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Abstract
Reading news articles is one of the most important activities
online and many apps have appeared the last few years for
this purpose. In this paper, we present the architecture of
a news recommendation system that provides personalized
results to the users. We introduce a method to model the
users’ interests over time using word embeddings and a
framework to filter and score high quality news stories using
text classification models and agglomerative news clustering.
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1 Introduction
News articles are a form of online content that captures a
large amount of Internet users’ interest. The last few years
they are widely consumed by mobile users via online so-
cial platforms. Consequently, there is an increased interest
in promptly identifying the high quality articles that will
receive a significant amount of attention and match the in-
terests of each user. This complex task falls under the scope
of news popularity prediction, click-bait detection and rec-
ommender systems.

A recommender system is an information filtering system
that tries to predict the preference (for example rating) a user
would give to an item [22]. The last few years recommender
systems have become very popular. They are used in online
marketplaces like Amazon, Google Play, Steam, streaming
platforms like Netflix and obviously on social networks like
Facebook and Twitter. There are three types of recommender
systems: systems using collaborative filtering, content-based
filtering and hybrid systems that combine the first two ap-
proaches [14]. Collaborative filtering is a technique that is
used for making automatic predictions (filtering) about the
interests of a user by collecting preferences from many users
(collaborating) [26]. Users that have common items they like,
get a recommended item from the other users. The data
from the users’ likes is used for making the recommenda-
tions. They make up a matrix of users and items, where
each element is the rating of a specific item from a user. The
users-items matrix is large and sparse. For this reason dimen-
sionality reduction techniques are used like singular value

decomposition and probabilistic latent semantic analysis. By
reducing the dimensions of the users-items matrix, we also
get item vectors with less dimensions and we can speedup
a lot the recommendation process. Content-based filtering
uses the description of the items and a profile of the user’s
preferences to make recommendations. Usually information
retrieval techniques are used to match the profile of each
user with similar items. More recent approaches use neural
networks to perform the dimensionality reduction task in
collaborative filtering as well as the content-based filtering.
In this paper we present the design of a content-based news
recommender system.

2 Related work
2.1 News recommender systems
A lot of research has been done the last few years in recom-
mender systems and personalized news recommendations.
Some systems use classic methods like collaborative filtering
[10]. Google News has used collaborative filtering combined
with a Bayesian framework that models the users’ click be-
havior [18]. Another proposed system uses content-based
filtering using keywords from the articles and constructs
a profile for each user with these keywords [16]. In [20]
the same method is used but the keywords are filtered us-
ing a neural network. The framework proposed in [29] uses
ensemble hierarchical clustering that separates the users
into different groups based on their reading histories, where
each user might belong to several groups. For user profiling
they use Latent Dirichlet Allocation, a model that is used
very frequently for topic modeling [24]. In [9] they used
context trees for news recommendations to anonymous visi-
tors based on current browsing behavior. Sometimes, instead
of a term-based approach, an ontology-based approach is
adopted [13].

In some more recent work, recurrent neural networks are
used for session-based news recommendations [11]. The se-
quence of viewed articles is given as input (the user’s session)
and article ids are given to the output (the recommendations).
A variation of this approach adds an additional GRU recur-
rent layer to model information across user sessions and
to track the evolution of the user interests over time [21].
YouTube uses a scalable end-to-end neural architecture for
video recommendations using embeddings of videos and
search tokens as input, and video probabilities as output [7].



2.2 Popularity prediction
Predicting the popularity of news articles is a challenging
task. Many methods have been proposed and they depend
on different types of data. The most common methods are
regression models that depend on early user’s access (like
the number of comments the first few minutes) to predict the
popularity [25] [23] [3]. A different approach uses a model
of social dynamics to predict the popularity [17] based on
early votes. In this paper, we use a different approach with a
text classification model, which identifies headlines that are
likely to attract many views.

2.3 Click-bait detection
Click-bait has become a very common phenomenon as it is an
easy way for news publishers to make more profit. Click-bait
articles are low quality articles that are designed to capture
the users’ attention. Click-bait headlines typically aim to
exploit the "curiosity gap", providing just enough information
to make readers curious, but not enough to satisfy their
curiosity without clicking through to the linked content.
Many methods have been proposed for the recognition of
click-bait headlines. In [5] an SVMwith N-gram features and
other features like sentence structure and click-bait language
achieved 93% accuracy. In [1] a convolutional neural network
is used, which gets as input a sequence of word vectors and
achieved 90% accuracy. The highest accuracy of 98% has
been achieved with a bidirectional LSTM network with word
embeddings and character embeddings as features [2].

