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Abstract—The Zn lattice is the lattice generated by the set of
all orthogonal unit integer vectors. Since it has an orthonormal
basis, the shortest vector problem and the closest vector problem
are easy to solve in this particular lattice. But, these problems
are hard to solve when we consider a rotation of Zn lattice. In-
fact, even though it is known that the Zn-isomorphism problem
is in NP ∩ Co-NP, we still don’t have an efficient algorithm to
solve it. Motivated by the above, in this paper we investigate
the properties of the bases of Zn lattice which are the sets of
column/row vectors of unimodular matrices. We show that an
integer primitive vector of norm strictly greater than 1 can be
extended to a unimodular matrix U such that the remaining
vectors have norm strictly smaller than the initial primitive
vector. We also show a reduction from SVP in any lattice
isomorphic to Zn to SVP in n− 1 dimensional sublattice of Zn.
We define two new classes of lattice bases and show certain results
related to Zn bases. Finally, we study the relation between any
solution to Successive Minima Problem and the set of Voronoi
relevant vectors and present some bounds related to the compact
bases of Zn.

Index Terms—Lattices, shortest vector problem, closest vector
problem, Zn-isomorphism, lattice basis, Voronoi cell.

I. INTRODUCTION

A lattice is a discrete subgroup of the additive group of Rn.
It can be expressed as all the integer linear combinations of
a set of linearly independent vectors B = {⃗b1, . . . , b⃗m}, i.e.,
L(B) = {

∑
i αi⃗bi | ∀(α1, . . . , αm) ∈ Zm}. Set B is called a

basis of this lattice. The lattice Zn is L({e⃗1, . . . , e⃗n}), where
e⃗i’s are orthogonal unit integer vectors. Lattices have been ex-
tensively used in computational number theory, cryptanalysis
and building post-quantum cryptosystems. Such cryptosystems
are built on the hardness of the Shortest-Vector problem (SVP)
and Closest Vector problem (CVP) which are NP-hard. Zn

lattice is the simplest lattice with interesting properties such
as existence of an orthonormal basis, the shortest vector has
unit norm, CVP can be solved in polynomial time, etc. One of
the most interesting problems related to the Zn lattice is the
Zn-isomorphism problem which asks whether a given lattice
L is isomorphic to Zn. In other words, does there exist an
orthonormal transformation which will transform the vectors
of the given lattice to Zn. Similar to Graph-Isomorphism
problem, it is still unknown whether there exists a polynomial
time algorithm for Zn isomorphism. A trivial solution to this
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problem is to check whether L has an orthonormal basis. This
motivated us to study various bases of Zn.

Prior works

There have been numerous works on the study of bases for
general lattices. The Korkin-Zolotarev bases have a variety of
“good” properties [1] but computing such bases takes super-
exponential time [2]. The LLL bases [3] can be computed in
polynomial time but the vectors in the bases have norms that
are exponentially larger than the shortest vectors.

A basis B generates Zn if and only if it is the set of
column (equivalently, row) vectors of a unimodular matrix.
So Zn isomorphism problem is closely related to the study
of unimodular matrices. The generalisation of Zn isomor-
phism problem is the lattice isomorphism problem which asks
whether two given lattices are isomorphic to each other or
not. Haviv and Regev [4] gave an exponential time algorithm
to solve this problem. Hunkenschroder [5] shows that Zn

isomorhpism is in NP ∩ Co-NP. Lenstra and Silverberg [6]
showed that when the lattice is given with enough symmetry,
they can construct a deterministic polynomial-time algorithm
to solve Zn isomorphism. Very recently, Bennett et al. [7]
showed that finding the shortest vector in a lattice isomorphic
to Zn is strictly easier than SVP in general lattices. They
also constructed a simple public key encryption scheme that
is secure if finding a shortest vector in a lattice, isomorphic
to Zn, is hard.

In [8], the author showed that a partially filled n×n integer
matrix with n entries such that these n entries do not form a
row or column, can be completed into a unimodular matrix.
This was further improved in [9] where a partially filled n×n
matrix having 2n − 3 entries, such that no n entries form
a column or row, can be completed to form a unimodular
matrix. In [10], the authors showed that given a set of linearly
independent primitive vectors a⃗1, . . . , a⃗m ∈ Zn with m <
n− 1, the number of primitive vectors b⃗ ∈ Zn with ||⃗b|| ≤ T ,
such that a⃗1, . . . , a⃗m, b⃗ is again linearly independent, is Θ(Tn)
as T → ∞. The bound reduces to Θ(Tn−1) when m = n−1.
The above bound is useful only for large T .

Our contributions

The following are the major results presented in this paper.
1) We show that a primitive vector can be extended to a uni-

modular matrix (in which the initial vector is a column)



such that each new column vector has strictly lesser ℓ2-
norm than the ℓ2-norm of the initial primitive vector.
Here ||v⃗|| denotes ℓ2-norm of v⃗. We give a constructive
proof hence it can be turned into an algorithm.

Theorem 1. Let v⃗ ∈ Zn be a primitive vector such
that ||v⃗||2 > 1. Then, there exists a Zn-basis B =
{⃗b1, b⃗2, . . . , b⃗n} such that b⃗n = v⃗ and ||⃗bn||2 >
||⃗bi||2,∀i ∈ [n− 1].

2) We reduce SVP in any lattice isomorphic to Zn to SVP
in (n− 1) dimensional sublattice of Zn.

3) We introduce two new classes of lattice bases called
AMDV and AMDS and show that if a basis of Zn be-
longs to both these classes, then it must be {e⃗1, . . . , e⃗n}.

4) We show that any vector that belongs to any SMP (Suc-
cessive Minima Problem) solution is Voronoi relevant.
This result leads to a new lower bound for the norm of
the largest Voronoi relevant vector. We also show that a
Compact basis of Zn can have exponentially large norm
and deduce a new upperbound for Compact bases of Zn.

II. PRELIMINARIES AND NOTATIONS

In this paper Z, R and Q will denote the sets of integers, re-
als and rationals respectively. Vectors will be denoted in small
case with with arrow as in v⃗ whereas matrices and basis sets
will be denoted in capital letters. Let B = {b⃗1, . . . , b⃗k} be a
set of vectors in Rn. The subspace of Rn spanned by B will be
denoted by span(B). The norm of a vector v⃗ = (v1, . . . , vn)
is the normal Euclidean norm, i.e, ||v⃗|| =

√∑
i v

2
i . The

norm of B is defined as ||B|| = max
i

||⃗bi||. For any two
sets of vectors U and V , the notation U + V denotes the
set {u⃗+ v⃗ | u⃗ ∈ U, v⃗ ∈ V }

Definition 2 (Lattice). Given a set of linearly independent
vectors B = {⃗b1, . . . , b⃗m} in the vector space Rn, the lattice
L(B), spanned by B is the integer span of B, i.e., L(B) =
{
∑m

i=1 αi · b⃗i | ∀αi ∈ Z}. By B we also denote a matrix
in which b⃗i are column vectors. In the matrix notation for B
L(B) = {B · z⃗ | ∀z⃗ ∈ Zn}. B is called a basis for L(B).
The dimension of L(B) is n and the rank is m. If L′ and
L are lattices such that L′ ⊆ L, then the former is called a
sublattice of the latter.

A vector v⃗ in a lattice is called primitive if (1/k) · v⃗ does
not belong to the lattice for any integer |k| > 1. Let B′ be
the result of adding the α (an integer) multiple of the j-th
column to the i-th column in B. Then it is easy to verify that
L(B′) = L(B). More generally, two sets B and B′ are both
bases of the same lattice if and only if B′ = B ·U where U
is a unimodular matrix.

Let u⃗, v⃗1, . . . , v⃗k be vectors in Rn. If the norm of u⃗′ =
u⃗ +

∑k
i=1 αi.v⃗i is less than ||u⃗||, where αi ∈ Z, then u⃗′ is

called a reduction of u⃗ by {v⃗1, . . . , v⃗k}. Vector u⃗ is said to be
irreducible by a set of vectors V if the vectors in V cannot
reduce it.

Definition 3. Red(u⃗,V) denotes any vector u⃗′ which is a
reduction of u⃗ by V and it is not further reducible by it.
Observe that Red(u⃗,V) is not unique.

Following is a trivial result.

Lemma 4. Let B = {⃗b1, b⃗2, . . . , b⃗n} be a basis of L and
b⃗′i = Red(⃗bi,B \ {⃗bi}). Then {⃗b1, . . . , b⃗i−1, b⃗

′
i, b⃗i+1, . . . , b⃗n}

is also a basis of L.

A useful property related to lattices is the existence of the
dual lattice.

Definition 5. Let L be a lattice of dimension n and rank n
and B be a basis for it. Then D = (BT )−1 is called the dual
basis of B. The lattice spanned by D (in the same ambient
space), L∗, is independent of the choice of B. That is, L∗ is
unique for L and it is called the dual of L. It is easy to see
that the dual of the dual is the primal lattice.

Lattice Zn is self dual, i.e., it is its own dual lattice.
Observe that the lattice denoted by 2L(⃗b1, . . . , b⃗n) which is
{
∑n

i=1 2zi⃗bi | ∀zi ∈ Z} is a sublattice of L(⃗b1, . . . , b⃗n).
It is easy to verify that B′ = {2⃗b1, . . . , 2⃗bn} is a basis of
2L(⃗b1, . . . , b⃗n). Further, the shifted lattice 2L(⃗b1, . . . , b⃗n) + v⃗
is a subset of L(⃗b1, . . . , b⃗n) for any v⃗ ∈ L(⃗b1, . . . , b⃗n). For
each v⃗ ∈ L(⃗b1, . . . , b⃗n), 2L(⃗b1, . . . , b⃗n)+ v⃗ is called a coset of
2L(⃗b1, . . . , b⃗n). Each vector of L(⃗b1, . . . , b⃗n) belongs to either
2L(⃗b1, . . . , b⃗n) or to one of its cosets. Hence they partition the
entire lattice.

Claim 6. Let n × n matrix B be a basis matrix of a lattice.
Then there are 2n distinct cosets of 2L(B), given by 2L(B)+
B · z⃗ for all z⃗ ∈ {0, 1}n.

A. Lattice Related Problems

We now define some interesting problems related to lattices.

Definition 7 (Shortest Vector Problem (SVP)). Given a basis
B, find a shortest non-zero vector v⃗ in the lattice L(B), i.e.,
||v⃗|| ≤ ||u⃗|| for all u⃗ ∈ L(B) \ {⃗0}.

Definition 8 (Closest Vector Problem (CVP)). Given a basis
B and a vector t⃗ in the ambient space, find the vector v⃗ in the
lattice L(B) which is closest from t⃗, i.e., ||v⃗ − t⃗|| ