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Abstract - This study addresses the optimal control problem 

with additional constraints for systems described by a one-

dimensional oscillation equation. Theorems are presented 

regarding the positivity of the real eigenvalues of the spectral 

problem and the orthogonality of the eigenfunctions over a given 

interval. 
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I. INTRODUCTION 

Numerous physical and mechanical phenomena can be 

characterized by second-order partial differential equations. 

For instance, one may examine the resolution of a mixed 

problem characterized by the wave equation. The resolution 

to the boundary value problem for the wave and heat 

conduction equations has been presented in [1,3]. The optimal 

control problem of a linear system is analyzed in [2], focusing 

on transient process attenuation and the minimization of a 

quadratic functional over a finite time frame. 

For systems characterized by one-dimensional wave 

equations, further limitations necessitate a particular 

methodology. This article examines the optimal control issue 

with further constraints for systems characterized by a one-

dimensional wave equation. 

II. PROBLEM STATEMENT 

Let us consider a controlled system described by the 

equation: 

𝜌(𝑥)
𝜕2𝑦

𝜕𝑡2
=

𝜕

𝜕𝑥
(𝑝(𝑥)

𝜕𝑦

𝜕𝑥
) + 𝑢(𝑡)𝛿(𝑥 − 𝜌(𝑥))  (1) 

 

with the initial conditions: 

 

𝑦(𝑥, 0) = 𝜙(𝑥), 𝑦𝑡
′(𝑥, 0) = 𝜙(𝑥)   (2) 

 

and the non-homogeneous boundary conditions: 

 

{
𝛼11𝑦(0, 𝑡) + 𝛼12𝑦(𝑙, 𝑡) = 𝜇1(𝑡),

𝛼21𝑦(0, 𝑡) + 𝛼22𝑦(𝑙, 𝑡) = 0,
   (3) 

Where 𝜌(𝑥), represents the material density of the string, 

𝜙(𝑥) is the initial displacement of the oscillation, 𝜓(𝑥) is the 

initial amplitude of the oscillation, and 𝑓(𝑥)  is a smooth 

function defined on [0, 𝑙]. 
The control 𝑢(𝑡) belongs to the class of admissible 

controls 𝑈 = {𝑢(𝑡) ≤ 𝐿2(0, 𝑇), 𝑢(𝑡) ≤ 𝐿}.  The constants 

𝛼11, 𝛼12, 𝛼21, 𝛼22  are non-zero simultaneously. 

2.1 Optimal control problem 

Find a control 𝑢(𝑡) ∈ 𝑉  ch that the system (1)−(3), 

starting from the initial conditions (2), reaches the state: 

𝑦(𝑥, 𝑇) = 0,   𝑦𝑡(𝑥, 𝑇) = 0 (4) 

at the earliest time 𝑡 = 𝑇, while satisfying: 

𝑑𝑛 =
[(−1)𝑛−1]

(𝑛𝜋)2−ℓ2
𝑛√

𝜋

2
𝑐𝑜𝑠 2 𝜋𝑇. (5) 

The problem defined by (1)−(4) is referred to as the damping 

of oscillations. The current problem introduces an additional 

constraint within the oscillation damping framework. 

2.2 Reduction og the problem 

The solution of the mixed problem (1)−(3) for the 

specified control 𝑢(𝑡) ∈ 𝑉 is sought in the form: 

𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡)   (6) 

For simplicity, assume 𝛼12 = 0 and 𝛼21 = 0, which reduces 

the boundary conditions (3) to: 

𝑦(0, 𝑡) = 𝜇1(𝑡),      𝑦(𝑙, 𝑡) = 0,  (7) 

By substituting: 

𝑦(𝑥, 𝑡) = 𝑍(𝑥, 𝑡) +
𝑥

𝑙
[−𝜇1(𝑡)] + 𝜇1(𝑡)  

or equivalently: 

𝑦(𝑥, 𝑡) =  𝑍(𝑥, 𝑡) + 𝜇1(𝑡) (1 −
𝑥

𝑙
)   (8) 

into equation (1), we obtain a new equation for 𝑍(𝑥, 𝑡): 

𝜌(𝑥)
𝜕2𝑧

𝜕𝑡2
=

𝜕

𝜕𝑥
[𝑝(𝑥)

𝜕𝑧

𝜕𝑥
] + 𝑓(𝑥, 𝑡) + 𝜌(𝑥)𝜇1

″(𝑡) [
𝑥

𝑙
− 1]    (9) 

The initial conditions (2) transform to: 

   {
𝑍(𝑥, 𝜃) = 𝜙(𝑥) + 𝜇1(𝜃) (

𝑥

𝑙
− 1)

𝑍𝑡
′(𝑥, 0) = 𝜓(𝑥) + 𝜇1

′ (0) (
𝑥

𝑙
− 1)

 (10) 

and the boundary conditions (7) become: 

𝑧(0, 𝑡) = 0,           𝑧(𝑙, 𝑡) = 0  (11) 

Thus, the problem (1)−(3) is reduced to solving (9)−(11). 

𝜌(𝑥)
𝜕2𝑧

𝜕𝑡2
=

𝜕

𝜕𝑥
[𝑝(𝑥)

𝜕𝑧

𝜕𝑥
],  (12) 

we seek solutions in the form: 

𝑧(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡)  (13) 

Substituting (13) into (12) and separating variables gives: 

𝑇″(𝑡) + 𝜆𝑇(𝑡) = 0,   (14) 
𝑑

𝑑𝑥
[𝑘(𝑥)

𝑑𝑋(𝑥)

𝑑𝑥
] = −𝜆𝜌(𝑥)𝑋(𝑥)  (15) 

The boundary conditions for 𝑋(𝑥)are: 

𝑋(0) = 0,         𝑋(𝑙) = 0. 

III. THEOREMS 

Theorem 1: If . 𝑘(𝑥) ≥ 0  and 𝜌(𝑥) > 0 , then the 

eigenvalues of the spectral problem (15)−(16) are positive 

real numbers. 

Theorem 2: The eigenfunctions corresponding to distinct 

eigenvalues of the spectral problem (15) are orthogonal on 
[0, 1] respect to the weight 𝜌(𝑥). 
    Proof: Assume that 𝜆𝑚 və 𝜆𝑛 are eigenvalues of the 

spectral problem (15)-(16) such that 𝜆𝑚  𝜆𝑛 Let  𝛸𝑚(𝑥) və 
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𝛸𝑘(𝑥)  be the eigenfunctions corresponding to these 

eigenvalues, such that the following identities are satisfied: 

𝑑

𝑑𝑥
[𝑘(𝑥)

𝑑𝛸𝑚(𝑥)

𝑑𝑥
] ≡ −𝜆𝑚𝜌(𝑥)𝛸𝑚(𝑥), 

𝑑

𝑑𝑥
[𝑘(𝑥)

𝑑𝛸𝑛(𝑥)

𝑑𝑥
] ≡ −𝜆𝑛𝜌(𝑥)𝛸𝑛(𝑥). 

By multiplying the first equation by 𝛸𝑛(𝑥) and the second 

equation by 𝛸𝑚(𝑥) and thereafter subtracting the resulting 

equations term by term, we derive: 

𝛸𝑛(𝑥)
𝑑

𝑑𝑥
[𝑘(𝑥)

𝑑𝛸𝑚(𝑥)

𝑑𝑥
] − 𝛸𝑚(𝑥)

𝑑

𝑑𝑥
[𝑘(𝑥)

𝑑𝛸𝑛(𝑥)

𝑑𝑥
] ≡

≡ (𝜆𝑛 − 𝜆𝑚)𝜌(𝑥)𝛸𝑚(𝑥)𝛸𝑛(𝑥) 
We shall integrate the derived equation with respect to 𝑥 

across the interval [0, 𝑙], considering that 𝛸𝑛(0) = 𝛸𝑛(𝑙) =
0, 𝛸𝑚(0) = 𝛸𝑚(𝑙) = 0. Subsequently, we possess: 

∫ 𝛸𝑛(𝑥)
𝑙

0

𝑑

𝑑𝑥
[𝑘(𝑥)

𝑑𝛸𝑚(𝑥)

𝑑𝑥
] 𝑑𝑥 − 

−∫ 𝛸𝑚

𝑙

0

(𝑥)
𝑑

𝑑𝑥
[𝑘(𝑥)

𝑑𝛸𝑛(𝑥)

𝑑𝑥
] 𝑑𝑥 = 

= 𝛸𝑛(𝑥)𝑘(𝑥)
𝑑𝛸𝑚(𝑥)

𝑑𝑥
|
𝑙
0
− ∫ 𝑘(𝑥)

𝑙

0

𝑑𝛸𝑛(𝑥)

𝑑𝑥
⋅
𝑑𝛸𝑚(𝑥)

𝑑𝑥
− 

−𝛸𝑚(𝑥)𝑘(𝑥)
𝑑𝛸𝑛(𝑥)

𝑑𝑥
|
𝑙
0
+ ∫ 𝑘(𝑥)

𝑙

0

𝑑𝛸𝑛(𝑥)

𝑑𝑥
⋅
𝑑𝛸𝑚(𝑥)

𝑑𝑥
𝑑𝑥 = 

= −∫ 𝑘(𝑥)
𝑙

0

𝑑𝛸𝑛(𝑥)

𝑑𝑥
⋅
𝑑𝛸𝑚(𝑥)

𝑑𝑥
𝑑𝑥 + 

+∫ 𝑘(𝑥)
𝑙

0

𝑑𝛸𝑛(𝑥)

𝑑𝑥

𝑑𝛸𝑚(𝑥)

𝑑𝑥
= 0 

Thus, 

(𝜆𝑚 − 𝜆𝑛)∫ 𝜌(𝑥)
𝑙

0

𝛸𝑛(𝑥)𝛸𝑚(𝑥)𝑑𝑥 = 0 

Since 𝜆𝑛 ≠ 𝜆𝑚 , it follows that: 

∫ 𝜌(𝑥)
𝑙

𝑜

𝛸𝑛(𝑥)𝛸𝑚(𝑥)𝑑𝑥 = 0 

This indicates that the functions 𝛸𝑚(𝑥)  and 𝛸𝑛(𝑥) are 

orthogonal concerning the weight function 𝜌(𝑥) across the 

interval [0, 𝑙]. Consequently, Theorem 2 has been 

demonstrated. 

Given that the system of eigenfunctions {𝛸𝑛(𝑥)}  is 

orthogonal with respect to the weight ρ(x) on the interval 
[0, 𝑙] , it can invariably be converted into an orthonormal 

system. Consequently, let us presume that {𝛸𝑘(𝑥)} 
constitutes an orthonormal system of eigenfunctions for the 

spectral problem (15)-(16), and  {𝜆𝑛} represents the sequence 

of eigenvalues. 

Substituting 𝜆 = 𝜆𝑘 into equation (14) yields the 

following form: 

𝑇𝑘
″(𝑡) + 𝜆𝑘𝑇𝑘(𝑡) = 0,  (17) 

 (17) which represents a homogeneous differential equation 

with constant coefficients. The comprehensive solution of 

equation (17) is 

𝑇𝑘(𝑡) = 𝐴𝑘 𝑐𝑜𝑠 √𝜆𝑘 𝑡 + 𝐵𝑘 𝑠𝑖𝑛 √𝜆𝑘𝑡 
where 𝐴𝑘 and 𝐵𝑘 are constants that remain to be ascertained. 

Thus, 

𝑍𝑘(𝑥, 𝑡) = [𝐴𝑘 𝑐𝑜𝑠 √𝜆𝑘 𝑡 + 𝐵𝑘 𝑠𝑖𝑛 √𝜆𝑘 𝑡]𝛸𝑘(𝑥),  𝑘 = 1,2. .. 
functions defined here are solutions to equation (12). Since 

equation (12) is a linear homogeneous equation, according to 

a known theorem, the function 

𝑍𝑘(𝑥, 𝑡) = ∑[𝐴𝑘 𝑐𝑜𝑠√𝜆𝑘 𝑡 + 𝐵𝑘 𝑠𝑖𝑛√𝜆𝑘 𝑡]𝛸𝑘(𝑥),

∞

𝑘=1

 

 𝑘 = 1,2..  (18) 

is a solution to equation (12). Let us select the coefficients 𝐴𝑘 

and 𝐵𝑘 so that the function delineated by equation (18) also 

fulfills the initial condition (10). Assume that the series 

specified by equation (18) is differentiable term by term. 

Then, we find: 
𝜕𝑍(𝑥,𝑡)

𝜕𝑡
= ∑ [−𝐴𝑘√𝜆𝑘 𝑠𝑖𝑛 √𝜆𝑘 𝑡

∞
𝑘=1 + 

+𝐵𝑘√𝜆𝑘 𝑐𝑜𝑠 √𝜆𝑘 𝑡]𝛸𝑘(𝑥) 
If we consider the last equality and equation (12) in the 

context of the initial conditions (10), we can write: 

{
 
 

 
 ∑𝐴𝑘𝛸𝑘(𝑥) ≡ 𝜙(𝑥) − (

𝑥

ℓ
− 1)𝜇(0),

∞

𝑘=1

∑𝐵𝑘√𝜆𝑘𝛸𝑘(𝑥) ≡ 𝜓(𝑥) − (
𝑥

ℓ
− 1)𝜇1

′ (0)

∞

𝑘=1

 

If we consider the last equality and equation (12) in the 

context of the initial conditions (10), we can write: 

{
 
 

 
 ∑ 𝐴𝑘

∞
𝑘=1 ∫ 𝜌

𝑙

𝑜
(𝑥)𝛸𝑛(𝑥)𝛸𝑘(𝑥)𝑑𝑥 =                                          

= ∫ 𝜌(𝑥)𝜙(𝑥)𝛸𝑛(𝑥)𝑑𝑥 −
𝑙

0
𝜇
1
(0) ∫ (

𝑥

ℓ
− 1)

𝑙

0
𝜌(𝑥)𝛸𝑘(𝑥)𝑑𝑥,

∑ 𝐵𝑘√𝜆𝑘 ∫ 𝜌(𝑥)𝛸𝑛(𝑥)𝛸𝑘(𝑥)𝑑𝑥 =
𝑙

0

∞
𝑘=1                                    

= ∫ 𝜌(𝑥)𝜓(𝑥)𝛸𝑛(𝑥)𝑑𝑥 −
𝑙

0
𝜇
1
′ (0) ∫

𝑥

𝑙
𝜌(𝑥)𝛸𝑛(𝑥)𝑑𝑥

𝑙

0

 (19) 

Since the eigenfunctions {𝛸𝑘(𝑥)} are orthonormal with 

respect to the weight 𝜌(𝑥) on the interval [0, 𝑙], the following 

condition holds: 

∫ 𝜌(𝑥)𝛸𝑛(𝑥)
𝑙

0

𝛸𝑘(𝑥)𝑑𝑥 = {
1,   𝑛 = 𝑘,
0,   𝑛 ≠ 𝑘.   

 

                 ∫ 𝜌(𝑥)
𝑙

0
𝜙(𝑥)𝛸𝑛(𝑥)𝑑𝑥 = 𝜙𝑛, 

∫ 𝜌(𝑥)
𝑙

0

𝜓(𝑥)𝛸𝑛(𝑥)𝑑𝑥 = 𝜓𝑛 , 

∫ (
𝑥

𝑙
− 1)

𝑙

0

𝜌(𝑥)𝛸𝑛(𝑥)𝑑𝑥 = 𝛼𝑛, 

∫
𝑥

𝑙
𝜌(𝑥)𝛸𝑛

𝑙

0

(𝑥)𝑑𝑥 = 𝛽𝑛, 𝑛 = 1,2. .. 

Considering that these expressions represent the Fourier 

coefficients of the functions 𝜙(𝑥), 𝜓(𝑥),
𝑥

𝑙
− 1  and  

𝑥

𝑙
 with 

respect to the system {𝛸𝑛(𝑥)} under the weight 𝜌(𝑥) over the 

interval [0, 𝑙], we can deduce the following from system (14): 

{
𝐴𝑛 = 𝜙𝑛 − 𝛼𝑛𝜇1(0),

√𝜆𝑛𝐵𝑛 = 𝜓𝑛 − 𝛼𝑛𝜇1(0)
 

or  

{

𝐴𝑛 = 𝜙𝑛 − 𝛼𝑛𝜇1(0),

𝐵𝑛 =
𝜓𝑛

√𝜆𝑛
−
𝛼𝑛

√𝜆𝑛
𝜇1
′ (0) 

Substituting the computed values of 𝐴𝑛 and 𝐵𝑛 into equation 

(18) yields: 

𝑧∗(𝑥, 𝑡) = ∑ [(𝜙𝑛 − 𝛼𝑛𝜇1(0)) 𝑐𝑜𝑠 √𝜆𝑛 𝑡 +
∞
𝑛=1   

+
1

√𝜆𝑛
(𝜓𝑛 − 𝛼𝑛𝜇1

′ (0)) 𝑠𝑖𝑛√𝜆𝑛𝑡] 𝛸𝑛(𝑥) (20) 

Consequently, the function delineated by formula (20) 

constitutes the solution to problems (12), (11), and (10). We 

will now determine the solution to equation (9) (the 

inhomogeneous equation) that adheres to the homogeneous 

boundary and beginning conditions. 



 It means, 

𝜌(𝑥)
𝜕2𝑧(𝑥,𝑡)

𝜕𝑡2
=

𝜕

𝜕𝑥
[𝑘(𝑥)

𝜕𝑍(𝑥,𝑡)

𝜕𝑥
] + 𝐹(𝑥, 𝑡)  (21) 

(𝐹(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) − 𝜌(𝑥) (
𝑥

𝑙
− 1) 𝜇1

″) 

and the conditions 

                        {
𝑧(0, 𝑡) = 0, 𝑧(𝑙, 𝑡) = 0,
𝑧(𝑥, 0) = 0, 𝑧𝑡

′(𝑥, 0) = 0
   (22) 

Let us search for the solution of the problem (21), 

(22)   in the form 

 𝑧(𝑥, 𝑡) = ∑ 𝑧𝑛
∞
𝑛=1 (𝑡)𝛸𝑛(𝑥),          (23) 

where {𝛸𝑛(𝑥)}  is the orthonormal system of 

eigenfunctions of the spectral problem (15), (16). 