3 System design
Figure 1 summarizes the architecture of the proposed content-
based news recommender system. In general, the system
consists of three processes. The first process, downloads ar-
ticles from web pages, extracts the clean text, extracts terms
from the clean text, clusters the article with other related
articles and saves them to the database. The second pro-
cess involves the scheduled training of two types of models;
a content-based recommendation model, and a language
model for generating word embeddings for the entities that
appear in the news articles. In our current system, we use
an unsupervised content-based filtering approach and the
fastText model for learning keyword embeddings [4]. The
third process involves the user. After we calculate a vector
that captures his interests, we return a news ranking based
on a personalized score from the recommendation model,
a predicted popularity score, a coverage score and a click-
bait score. After every click he makes on a news article, his
profile of interests is updated, so that in the next session, he
gets a new ranking based on his top most recent interests.

Figure 1. The processes of the news recommender system

4 Personalized results
4.1 Preprocessing
The first obvious step in a news recommender system, is the
preprocessing of the downloaded articles. Firstly, we need
to extract only the text from the HTML structure of the web
page, ignoring the rest of the boilerplate content (navigation
links, comments, ads). We extract the clean text using the
algorithm proposed in [15], a decision tree to classify every
HTML node based on link density and the number of words
in each node. The clean text is then passed to the next step,
the keywords extraction.

4.2 Keywords extraction
After extracting the clean text, we extract and score key-
words from the content. More specifically, we extract nouns
that may be preceded by adjectives. In order to extract these
noun phrases, we do part-of-speech tagging using a fast av-
eraged perceptron tagger [6] from the NLTK library [19].
Every article is represented by a set of keywords K , where
each keyword ki has a weightwi based on its frequency and
its similarity with the other extracted keywords. We calcu-
late the weights using the graph-based approach proposed
in [27]. For every pair of keywords ki and kj we calculate
their attraction score as follows:

attr (ki ,kj ) = f req(ki ) × f req(kj ) × sim(ki ,kj )

where f req(ki ) is the frequency of ki and sim(ki ,kj ) the co-
sine similarity of the word embeddings of the keywords ki
and kj . Using the attraction scores, we create a weighted
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keyword frequency keyword score

games 9 games 0.54
google 8 google stadia 0.46
pixel 8 stadia 0.29
stadia 8 pixel 0.26
google stadia 7 google 0.20
launch 3 phones 0.19
information 2 mobile gaming 0.05
things 2 stadia platform 0.03
platform 2 stadia controller 0.02
content 2 pixel phones 0.01

Table 1. Frequency & graph-based keywords ranking

undirected graph G where the vertices represent the key-
words and the edges hold their attraction scores. The final
weight of a keyword ki is calculated as its weighted PageR-
ank score in G:

w(ki ) = (1−d)+d×
∑

kj ∈C(ki )

attr (ki ,kj )∑
km ∈C(kj ) attr (kj ,km)

w(kj ) (1)

In table 1 we can see an example of frequency-based ranking
and how the graph-based scoring improves the results by
using the semantic relationships between the entities. Terms
that match with an entity on DBpedia are added to a database
of entities (table 2) which is used to create interest profiles
for the users.

id name description ...
1 Donald Trump ...
2 Facebook ...
3 Google ...

... ...

Table 2. Database of entities

4.3 Entity embeddings
Periodically, we use a large representative sample of news
articles to learn word embeddings for the different entities
using the fastText model [4]. We do not use pretrained word
embeddings, because the relationships between entities in
the news articles change over time and also new entities can
appear. For example, the entity ’Virtual Reality’ was more
related to the entity ’Facebook’ when Facebook acquired the
virtual reality company Oculus VR.

4.4 Content-based recommendations
In a news application we have users and articles, and we
want to recommend interesting articles to each user. For this

purpose we need a semantic vector representation for the
articles based on their content and a semantic vector repre-
sentation of the users based on the articles they read. Every
article a is represented as the weighted average embedding
of its keywords:

−→a =
∑

k ∈V (a)

w(k) · embeddinд(k) (2)

where V (a) is the set of extracted keywords (entities) from
the article a andw(k) the weight of the keyword k computed
by (1). For each useru, we keep a profile of interests P(u). Ev-
ery interest has an id referring to an entity, the total number
of clicks by the user on articles that contain it, the number
of clicks on articles that contain it the last k days and a Unix
timestamp of the last click.

uid entity id total clicks recent clicks last click
238 2 23 534 1536248321
238 3 4 23 1536241332
238 1 12 234 1536246374

... ... ... ...

Table 3. Database of user interest profiles

Based on the number of clicks the last d days and the Unix
timestamp of the last click, each user interest k ∈ p(u) gets a
decaying score over time:

s(k,u) = w1 ·
rc(k)

maxm∈P (u)rc(m)
·2−

tp−kt
h +w2 ·

c(k)

maxm∈P (u)c(m)
(3)

where rc(k) is the number of clicks of the interest k the last
d days (recent clicks), c(k) the total number of clicks of the
interest k , kt the Unix timestamp of the first click within the
last d days, tp the current Unix timestamp, and h a halving
interval of the interest score measured in seconds. The first
term in the score captures the importance of the entity for
the user based on his recent activity the last d days, and the
second term the overall importance of the entity based on
his whole click activity. w1 and w2 are parameters which
sum to 1 and define the importance of the recent and overall
click activity of the user in the scoring of his interests. The
user is represented by the weighted average of the word
embeddings of his interests:

−→u =
∑

k ∈P (u)

s(k,u) · embeddinд(k) (4)

After representing both the articles and the users in the same
vector space, we need to calculate the similarity of each user
with the articles. This similarity is the personalized score
ps(u,a) of the article a for the user u, and is calculated as the
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cosine similarity of −→a and −→u :

ps(u,a) = cosθ (
−→u ,−→a ) =

−→u · −→a

|
−→u | |−→a |

(5)

5 Agglomerative clustering
One very important part of the news ranking is the cluster-
ing of the related articles that cover the same event.

Figure 2. Hierarchical clustering of news articles

For this purpose, we use the following agglomerative clus-
tering algorithm:

Algorithm 1 Agglomerative news clustering algorithm
1: Given a recently collected news article q, calculate its

vector representation using (2)
2: Find the article a with the highest cosine similarity sclose

with q with a publication time difference dt < T
3: Calculate the minimum cosine similarity sf ar of q with

the articles of the cluster of the article a
4: If sclose > C and sf ar > F then add q to the cluster of a,

otherwise create a new cluster with the article q

T , C and F are three thresholds that must be defined. We
use these three thresholds, instead of just one, to avoid the
phenomenon of concept drift, when the minimum similar-
ity between articles in the same cluster becomes very low.
The threshold T helps to prevent the concept drift, because
articles with large publication time difference usually do
not refer to the same event, or they refer to an update or
progress of the same event. To speedup the second step of
finding the article with the highest cosine similarity, we use
an approximate nearest neighbors index 1.

6 News classification
In order to improve the quality of the personalized news re-
sults, we trained two text classification models for click-bait
detection and popularity prediction. The click-bait detec-
tion model helps us filter out low quality articles that are
not related to news events, and the popularity prediction
model gives an estimate of the level of engagement of the
article based on the headline. The two models are based on
a Bi-LSTM neural network architecture.
1https://github.com/spotify/annoy

6.1 Bi-LSTM
The Long Short Term Memory networks (LSTMs) [12] are a
special type of Recurrent Neural Networks (RNNs) designed
to overcome the vanishing and exploding gradients problem
of RNNs. LSTMs have additional memory cells which store
memory from long distance terms. Because of their ability
to capture long term dependencies in the data more effec-
tively, they have been widely used in problems like language
modeling, translation and speech recognition. An LSTM unit
includes an input layer, a hidden layer and an output layer.
At time t , it consists of inputs (it ), output (ot ), forget gates
(ft ) and memory cell (ct ). The updates at time t are then:

it = σ (W (i)ht−1 +U
(i)xt + b

(i))

ft = σ (W (f )ht−1 +U
(f )xt + b

(f ))

ot = σ (W (o)ht−1 +U
(o)xt + b

(o))

c̃t = tanh(W (c)ht−1 +U (c)xt + b(c))
ct = ft ⊙ ct−1 + it ⊙ c̃t

h̃t = ot ⊙ tanh(ct )

ht = [h̃t→; h̃t←]

The last equation defines the output of the LSTM as the con-
catenation of a left to right and a right to left representation
(bidirectional LSTM).

6.2 Click-bait detection
For training our click-bait detection model, we used two
publicly available datasets. The first one is a collection of
titles from the pseudo-news website The Examiner 2, con-
taining click-bait headlines written by 21000+ authors over
6 years. This dataset does not necessarily contain only click-
bait headlines, but in general headlines of very low quality
news articles. The second dataset is the large collection of
trustworthy high quality articles from Reuters over the last
10 years 3. Combining the two datasets, we have a dataset of
2,500,000 headlines, where half of them are click-bait (low
quality) and the other half non click-bait (high quality). With
a single layer of 32 Bi-LSTM units, initialization of the word
embedding layer with pretrained embeddings 4, softmax acti-
vation function in the output layer, categorical cross entropy
loss and Adam as the optimization algorithm, we achieved
94.79% accuracy in our dataset (using 80% for training and
20% for validation). The probability score of the model is
used for the filtering of the low quality click-bait articles.

6.3 Popularity prediction
For this task, we used a publicly available dataset from red-
dit, with 522,278 news titles with their number of upvotes,

2https://www.kaggle.com/therohk/examine-the-examiner
3https://github.com/philipperemy/Reuters-full-data-set
4https://fasttext.cc
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downloaded from the worldnews subreddit 5. We addressed
the problem as a classification task. We tried to define a num-
ber of popularity classes but we got the best results with
only two popularity classes; popular and not popular. In the
popular class we put articles with at least 3000 upvotes and
in the not popular class, articles with 0 upvotes. Using the
same setup with the click-bait detection model, we achieved
78.5% accuracy. The score of this model is used to improve
the ranking of the news articles that have been published
very recently and are likely to be engaging.

7 Personalized ranking

Source quality

We define the quality of a news source s as follows:
sq(s) = w1 × oriдinality(s) +w2 × hotness(s)

wherew1 +w2 = 1, oriдinality is the percentage of articles
published by s that at the time of publication they had no
related articles and hotness the percentage of articles pub-
lished by s that had at least H related articles. The threshold
H is a parameter that needs to be defined and depends on
the total number of sources we have.

Coverage score

The coverage score of a news article a is the time-decaying
popularity score based on the number of articles that cover
the same news story (related articles in the same cluster) and
the quality of their source:

cv(a) = 2
tp−t
h ×

∑
r ∈R(a)

esq(r )

where R(a) the set of the related articles to a (including a),
tp the current Unix timestamp, t the publication Unix times-
tamp of a and h a score halving interval in seconds. We
use the exponential function so that the large differences
between the source quality scores are more obvious, and
articles that are covered by a few high quality sources get
higher coverage score than articles that are covered by many
low quality sources.

Filtered personalized ranking

The final personalized news score is defined as follows:

s(u,a) =

{
0, cb(a) > 0.5
ps(u,a) × cv(a) × pp(a), cb(a) ≤ 0.5

whereps(u,a) is the personalized score of the article a for the
user u, cv(a) the coverage score of a, pp(a) is the predicted

5https://www.kaggle.com/rootuser/worldnews-on-reddit

popularity score of a and cb(a) the click-bait score of a. If
|R(a)| > k , then we set pp(a) = 1, so essentially we use the
predicted popularity score only for articles with at most k
related articles. News articles that have more than k related
articles are considered popular, so we set their predicted
popularity score to 1.

8 Conclusions
We presented the design of a content-based news recommen-
dation system. We based our novel ranking framework on
four scores; a personalized score using a semantic vector rep-
resentation for the articles and the users, a click-bait score,
a predicted popularity score based on the headline, and a
coverage score based on the number of the related articles
and the quality of their source.

9 Future work
One of the first improvements that can be made in the sys-
tem is related to the text classification models. A fine-tuned
pretrained language model like BERT [8] or XLNet [28] may
give higher accuracy in both tasks. The popularity predic-
tion model can be trained on a larger dataset, which can be
constructed by crawling a large number of news sources and
clustering the news articles. The popularity of every news
article in the new dataset will be defined by the number of
its related news articles. More research needs to be done on
the extraction of keywords (entities) and their disambiguation.
In some cases, we have an entity that can be different things
based on the context. For example ’Isis’ is an entity that can
refer to the ’Islamic State of Iraq and the Levant’, but it can
also refer to the goddess in the ancient Egyptian religion or
the ’River Thames’. Additionally, the system could also give
results using a collaborative filtering approach. We could do
dimensionality reduction on the users - article views matrix
to get a low dimensional representation of the news articles
and use it in our ranking framework.
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