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Abstract—Hyperdimensional computing (HDC) is a computing
framework that has gained significant attention due to its high
efficiency and rapid training and inference of machine learning
algorithms [1]. With its fast learning and inference capabilities,
HDC shows excellent potential for IoT/Embedded systems. How-
ever, while HDC allows for fast single-pass learning [2], it suffers
from weak classification accuracy, resulting from model satu-
ration caused by excessive noise due to the addition of similar
patterns. In this paper, we propose an adaptive learning method
that surpasses accuracy and robustness compared to the state-
of-the-art adaptive HDC model, while maintaining the same
efficiency during both training and testing phases. Our method
addresses the issue of saturation by selectively adding correctly
classified samples only when their similarity to the existing
patterns sufficiently differs from the class. Moreover, we achieve
a robust model against noise and hardware failures, thanks to
its HDC holographic properties. Through this approach, we
achieve a remarkable average accuracy improvement of +2.8%
across 126 datasets (with a maximum improvement of +26%).
Furthermore, we observe a remarkable +6.6% improvement
over the HDC baseline (with a maximum improvement of
+67%), all while retaining the same inference efficiency.

1. Introduction

Machine learning (ML) algorithms place significant de-
mands on computational resources, including power, storage,
and data. To address these requirements, computation is often
offloaded to cloud-based data centers, which offer efficient
processing of large amounts of data [3]. However, this de-
mand arises from complex computations, such as gradient de-
scent [4], that Neural Networks (NN) rely on. This approach
presents challenges for Internet of Things (IoT) applications
that operate on edge/embedded devices [5], [6]. These devices
have limited resources and struggle to meet the high demands
of traditional ML algorithms. First, performing real-time [7]
online learning is limited by the inaccessibility of resources
and the devices’ dependence on unreliable battery sources [8].
Additionally, hardware failures and noise further exacerbate
the challenges faced by these devices.

Hyperdimensional Computing (HDC) [9], also referred
to as Vector Symbolic Architecture (VSA) [10], is a brain-
inspired computational framework [11]. HDC is motivated
by the immense number of neurons in the brain and operates
by mapping input data into high-dimensional spaces, typi-
cally consisting of thousands (10,000) of dimensions [12].
It efficiently learns and identifies patterns within this high-
dimensional representation [13]. One key advantage of HDC

for IoT and embedded systems is its ability to address
resource limitations and enhance hardware robustness [14],
[15]. HDC is efficient due to its simplicity and potential for
parallelization at both the thread and operation levels [16],
[17]. These characteristics make HDC highly amenable to
hardware optimization. Furthermore, due to the use of high
dimensions in HDC, data representations are independently
and identically distributed. Each dimension carries an equal
amount of information, resulting in improved resilience to
noise and hardware failures [18], making it particularly suit-
able for IoT systems.

HDC learning models offer the advantage of single-pass
online training, where each data sample is processed only
once. This learning approach is particularly well-suited for
rapid real-time learning on data streams [19], [20], and
applications that require low energy and high robustness are
critical, such as EEG seizure detection, where HDC is the
state-of-the-art [21]. However, in certain applications, HDC
may not achieve high accuracy. To tackle this challenge, two
approaches utilizing adaptive learning have been proposed
[1], [2].

Adaptive learning overcomes the limitations of the naive
single-pass learning approach by selectively incorporating
samples into the model, thereby mitigating the impact of
common data patterns that contribute to class hypervector sat-
uration. In this paper, we introduce a novel adaptive learning
model called RefineHD . This model improves upon the state-
of-the-art HDC adaptive learning algorithm, OnlineHD [1],
by reducing model variance and enhancing accuracy. Our pro-
posed model employs a unique embedding technique using
flocet embedding for key-value pair encoding [22], [23]. This
embedding technique allows for a fixed number of neurons,
which have a linear relation to a fixed number of active
neurons, in contrast to the commonly used level hypervectors
[24], resulting in an improved accuracy of +1.5% over 126
datasets. Furthermore, we compare our model to another pop-
ular encoding method that utilizes sinusoid projection [25] to
map input features into hyperspace. This paper presents the
following key contributions:

• Introduces RefineHD, a single-pass training frame-
work that captures common patterns in each class
hypervector while considering future changes in the
associative memory. RefineHD updates the class hy-
pervector for each input data by applying a weighted
update based on the similarity to the incorrectly pre-
dicted class and the similarity to the second most
similar class. It subtracts the weighted sample from
the mispredicted class and adds it to the correct



class when the prediction is correct and the class
similarity is lower than the average similarity of the
incorrectly predicted classes. This mechanism en-
sures that RefineHD does not discard samples that
would be misclassified after future updates on the
associative memory. The proposed approach achieves
a significant improvement since the state-of-the-art
method, OnlineHD achieved a significant 2% over
the baseline, and we achieve an additional 2.8%
over OnlineHD across 126 datasets, with a maximum
improvement of 26%.

• The flocet embedding for id-value encoding demon-
strates superior accuracy compared to other com-
monly used encodings. The flocet encoding achieves
an improvement of up to 1.5% compared to the level
key-value pair encoding employed in other adaptive
learning methods, on top of RefineHD.

• A comprehensive study that compares RefineHD to
other proposed adaptive learning models, exploring
the impact of different numbers of dimensions on
capturing class patterns in an embedded device.

• An assessment of the robustness of the Re-
fineHD model in comparison to other adaptive learn-
ing models.

• A study on how the accuracy of the model varies
with different amounts of training data, comparing it
to other existing adaptive learning models.

2. Related work

In the existing literature, two studies have focused on
enhancing HDC classification through adaptive learning. It is
worth noting that adaptive learning is a widely studied tech-
nique employed in various domains, including regenerative,
compression, and multitask approaches. Therefore, improve-
ments in adaptive learning techniques would not only benefit
HDC but also enhance other approaches that utilize adaptive
learning as a fundamental component of their algorithms.
One notable study is AdaptHD [6], which employs adaptive
learning by selectively incorporating samples only when the
model incorrectly predicts the input data. This approach adds
the sample to the correct class while subtracting it from the
wrongly predicted class. Another relevant study is OnlineHD
[5], which follows a similar principle but employs a weighted
approach for adding and subtracting samples. The weight is
determined based on the similarity between the class and the
input sample.

Figure 1: Hyperdimensional classification workflow.

3. Hyperdimensional Computing

Hyperdimensional Computing (HDC) originates from the
quest to unravel the mechanisms underlying brain function
and information representation in neurons [26]. This pursuit

has spawned various models of geometric spaces known as
hyperspaces, resulting in several distinct versions of the HDC
framework, each defining its own unique hyperspace and
symbolic information processing operations. Despite these
differences, all HDC methods share a common goal: pro-
viding a resource-efficient alternative for computing tasks,
especially suited for embedded systems in contrast to con-
ventional machine learning techniques.

The hyperspace within HDC exhibits diverse variations,
including binary, real, and complex spaces, each equipped
with unique characteristics, operations, and similarity metrics,
tailored to their respective domains [27]

In HDC, the fundamental building blocks for encoding
data within the hyperspace are hypervectors. These hyper-
vectors adhere to the holographic principle, with each dimen-
sion being independently distributed, ensuring robustness and
uniform information distribution. Different types of basis-
hypervectors are employed, including random-hypervectors
selected quasi-orthogonally from the hyperspace [12], level
hypervectors with linear correlation, and circular hypervec-
tors with a circular or cyclical correlation [24].

Arithmetic operations in HDC rely on three highly par-
allelizable operations:

• Binding This operation involves element-wise multi-
plication of two hypervectors, resulting in a hyper-
vector that differs from the originals. The operation
can be represented as ⊗ : H×H → H.

• Bundling It entails the element-wise addition of two
hypervectors, creating a hypervector similar to the
originals. The operation can be denoted as ⊕ : H +
H → H.

• Permuting This operation involves cyclically shifting
the hypervector, with the shift being circular. In other
words, the last element becomes the first if the shift
is by one element. The operation is represented as
Π : H → H.

Data encoding in HDC involves the combination of mul-
tiple hypervectors to create intricate information representa-
tions. Diverse methods are employed for encoding various
data types, such as text from characters [28], graphs from
vertices and edges [29], time series from samples [30],
and images from pixel values [31]. The subsequent section
provides an overview of some of these established encoding
strategies

4. Hyperdimensional Classification

HDC classification, like many other machine learning
algorithms, can be divided into two main phases [32] [33].
The workflow of HDC classification is illustrated in Figure 1.
The first phase is the training stage, where the model learns
from the given input data. This phase may involve additional
steps such as normalization, which is particularly relevant for
the inference stage as it enhances computational efficiency.
The second phase is the inference stage, where the trained
model is used to predict new samples.

4.0.1. Training. The training process consists of three parts,
as illustrated in Algorithm 1:

Encoding: The initial step of the training process
involves encoding the input data samples into the hyperdi-
mensional space. This can be done manually by utilizing the



Algorithm 1 HD Classification: Training

1: for each i, label ∈ I do
2: H ← encode(i)
3: Mlabel ←Mlabel +H
4: end for
5: M← normalize(M)

bundle, bind, and permute operations to create a customized
mapping. Alternatively, commonly used approaches like the
key-value pair encoding using level hypervectors or using
sinusoid random projection can be employed, more in-depth
explanation of the encoding process refer to this survey [33].
The purpose of encoding is to map the data into a high-
dimensional space where each sample is quasi-orthogonal to
one another. This ensures that if a similarity metric like cosine
similarity is applied to two samples, the result will be close
to zero, indicating no similarity between the two samples.
It is important to note that this step is typically the most
computationally intensive aspect of the training and testing
stages.

Add to memory: The encoded data is then added
to the associative memory, where there is a hypervector
representation of each class. This stage is where adaptive
learning can be applied to enhance the model’s performance.

Algorithm 2 HD Classification: Inference

1: for each i, label ∈ I do
2: H ← encode(i)
3: pred← argmax(δ(H,M))
4: end for

Normalize memory: After the completion of the train-
ing process, the associative memory is usually normalized to
enable more efficient inference. Normalizing allows us to use
the dot product similarity instead of the cosine similarity.

4.0.2. Inference. The inference process is divided into three
steps as outlined in the pseudo-code of Algorithm 2. This
process assumes that the associative memory has already been
trained.

Encoding: Similar to the training process, the first step
of the inference process involves encoding the input data to
be mapped into the hyperdimensional space. It is crucial to
use the same encoding for both the training and inference
phases to ensure consistency and accuracy.

Query to memory: After encoding the input data, the
next step in the inference process is to query the associative
memory. This is done by computing the dot product between
the encoded sample and the hypervectors representing each
class in the associative memory. This computation generates
a list of similarity measures between the sample and the
different classes.

Prediction: Finally, from the list of similarity mea-
sures, the class with the highest similarity score is selected
as the predicted class. If the predicted class label matches the
actual class label, the prediction is considered correct. The
process of retraining the model can be performed iteratively
to enhance the accuracy of the model. However, this iterative
process can be computationally expensive and may involve
stopping criteria, such as when the accuracy of the last

iterations does not vary or when the maximum number of
iterations is reached.

Our work aims to propose an improvement over the exist-
ing single-pass learning algorithms to enhance the accuracy
of single-pass learning. We intend to make our method more
accurate than other proposed methods in the literature.

5. RefineHD Adaptive Learning

The baseline model for HDC classification, as described
in Section 4, adopts a single-pass approach that is efficient
and suitable for resource-constrained devices. However, this
is a naive approach since it adds all instances to their re-
spective class hypervectors, which can lead to model sat-
uration (where we define saturation as reaching maximum
information capacity) , due to the repeated addition of similar
information of common patterns. When multiple instances of
the same pattern are added to a class, it introduces noise
and makes it challenging to accurately represent uncommon
patterns. Consequently, the model may misclassify patterns
that are not commonly found in the classes. To tackle this
issue, previous works such as AdaptHD and OnlineHD have
made advancements by excluding patterns of correctly clas-
sified instances during training. However, excluding some
correctly classified patterns can impact the model’s accuracy
as the associative memory evolves with new patterns. Thus,
there is a trade-off between maintaining accuracy and avoid-
ing model saturation when incorporating patterns into the
class hypervectors. Our proposed method takes a different
approach by selectively adding correctly classified samples
when their similarity deviates from their respective class. This
method also improves the robustness to noise and hardware
failure, such as bit flips, compared to the other methods.
Embedded/IoT devices are often expected to operate in hos-
tile environments, having higher noise and hardware errors.
This issue is exaggerated when the computations are ML
tasks [14], [15], [1]. However, thanks to HDC’s high dimen-
sionality and holographic representation such difficulties are
addressed. Before jumping more into our method, we also
propose a new embedding.

5.1. Flocet embedding

Mapping scalar representations to vectors has been em-
ployed in various domains, including stochastic computing,
where boolean operations are applied to bit vectors to per-
form operations on scalars [34]. HDC operates in a similar
manner by applying boolean operations to vectors. In this
context, the flocet embedding technique has been proposed
as a method for encoding sparse binary distributed data [35].
One significant advantage of this encoding is its systematic
representation, which enables the creation of vectors on the
fly. The activation of neurons in the flocet encoding can be
expressed using the following function:

Xi(v) = I(i ∈ [vN/Q, vN/Q+ w]), i = 1, N

Where v, represents a scalar, I(i, j) is the indicator function
which takes 1 if i < j, otherwise is 0. Q is the number
of gradations (rows) in the encoding. N is the number of
dimensions (columns) of the encoding. And w = N − Q,
represents the flocet width. Lastly, B represents the flocet
length of the encoding. For HDC, it is important to set the



flocet length as B = N/∈. This will generate an embedding
that preserves distance while maintaining a mean of 0 and
variance of 1 among all the hypervector sets and having a
fixed size, which will be equal to N ∗ ((N/∈) +∞) as we
show in Figure 2, for a flocet encoding of 6 dimensions.
Finally, we show in Table 1 how the flocet encoding helps
to better capture and generalize the input data information.

Figure 2: Flocet encoding using six dimensions.

5.2. RefineHD Single-Pass Learning

RefineHD is an innovative training approach designed to
enhance single-pass online learning in HDC. The fundamen-
tal concept of RefineHD is to analyze each input sample
and distinguish between common and uncommon patterns
within its corresponding class, taking into account potential
changes in the associative memory over time. By doing
so, this method overcomes issues related to saturation and
noise in the class hypervectors, while efficiently incorporating
new pattern information without incurring additional time
complexity.

In order to attain this objective, the RefineHD employs
a sophisticated weighted update strategy. The primary goal
of this strategy is to mitigate model saturation. Specifically,
when the similarity between a sample and the correct class
is high, we introduce a minor adjustment to the sample.
However, when the sample deviates significantly from the
correct class, we introduce a substantial adjustment to ensure
the incorporation of that new pattern into the class’s learning
process. In the case of misclassification, a weighted portion
of the input pattern is added to the correct class, while a
weighted portion is subtracted from the misclassified class.
Previous adaptive learning methods employed weighted addi-
tion based on the similarity between the input sample and its
class, as well as weighted subtraction based on the similarity
between the input sample and the misclassified class. In
contrast, our approach aims to consider the similarity between
the top two classes, promoting better generalization and
increasing the orthogonality between classes. Consequently,
when a misprediction occurs, our method adds the sample to
the class using the following formula:

Mlabel ←Mlabel + (1− δHlabel)(1− δHlabel − δHpred)H

Mpred ←Mpred − (1− δHpred)(1− δHlabel − δHpred)H

This process helps reduce noise and maintains the in-
tegrity of class representations. Moreover, when an input
pattern is correctly classified, it is only added to the class if its
similarity to the class hypervector falls below a certain thresh-
old. This threshold is determined by the average similarity
of the wrongly predicted samples, which allows us to know
the confidence level needed to accept a sample. Additionally,
the weight of the addition to the class is determined by the

distance between the top two classes, which can be calculated
using the following equation:

Mlabel ←Mlabel(1− δtop1
− δtop2

)H

The use of the top two classes helps to determine how
confident is the prediction compared to the other classes,
this way we can determine how much information should
be added to the class.

The threshold serves as an indicator that even though the
current classification is correct, future updates to the memory
could potentially result in misclassifications. This adaptive
learning approach aims to emulate the effect of retraining by
assigning greater importance to uncommon patterns in the fi-
nal class representation. However, unlike retraining, adaptive
learning allows for efficient single-pass online learning with-
out the requirement of iterative processes. By incorporating
these adaptive learning techniques, the model can continually
adapt to new patterns and improve its accuracy over time.

The steps involved in adding patterns to the associative
memory are as follows: First, the input data is encoded into
a hypervector H. Then, the cosine similarity δ is computed
by probing H against the associative memory M using the
dot product formula:

δ(H,M) =
H ·M

∥H∥ · ∥M∥
The cosine similarity represents the similarity in distance
between the input hypervector and each class hypervector.
It ranges from 0 to 1, with 1 indicating identical patterns and
0 indicating complete dissimilarity. Based on these similarity
values, if the predicted output matches the class label of the
input, the sample is included in the class only if the similarity
value is lower than the average similarity of the mispre-
dicted samples encountered thus far. This ensures that the
model takes into account potential changes in the associative
memory, recognizing that although the current prediction is
accurate, the pattern may not be prevalent enough to maintain
its characteristics as the training process progresses. The
overall process is outlined in Algorithm 3.

Algorithm 3 RefineHD Single-Pass Learning: Training

1: for each i, label ∈ I do
2: H ← encode(i)
3: pred← argmax(δ(H,M))
4: if pred ̸= label then
5: w ← (1− δtop1 − δtop2)
6: Mlabel ←Mlabel + (1− δHlabel) ∗ w ∗ H
7: Mpred ←Mpred − (1− δHpred) ∗ w ∗ H
8: update(δerror)
9: else

10: if δpred ≤ δerror then
11: Mlabel ←Mlabel ∗ w ∗ H
12: end if
13: end if
14: end for
15: M← normalize(M)

5.3. RefineHD Iterative Learning

In addition to the proposed single-pass online learning
method, we have also implemented an iterative learning



version of the model. Iterative learning has the potential to
enhance the accuracy of the model by allowing for multiple
rounds of training and adjustment. However, it should be
noted that iterative learning comes at the cost of increased
time and power consumption. Therefore, it is suitable when
online learning is not required and the embedded system has
sufficient resources to handle the retraining process.

To adapt the method for iterative learning, it is necessary
to reset the value of δerror for each iteration. This ensures that
the model can learn and adapt independently in each iteration
without carrying over information from previous iterations.
By resetting δerror, we ensure that the model adapts and learns
from scratch in each iteration.

The model will iterate until the number of iterations is
reached or when the training accuracy has not changed sig-
nificantly in the previous iterations, meaning that the memory
has reached a stable value.

6. Experiments

In this section, we present the experiments conducted to
evaluate the effectiveness of our method compared to other
adaptive learning approaches, with a specific focus on its
implications for ML in Embedded and IoT devices. These
experiments range from measuring accuracy, generalization,
and robustness to noise, hardware failures, and the amount of
available training data that affect the adaptive learning meth-
ods. We conducted these experiments using a comprehensive
set of popular datasets, totaling more than 120 datasets, and
a Raspberry Pi.

6.1. Experimental Setup

The experiments were conducted using Torchhd, an HDC
library built on top of PyTorch. The experiments were ex-
ecuted on two different platforms: firstly, on a Raspberry
Pi B with four cores, and secondly, on a machine with 20
Intel Xeon Silver 4114 CPUs and 93 GB of RAM, which
was used for evaluating the iterative versions due to their
time consumption. To ensure consistency and reliability of
the results, all experiments were repeated five times. The
experiments were performed on a large number of datasets,
including 121 datasets from the UCI Repository, where we
find different types of applications, from time series data to
tabular data and different number of classes to classify, for the
first set. The second set consisted of five datasets commonly
used in the HDC classification literature. For the iterative
versions, a maximum of 30 iterations was evaluated. The
dimensionality used for all experiments was set to 10,000
dimensions. This decision comes from the field’s standard
used dimensions [26]. However, there are several applications
that could be executed using fewer dimensions.

• CIFAR10 [36]: CIFAR-10 is a widely-used dataset in
image classification, containing 60,000 32x32 color
images belonging to 10 classes.

• EMGHandGestures [37]: The EMG dataset is a
collection of hand gestures performed by 36 subjects.

• ISOLET [38]: The ISOLET dataset is a collection of
spoken letters of the alphabet. The dataset includes 26
classes, one for each letter of the alphabet.

• MNIST [39]: The MNIST dataset is a widely-used
dataset in image recognition, containing a set of

grayscale images of size 28x28 of handwritten digits
from zero to nine.

• PAMAP [40]: The PAMAP2 Physical Activity Mon-
itoring dataset is a collection of physical activity data
captured by inertial measurement units and a heart
rate monitor.

Using these two benchmarks will show the performance in a
large number of different tasks ranging from small datasets
to large datasets containing up to 4M instances.