If we consider, 

𝜕2𝑧(𝑥, 𝑡)

𝜕𝑡2
=∑𝑧𝑛

″

∞

𝑛=1

(𝑡)𝛸𝑛(𝑥) 

𝜕2𝑧(𝑥, 𝑡)

𝜕𝑥
= ∑𝑧𝑛

∞

𝑛=1

(𝑡)
𝑑𝛸𝑛(𝑥)

𝑑𝑥
 

Then, from equation (21) we obtain:  

∑𝑧𝑛
″

∞

𝑛=1

(𝑡)𝜌(𝑥)𝛸𝑛(𝑥) = 

= ∑
𝑑

𝑑𝑥
[𝑘(𝑥)

𝑑𝛸𝑛(𝑥)

𝑑𝑥
]

∞

𝑛=1

𝑧𝑛(𝑡) + 𝐹(𝑥, 𝑡) 

or equivalently,  

∑𝑧𝑛
″(𝑡)

∞

𝑛=1

𝜌(𝑥)𝛸𝑛(𝑥) = −∑𝜆𝑛𝜌(𝑥)

∞

𝑛=1

𝛸𝑛(𝑥)𝑧𝑛(𝑡) + 𝐹(𝑥, 𝑡) 

Now, multiplying both sides of the resulting equation by 

𝛸𝑘(𝑥) and integrating over the interval [0, 𝑙] with respect to 

𝑥, we get: 

∑𝑧𝑛
″(𝑡)∫ 𝜌(𝑥)𝛸𝑛(𝑥)𝛸𝑘(𝑥)

𝑙

0

∞

𝑛=1

𝑑𝑥 = 

= −∑𝜆𝑛∫ 𝜌(𝑥)𝛸𝑛(𝑥)𝛸𝑘(𝑥)
𝑙

0

𝑑𝑥

∞

𝑛=1

⋅ 𝑧𝑛(𝑡) + 

+∫ 𝑓(𝑥, 𝑡)𝛸𝑛(𝑥)𝑑𝑥
𝑙

0

−∫ (
𝑥

𝑙
− 1) 𝜌(𝑥)𝛸𝑛(𝑥)𝑑𝑥𝜇1

″(𝑡)
𝑙

0

 

Considering the following integrals and properties: 

∫ 𝜌(𝑥)𝛸𝑛(𝑥)𝛸𝑘(𝑥)𝑑𝑥
𝑙

0

= {
1, 𝑛 = 𝑘
0, 𝑛 ≠ 𝑘

 

∫ 𝑓(𝑥, 𝑡)𝛸𝑛(𝑥)𝑑𝑥 = 𝑓𝑛(𝑡)
𝑙

0

 

∫ (
𝑥

𝑙
− 1) 𝜌(𝑥)𝛸𝑛(𝑥)𝑑𝑥 = 𝛼𝑛

𝑙

0
, 

∫
𝑥

𝑙
𝜌(𝑥)𝛸𝑛(𝑥)𝑑𝑥 =

𝑙

0

𝛽𝑛, 𝑛 = 1,2,3, . .. 

From the above relations, we obtain the following equation 

for determining 𝑧𝑛(𝑡) 
𝑧𝑛
″(𝑡) + 𝜆𝑛𝑧𝑛(𝑡) = 𝑓𝑛(𝑡) − 𝛼𝑛𝜇1

″(𝑡)  (23) 

From the second condition of (22), we have the initial 

conditions: 

𝑧𝑛(0) = 0, 𝑧𝑛
′ (0) = 0  (24) 

It can be easily shown that the solution of equation (23) with 

initial conditions (24) is given by: 

  𝑧𝑛(𝑡) =
1

√𝜆𝑛
∫ [𝑓𝑛(𝜏) − 𝛼𝑛𝜇1

″(𝜏)] 𝑠𝑖𝑛 √𝜆𝑛 (𝑡 − 𝜏)𝑑𝜏
𝑡

0
  (25) 

To compute the integral  

∫ 𝜇1
″(𝜏) 𝑠𝑖𝑛 √𝜆𝑘 (𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

and substitute it into equation (25), we obtain the following 

expression for 𝑧𝑛(𝑡): 

𝑧𝑛(𝑡) =
1

√𝜆𝑛
∫ 𝑓𝑛(𝜏) 𝑠𝑖𝑛 √𝜆𝑛 (𝑡 − 𝜏)𝑑𝜏 −
𝑡

0

 

