C[il[j1 *= beta; // S0
51 for (k = 0; k < m; k++)
6 for (j =
7 CLil[j]

}

0; j <= i; j++)
+= A[jl[k]l*alphaxB[i][k] + B[jl[kl*alpha*A[i]l[k]; // S1

9| #pragma endscop

Listing 1: Compute intensive loops of the syr2k kernel.

1| // ... code skipped for space

2| affine.for %arg7 = 0 to #map () [%0] {scop.parallel}

3| affine.for %arg8 = 0 to #mapl(%arg7)

A affine.for J%arg9 = #map2(larg7) to min #map3(%arg7) [%0]
affine.for Y%argl0 = #map2(arg8) to min #map4(larg9, %arg8)
SO

€
s| affine.for %arg7 = 0 to #map() [%0] {scop.parallel}
)| affine.for %arg8 = 0 to #mapl(%arg7)

10 affine.for Y%arg9 = 0 to #map () [%1]

11 affine.for %argl0 = #map2(jarg7) to min #map3(%arg7) [%0]

12 affine.for Jjargll = #map2(jarg8) to min #map4(%arglO, %arg8)
13 affine.for Yargl2 = #map2(%arg9) to min #map3(%arg9) [%1]

14 S1

Listing 2: Polyhedral optimized MLIR code generated by Polygeist for the loops
shown in Listing 1.

Listing 2 shows the polyhedral MLIR optimized code generated by Polygeist
for the loops of the syr2k kernel (from PolyBench/C [7]) shown in Listing 1. The
scop.parallel annotated affine.for loop at line 2 and 8 will be converted to
MLIR OpenMP parallel loop during lowering. Lines 3-5 and 9-13 are tiled loops
executing statements SO and S1, respectively. It is to be noticed that Pluto
identifies the affine.for loop in line 5 of Listing 2 as vectorizable using vector
directives, but Polygeist does not use this information as it can not lower the
loop statements to an MLIR vector code.

Considering this context, we propose to extend the MLIR code generation
process of Polygeist to convert the loops which are vector annotated by the
polyhedral compiler to an MLIR OpenMP SIMD loop, thereby emitting SIMD
instructions for loop statements with the help of OpenMP.

2 Related Work

Polly [2] is the first LLVM project that targets polyhedral optimization on the
LLVM IR. However at the LLVM IR level, it is difficult to recover the structure of
the code (affine loops, bounds, tests, array references, etc.), and it requires post-
processing of the transformed code to integrate it back to the IR. The support
of many vector options and GPU code generation in Polly was discontinued in
2023. Polygeist [5] is a step to ease this process and to work at the higher level
of abstraction of MLIR.

In our previous work [9] [11], we introduced an optimized and heterogeneous
code generation process for cardiac electrophysiology simulations with the help

4 A. Thangamani, et al.

1| affine.for %arg7 = 0 to #map () [%0]
2| affine.for %arg8 = 0 to #mapl(%arg7)
affine.for Y%arg9 = #map2(%arg7) to min #map3(%arg7) [%0]
4 %cl = arith.constant 1 : index
%2 = arith.muli %arg8, %c32 : index
6 %3 = arith.addi %arg9, %cl : index
7 %4 = arith.muli %arg8, %c32 : index
8 %5 = arith.addi %4, %c32 : index
) %6 = arith.cmpi slt, %3, %5 : index
10 %7 = arith.select %6, %3, %5 : index
11 omp.simdloop simdlen(4) for (%arglO):index = (%2) to (%7) step (%ci){
12 S0
13 omp.yield
1
151 // ... code of S1 skipped for space

Listing 3: OpenMP SIMD loop generation by our proposed technique for vector
annotated loop(s) from Listing 2.

of MLIR. Our main focus was to optimize a compute intensive parallel for loop in
the openCARP cardiac electrophysiology simulator [6]. The traditional compilers
could not efficiently vectorize the loop as it includes complex statements (like
function calls, array access, and pointer de-references), irregular control flow and
others. We traverse the AST of the parallel for loops and with the help of MLIR
Python bindings our code generator emits equivalent MLIR vector instructions
using the vector types for CPU or MLIR code with the standard types (e.g.,
£64) for GPU. Then, the emitted MLIR is lowered with respect to the target
architecture (x86, CUDA for Nvidia, or ROCm for AMD) and linked to the rest of
the code with the help of the LLVM compiler infrastructure.

3 OpenMP SIMD Code Generation

This section presents three major changes in CPU code generation to be able to
generate SIMD code, as follows:

(D Identify which loop(s) can be vectorized from the Pluto output,

(@ Annotate those affine.loop’s with the attribute scop.vector,

(3 A new optimization pass that converts those marked loops to omp.simdloop.
The pass should compute the arguments of the simd constructs: (i) size of
the vector (simdlen), (ii) the step value between the loop iterations, and
(iii) the lower/upper bound loop variables.

The green compilation flow in Figure 1 shows the modified /extended ap-
proach of our MLIR CPU code generation technique. We rely on the affine and
omp dialects for simd loop creation. Listing 3 line 11 shows the affine.for loop
in line 5 of Listing 2 is converted to omp.simdloop by our modified approach.
Firstly, Pluto scheduler identifies the loops that could be vectorized and informs
Polygeist. We modified cgeist so that it annotates the vectorizable loop(s) with
the scop.vector attribute. Our simd converter pass then converts those anno-
tated loops to omp.simd loop. Using an environmental variable the pass allows
the user to choose the simdlen (set to either 2, 4, 8, or 16 targeting SSE, AVX2,

Extending Polygeist to Generate OpenMP SIMD and GPU MLIR Code 5

or AVX512 vector architectures). In line 11 of Listing 3, the simd length is set to
4 targeting AVX2 architecture with using double types. The step value is set to
the default value of one. Arguments %2 and %7 in line 11 are the lower and upper
bound values of the simd loop, respectively. In Listing 2, the lower and upper
bounds are expressed as affine maps (#map2 and #map4), such expression is
not defined in the openMP dialect. Therefore, we have to substitute the map
definition with arithmetic operations as shown in lines 4-10 of listing 3. Finally,
the Polygeist existing compilation flow will lower the simd loop to LLVM IR.

4 Experimental Results

We implemented the proposed CPU compilation flow on top of the Polygeist
source from the git repository. We used a 2x20-cores CascadeLake Intel Xeon
Gold 5218R @2.1GHz CPU and AVX2 vector architecture set for our evaluation.
We choose six benchmarks (2mm, syr2k, gramschmidt, correlation, nussinov, and
heat-3D), one from each category of PolyBench/C [7] with EXTRALARGE data-set
for evaluating our implementation for CPU code generation. Unfortunately, the
OpenMP SIMD optimized MLIR code took the same execution time as the code
without our optimization and does not improve the use of the vector instruc-
tions. Indeed, the omp.simd loop was not vectorized. Since this functionality is
newly added to MLIR, it has limited support. The MLIR framework is undergo-
ing very active development phases to support various compiler optimizations.
So, in a very near future MLIR could provide complete optimization support
for OpenMP SIMD loops and we hope that our proposed technique improves
vectorization.

Another work-around would be to emit the vector instructions directly with
the help of MLIR’s vector dialect instead of relying on SIMD loops, but this
would duplicate the work that omp.simd should do.

5 Future Work

Using the multiple code generation capabilities of MLIR, we will further extend
Polygeist (red compilation flow in Figure 1) to implement the polyhedral GPU
MLIR code generation for nested loop structures. We propose to generate MLIR
GPU code for the loops enclosed within scop and let the rest of the code be
in C/C++. The generated MLIR GPU code will be enclosed within two nested
scf.for loops which are later lowered into an outer and an inner loop iterating
over the GPU blocks and threads, respectively. The MLIR GPU code is first
lowered to its GPU specific low-level dialect. This can be for example either
nvvm (the Nvidia CUDA IR) or rocdl (the AMD ROCm IR) with respect to the
target GPU architecture. Next is the MLIR translation pass that converts the
low level MLIR code (1lvm dialect) into an LLVM IR representation. The last
step is the linking phase, where the C/C++ emitted LLVM IR host code with the
help of clang and the MLIR translated optimized LLVM IR are linked together
into an object file using the LLVM compiler framework.

6 A. Thangamani, et al.

One challenge we may face is the function or library calls inside the nested
loops. An equivalent GPU code is required for those function calls to keep the
computations within the GPU rather than making frequent and costly context
switches between host and device. Another challenge is the memory management
on GPU. We have to choose between the unified memory model or a manual allo-
cation and data transfers between the host and device for efficient management.

6 Conclusion

We propose a compilation flow in which Polygeist is extended to generate OpenMP
SIMD (implemented) and GPU (to implement) MLIR code for nested loop struc-
tures. Although, the results are not satisfying we hope that our optimizations
are good target for loops that have SIMD nature but cannot be auto-vectorized.

References

1. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical au-
tomatic polyhedral parallelizer and locality optimizer. In: PLDI ’08. p. 101-113.
https://doi.org/10.1145/1375581.1375595

2. Grosser, T., Groblinger, A., Lengauer, C.: Polly - performing polyhedral opti-
mizations on a low-level intermediate representation. Parallel Process. Lett. 22(4)
(2012), https://doi.org/10.1142/S0129626412500107

3. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis and transformation. In: CGO. pp. 75-88. San Jose, CA, USA (Mar 2004)

4. Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J., Riddle,
R., Shpeisman, T., Vasilache, N.; Zinenko, O.: MLIR: Scaling compiler infrastruc-
ture for domain specific computation. In: CGO ’21. pp. 2-14

5. Moses, W.S., Chelini, L., Zhao, R., Zinenko, O.: Polygeist: Raising c to polyhedral
mlir. In: PACT ’21. https://doi.org/10.1109/PACT52795.2021.00011

6. Plank, G., Loewe, A., Neic, A., Augustin, C., Huang, Y.L., Gsell, M.A.,
Karabelas, E., Nothstein, M., Prassl, A.J., Sanchez, J., Seemann, G., Vig-
mond, E.J.: The openCARP simulation environment for cardiac electrophysi-
ology. Computer Methods and Programs in Biomedicine 208, 106223 (2021).
https://doi.org/10.1016/j.cmpb.2021.106223

7. Pouchet, L.N., Yuki, T.. PolyBench/C version 4.2.1-beta (2022), http://
polybench.sf.net

8. Pouchet, L.N.: PoCC - The Polyhedral Compiler Collection. http://web.cs.ucla.
edu/~pouchet/software/pocc/ (2012)

9. Thangamani, A., Jost, T.T., Loechner, V., Genaud, S., Bramas, B.: Lifting code
generation of cardiac physiology simulation to novel compiler technology. p. 68-80.
CGO 2023. https://doi.org/10.1145/3579990.3580008

10. Thangamani, A., Loechner, V., Genaud, S.: A survey of general-purpose polyhedral
compilers. ACM Transactions on Architecture and Code Optimization (2024)

11. Trevisan Jost, T., Thangamani, A., Colin, R., Loechner, V., Genaud, S., Bramas,
B.: Gpu code generation of cardiac electrophysiology simulation with mlir. In:
Euro-Par ’23. pp. 549-563

12. Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gomez, J., Tenllado, C.,
Catthoor, F.: Polyhedral parallel code generation for cuda. In: ACM TACO. vol. 9
(jan 2013). https://doi.org/10.1145/2400682.2400713

https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1109/PACT52795.2021.00011
https://doi.org/10.1016/j.cmpb.2021.106223
http://polybench.sf.net
http://polybench.sf.net
http://web.cs.ucla.edu/~pouchet/software/pocc/
http://web.cs.ucla.edu/~pouchet/software/pocc/
https://doi.org/10.1145/3579990.3580008
https://doi.org/10.1145/2400682.2400713

	Extending Polygeist to Generate OpenMP SIMD and GPU MLIR Code