6.2. Embedding accuracy comparison

This experiment aims to show how the embedding choice
will affect the accuracy of the methods. To evaluate it, we
will compare our proposed embedding (flocet) against the
embedding used in the other adaptive methods (level) and an-
other popular embedding (sinusoid). For the first two, we will
use the key-value pair encoding, while the latter is itself an
encoding. This evaluation is done using the 126 datasets. As
we see in Table 1, the flocet encoding contributes with a 0.8-
1.5% accuracy improvement on top of the RefineHD adaptive
method compared to the encoding used in previous works.

Datasets Level hashmap Sinusoid Flocet hashmap

HDC Benchmark 0.832 ± 0.033 0.839 ± 0.033 0.847 ± 0.028

UCI Benchmark 0.737 ± 0.063 0.736 ± 0.07 0.742 ± 0.06

TABLE 1: Embeddings accuracy comparison.

6.3. Methods accuracy and variance

In this experiment, we compare the performance of base-
line and adaptive single-pass methods, as well as adaptive
iterative methods found in the literature, against our Re-
fineHD method. For a fair comparison, we apply the flocet
encoding to all the methods. This approach will yield ben-
efits for the other adaptive methods, as demonstrated in our
previous experiment.

Table 2 provides a comparison of the single-pass methods
and iterative methods, with a maximum of 30 iterations for
the iterative methods, where the mean and variance have been
normalized over all the datasets. The results demonstrate that
the average accuracy of the RefineHD single-pass method
exhibits a significant improvement of 1.8% on the HDC
Benchmark, surpassing the current state-of-the-art adaptive
method, and a 6.5% improvement compared to the baseline.
On the UCI Benchmark, which consists of 121 datasets, the
achieves a 2.8% accuracy improvement compared to the state-
of-the-art method and a 4.9% improvement compared to the
baseline.

Regarding iterative training, the improvements are
marginal, as the iterative process allows other methods to
generalize better over multiple iterations. However, it is
important to note that the accuracy of iterative models on
the HDC Benchmark remains lower than the using single-
pass learning. On the UCI Benchmark, the iterative process
yields an approximately 2% improvement compared to the
RefineHD single-pass approach. Nevertheless, this improve-
ment comes at the cost of significantly increased training
time, proportional to the number of iterations, making it-
erative training unsuitable for online learning on resource-
constrained devices.



Method HDC (5 datasets) UCI (121 datasets)

Baseline 0.783 ± 0.0026 0.699 ± 0.0068
Baseline (Pi) 0.785 ± 0.0056 0.699 ± 0.0001

AdaptHD 0.821± 0.01 0.713 ± 0.057
AdaptHD (Pi) 0.819 ± 0.0101 0.715 ± 0.007
OnlineHD 0.831 ± 0.0078 0.720 ± 0.058
OnlineHD (Pi) 0.825 ± 0.0116 0.722 ± 0.005
RefineHD 0.849 ± 0.006 0.748 ± 0.039
RefineHD (Pi) 0.847 ± 0.0056 0.743 ± 0.0029

AdaptHD Iterative 0.836 ± 0.004 0.758 ± 0.023
OnlineHD Iterative 0.847 ± 0.002 0.76 ± 0.03
RefineHD Iterative 0.851 ± 0.0027 0.767 ± 0.018

TABLE 2: Benchmarks average accuracy (10000 dimensions).
Method CIFAR EMG ISOLET MNIST PAMAP

Baseline 0.29 0.981 0.887 0.832 0.927

AdaptHD 0.333 0.995 0.86 0.923 0.997
OnlineHD 0.345 0.997 0.89 0.926 0.998
RefineHD 0.407 1 0.9 0.938 0.999

AdaptHD Iterative 0.332 0.997 0.928 0.934 0.992
OnlineHD Iterative 0.349 0.997 0.938 0.957 0.999
RefineHD Iterative 0.419 0.999 0.94 0.91 0.989

TABLE 3: Accuracy on the HDC benchmark datasets.

Table 3 provides a detailed accuracy comparison for each
dataset in the HDC popular applications, considering both
single-pass and iterative adaptive learning methods. The table
demonstrates that among the single-pass adaptive learning
methods, RefineHD consistently achieves superior accuracy
across all datasets. It achieves a maximum improvement
of 6.2% over the state-of-the-art method and an impressive
11.7% improvement over the baseline method.

Additionally, for the UCI benchmark, a maximum im-
provement of 26% over OnlineHD and 67% over the baseline.
However, in the case of the MNIST and PAMAP datasets,
OnlineHD performs better than RefineHD. This highlights
the importance of considering the specific characteristics of
each dataset when selecting the most appropriate learning
method.