−𝛼𝑛 [−
1

√𝜆𝑛
𝜇1
′ (0) 𝑠𝑖𝑛 √𝜆𝑛 𝑡 +

√𝜆𝑛

√𝜆𝑛
𝜇1(𝑡) − 

     −𝜇1(0) 𝑐𝑜𝑠 √𝜆𝑛 𝑡 − √𝜆𝑛 ∫ 𝜇1(𝜏) 𝑠𝑖𝑛 √𝜆𝑛 (𝑡 − 𝜏)𝑑𝜏
𝑡

0
] = 

           =
1

√𝜆𝑛
∫ 𝑓𝑛(𝜏) 𝑠𝑖𝑛 √𝜆𝑛 (𝑡 − 𝜏)𝑑𝜏 +
𝑡

0

+
𝜆𝑛

√𝜆𝑛
𝛼𝑛𝜇1

′ (0) 𝑠𝑖𝑛 √𝜆𝑛 𝑡 − 𝛼𝑛𝜇1(𝑡) − 

      −𝜆𝑛𝜇1(0) 𝑐𝑜𝑠 √𝜆𝑛 𝑡 +  

+√𝜆𝑛𝛼𝑛 ∫ 𝜇1(𝜏) 𝑠𝑖𝑛 √𝜆𝑛 (𝑡 − 𝜏)𝑑𝜏
𝑡

0
  

Thus, the solution of the system (21), (23) will be: 

�̄�(𝑥, 𝑡) = ∑ [
1

√𝜆𝑛

∞

𝑛=1

∫ 𝑓𝑛(𝜏) 𝑠𝑖𝑛 √𝜆𝑛 (𝑡 − 𝜏)𝑑𝜏 +
𝑡

0

 

+
𝛼𝑛

√𝜆𝑛
𝜇1(0) 𝑠𝑖𝑛 √𝜆𝑛 𝑡 − 𝛼𝑛𝜇1(𝑡) + 

   t
nn

 cos0
1  

+√𝜆𝑛𝛼𝑛 ∫ 𝜇1(𝜏) 𝑠𝑖𝑛 √𝜆𝑛 (𝑡 − 𝜏)𝑑𝜏]𝑋𝑛(𝑥)
𝑡

0
 (26) 

The solution to the system (1)-(2) is equal to the sum of 

the solutions to (12), (10), and (11), along with the solutions 

to (21), (22), namely (𝑧∗(𝑥, 𝑡)  və �̄�(𝑥, 𝑡)) . Therefore, we 

have: 

𝑦(𝑥, 𝑡) = 𝑧∗(𝑥, 𝑡) + �̄�(𝑥, 𝑡) + (
𝑥

𝑙
− 1) 𝜇1(𝑡). 

Substituting the expressions for 𝑧∗(𝑥, 𝑡) from equation (20) 

and �̄�(𝑥, 𝑡) from equation (26) into the equation for 𝑦(𝑥, 𝑡), 
we get: 

𝑦(𝑥, 𝑡) = ∑ [(𝜙𝑛 − 𝛼𝑛𝜇1(0))
∞
𝑛=1 +

1

√𝜆𝑛
(𝜓𝑛 −

−𝛼𝑛𝜇1
′ (0)) 𝑠𝑖𝑛 √𝜆𝑛 𝑡]𝛸𝑛(𝑥) + 

+∑[
1

√𝜆𝑛
∫ 𝑓𝑛(𝜏) 𝑠𝑖𝑛 √𝜆𝑛

𝑡

0

∞

𝑛=1

(𝑡 − 𝜏)𝑑𝜏 + 

+𝛼𝑛𝜇1(0) 𝑐𝑜𝑠 √𝜆𝑛 𝑡 + 

+(
𝑥

𝑙
− 1) 𝜇1(𝑡) = ∑ [𝜙𝑛 𝑐𝑜𝑠 √𝜆𝑛 𝑡 +

𝜓𝑛

√𝜆𝑛

∞

𝑛=1

𝑠𝑖𝑛 √𝜆𝑛 𝑡 + 

+
1

√𝜆𝑛
∫ 𝑓𝑛

𝑡

0

(𝜏) 𝑠𝑖𝑛 √𝜆𝑛 (𝑡 − 𝜏)𝑑𝜏 + 

+√𝜆𝑛∫ [𝛼𝑛

𝑡

0

𝜇1(𝜏) 𝑠𝑖𝑛 √𝜆𝑛 (𝑡 − 𝜏)𝑑𝜏]𝛸𝑛(𝑥) − 

−𝜇1(𝑡)∑𝛼𝑛

∞

𝑛=1

𝛸𝑛(𝑥) + (
𝑥

𝑙
− 1) 𝜇1(𝑡). 

Considering the relations: 

∑ 𝛼𝑛
∞
𝑛=1 𝛸𝑛(𝑥) =

𝑥

𝑙
− 1   and    

𝑥

𝑙
= ∑ 𝛽𝑛𝛸𝑛(𝑥)

∞
𝑛=1  

the solution for 𝑦(𝑥, 𝑡) becomes: 

𝑦(𝑥, 𝑡) = ∑ [𝜙𝑛
∞
𝑛=1 𝑐𝑜𝑠 √𝜆𝑛 𝑡 +

𝜓𝑛

√𝜆𝑛
𝑠𝑖𝑛 √𝜆𝑛 𝑡 +

+√𝜆𝑛 ∫ [𝛼𝑛𝜇1(𝜏)]
𝑡

0
𝑠𝑖𝑛 √𝜆𝑛 (𝑡 − 𝜏)𝑑𝜏 + 

+
1

√𝜆𝑛
∫ 𝑓𝑛(𝜏)
𝑡

0
𝑠𝑖𝑛 √𝜆𝑛 (𝑡 − 𝜏)𝑑𝜏]𝛸𝑛(𝑥). 



Given that, 

𝑓𝑛(𝜏) = ∫ 𝑢(𝜏)
𝑙

0

𝛿(𝑥 − 𝑝(𝜏))𝑋𝑛(𝑥)𝑑𝑥 = 𝑢(𝑡)𝛸𝑛[𝑝(𝜏)] 

the solution for 𝑦(𝑥, 𝑡) becomes: 

𝑦(𝑥, 𝑡) = ∑ [𝜙𝑛 𝑐𝑜𝑠 √𝜆𝑛 𝑡 +
𝜓

√𝜆𝑛

∞

𝑛=1

𝑠𝑖𝑛 √𝜆𝑛 𝑡 + 

 +√𝜆𝑛 ∫ [𝛼𝑛𝜇1(𝜏)]
𝑡

0
𝑠𝑖𝑛 √𝜆𝑛 (𝑡 − 𝜀)𝑑𝜏 + 

+
1

√𝜆𝑛
∫ 𝑢(𝜏)
𝑡

0
𝛸𝑛[𝑝(𝑡) 𝑠𝑖𝑛 √𝜆𝑛 (𝑡 − 𝜏)𝑑𝜀]𝛸𝑛(𝑥) (27)        

Consequently, for each designated 𝑢(𝑡) ∈ 𝑉 , with                 

0 ≤ 𝑝(𝑡) ≤ 𝑙 serving as the controller, the resolution of the 

complex system delineated by equations (1) - (3) is 

ascertained using formula (27). The resolved solution is a 

generalized solution. Assume that the function 𝜔(𝑥, 𝑡) is of 

class  𝑐∞ on the interval [0 ≤ 𝑥 ≤ 𝑙] and meets the following 

criteria: 

𝜔(0, 𝑡) = 𝜔(𝑙, 𝑡) = 𝜔𝑥
′ (0, 𝑡) = 𝜔𝑥

′ (𝑙, 𝑡) = 0, 
𝜔(𝑥, 0) = 0, 𝜔𝑡

′(𝑥, 0) = 0, 𝜔𝑡
′(𝑥, 𝑡) = 0, 

𝜔(𝑥, 𝑇) = 0 

Subsequently, we shall execute the integrals in a piecewise 

manner as outlined below: 

∫ ∫ 𝜔(𝑥, 𝑡)𝜌(𝑥)
𝑙

0

𝑇

0

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
𝑑𝑥𝑑𝑡 = 

= ∫ [∫ 𝜔(𝑥, 𝑡)
𝑇

0

𝑙

0

𝜌(𝑥)
𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
𝑑𝑡]𝑑𝑥 = 

= ∫ [𝜌(𝑥)𝜔(𝑥, 𝑡)
𝑙

0

𝜕𝑦(𝑥, 𝑡)

𝜕𝑡
|
0

𝑙

= 

= −∫ 𝜌(𝑥)
𝜕𝜔(𝑥, 𝑡)

𝜕𝑡

𝜕𝑦(𝑥, 𝑡)

𝜕𝑡

𝑇

0

𝑑𝑥]𝑑𝑡 = 

= −∫ ∫ 𝜌(𝑥)
𝑇

0

𝑙

0

𝜕𝜔(𝑥, 𝑡)

𝜕𝑡

𝜕𝑦(𝑥, 𝑡)

𝜕𝑡
𝑑𝑥𝑑𝑡 = 

=−∫ [𝜌(𝑥)
𝑙

0
𝑦(𝑥, 𝑡)

𝜕𝜔(𝑥,𝑡)

𝜕𝑡
|
0

𝑇

− 

−∫ 𝜌(𝑥)
𝑇

0

𝑦(𝑥, 𝑡)
𝜕2𝜔(𝑥, 𝑡)

𝜕𝑡2
𝑑𝑡]𝑑𝑥 = 

=∫ ∫ 𝜌(𝑥)
𝑙

0

𝑇

0
𝑦(𝑥, 𝑡)

𝜕2𝜔(𝑥,𝑡)

𝜕𝑡2
𝑑𝑥𝑑𝑡; 

∫ ∫ 𝜔(𝑥, 𝑡)
𝑙

0

𝑇

0

𝜕

𝜕𝑥
[𝑘(𝑥)

𝜕𝑦(𝑥, 𝑡)

𝜕𝑥
] 𝑑𝑥𝑑𝑡 = 

= ∫ [𝜔(𝑥, 𝑡)𝑘(𝑥)
𝜕𝑦(𝑥, 𝑡)

𝜕𝑥
]
0

𝑙𝑇

0

− 

−∫
𝜕𝑦(𝑡, 𝑥)

𝜕𝑥
𝑘(𝑥)

𝑙

0

𝜕𝜔(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥]𝑑𝑡 = 

= −∫ ∫ 𝑘(𝑥)
𝑙

0

𝑇

0

𝜕𝜔(𝑥, 𝑡)

𝜕𝑥

𝜕𝑦(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥𝑑𝑡 = 

=−∫ [𝑘(𝑥)𝑦(𝑥, 𝑡)
𝜕𝜔(𝑥,𝑡)

𝜕𝑥
|
0

𝑙𝑇

0
− 

−∫ 𝑦(𝑥, 𝑡)
𝜕

𝜕𝑥
[𝑘(𝑥)

𝜕𝜔(𝑥, 𝑡)

𝜕𝑥
]

𝑙

0

𝑑𝑥] 𝑑𝑡 = 

=∫ ∫ 𝑦(𝑥, 𝑡)
𝑙

0

𝑇

0

𝜕

𝜕𝑥
[𝑘(𝑥)

𝜕𝜔(𝑥,𝑡)

𝜕𝑥
] 𝑑𝑥𝑑𝑡 

∫ ∫ 𝜔(𝑥, 𝑡)
𝑙

0

𝑇

0
𝑢(𝑡)𝛿(𝑥 − 𝑝(𝑡))𝑑𝑡 = ∫ 𝑢(𝑡)

𝑡

0
𝜔(𝑝(𝑡)𝑡)𝑑𝑡. 

For any function 𝜔(𝑥, 𝑡) ∈ 𝐶∞(𝑜 ≤ 𝑥 ≤ 𝑙; 0 ≤ 𝑡 ≤ 𝑇)  that 

satisfies the conditions: 

𝜔(0, 𝑡) = 𝜔(𝑙, 𝑡) = 𝜔𝑥
′ (0, 𝑡) = 𝜔𝑥

′ (𝑙, 𝑡) = 0, 
𝜔(𝑥, 0) = 𝜔(𝑥, 𝑇) = 𝜔𝑡

′(𝑥, 0) = 𝜔𝑡
′(𝑥, 𝑇) = 0 

The function 𝑦(𝑥, 𝑡) ∈ 𝐿2[0 ≤ 𝑥 ≤ 𝑙]; 0 ≤ 𝑡 ≤ 𝑇  is called 

generelized solution of the mixed problem (1)- (3) if it 

satisfies the integral equality:  

∫ ∫ 𝜌(𝑥)
𝑙

0

𝑇

0

𝑦(𝑥, 𝑡)
𝜕2𝜔(𝑥, 𝑡)

𝜕𝑡2
𝑑𝑥𝑑𝑡 = 

= ∫ ∫ 𝑦(𝑥, 𝑡)
𝑙

0

𝑇

0

𝜕

𝜕𝑥
[𝑘(𝑥)

𝜕𝜔(𝑥, 𝑡)

𝜕𝑥
] 𝑑𝑥𝑑𝑡 + 

+∫ 𝜔[𝑝(𝑡), 𝑡]
𝑇

0

𝑢(𝑡)𝑑𝑡. 

IV. CONCLUSION 

The function 𝑧∗(𝑥, 𝑡) has been defined as the solution to 

the system (10) - (12) by the formula (20). The solution to 

equation (9), the non-homogeneous equation, with 

homogeneous boundary and beginning conditions, has been 

established for 𝑧∗(𝑥, 𝑡) . Consequently, for any designated 

𝑢(𝑡) ∈ 𝑉 , 0 ≤ 𝑝(𝑡) ≤ 𝑙   serving as the controller, the 

generalized solution of the mixed problem (1) - (3) is 

delineated as: 

𝑦(𝑥, 𝑡) ∈ 𝐿2 
[0 ≤ 𝑥 ≤ 𝑙]; 0 ≤ 𝑡 ≤ 𝑇. 
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