6.4. Methods performance

The execution time, encompassing both training and test-
ing phases, primarily arises from the encoding and com-
parison operations between input samples and hypervec-
tor classes. Given that all methods share these fundamen-
tal tasks, disparities in execution time predominantly stem
from variations in the number of comparisons, additions,
and subtractions performed by each method. Importantly,
these supplementary computational operations exert only a
marginal influence on the overall execution time, resulting
in comparable performance efficiencies among HDC adap-
tive learning methods. In terms of memory usage, we see
the same outcome; all methods have very similar memory
consumption.

6.5. Varying dimensions

To explore the generalization capabilities of the adaptive
methods, we conducted a study by varying the number of
hyperdimensional dimensions for each application. Figure 3
showcases that our RefineHD method consistently achieves
higher accuracy across all dimensions compared to other
adaptive learning approaches. This finding demonstrates the

effectiveness of our technique in enabling faster and improved
generalization of the different classes, regardless of the di-
mensionality.

Figure 3: Evaluation over different dimensions on adaptive learning.

6.6. Partial data experiment

In this experiment, we aimed to demonstrate how our pro-
posed RefineHD model effectively captures data patterns. We
achieved this by evaluating the model’s performance under
varying amounts of training data. The results, as depicted in
Figure 4, clearly show that the RefineHD model consistently
captures more significant patterns compared to other adaptive
learning methods across all different amounts of training data.
This happens for both the single-pass and iterative versions.

Figure 4: Partial data accuracy evaluation over adaptive learning
methods.

6.7. Robustness to hardware failure (bit flips)

When using binary vectors, an error consists of a bit
flip, which can completely change what a vector repre-
sents. However, by leveraging the high-dimensionality and
holographic representation, we aimed to demonstrate that
RefineHD exhibits high robustness to errors and bit flips. This
robustness is particularly crucial for Embedded/IoT devices,
which often face such issues [14], [15], [1], especially when
performing ML tasks, where the algorithms’ noise robustness
is typically low [41]. The final experiment investigates how
the proposed model responds to hardware failures caused
by bit flips (failed dimensions) and compares it to other
adaptive learning models proposed in the literature. In this
experiment, we have flipped a percentage of bits selected at
random. Figure 5 presents the results, and we observe that the
baseline takes more time to deteriorate in performance than
the other methods. This is expected since the accuracy of this
method is lower, making it harder to degrade its performance.
Additionally, we see that most methods behave similarly as
the error rate increases. However, our methods consistently
exhibit higher accuracy across all different amounts of bit
failures, showcasing their robustness to such errors.



Figure 5: Robustness evaluation over adaptive learning methods.

7. Conclusions

This work proposes an adaptive online learning method
that improves accuracy and robustness compared to the state-
of-the-art. The model can perform more accurate predictions
while being a single-pass lightweight solution for resource-
constrained devices. The RefineHD method employs single-
pass learning, selectively adding uncommon patterns and
removing common patterns to reduce model saturation while
considering future changes in the model. This is achieved
by adding weighted samples to the memory based on the
similarity to the classes and the top 2 predictions. Addi-
tionally, correctly predicted classes are added only when
the similarity to the class is lower than the mean of the
similarity of a sample with its class when the samples are
misclassified. The RefineHD method achieves an additional
2.8% improvement over OnlineHD across 126 datasets, with
a maximum improvement of +26%, all while maintaining the
same time complexity. Moreover, this work proposes using
flocet embedding combined with key-value pair encoding to
achieve better accuracy results on the 126 datasets tested,
providing 1.5% higher accuracy than the key-value pair
encoding using level embedding used in previous adaptive
learning works. These findings highlight the effectiveness of
the RefineHD method in improving accuracy and robustness
while being well-suited for real-time, single-pass learning in
resource-constrained environments like Embedded and IoT
systems. In our forthcoming research, we are committed
to conducting a comprehensive assessment of HDC’s ro-
bustness. Specifically, we intend to delve deeper into the
impact of various dimensions on the model’s degradation.
Furthermore, we plan to design and evaluate more extensive
datasets to explore the capabilities of HDC. Additionally, our
research agenda encompasses the exploration of methods to
enhance the interpretability of HDC.
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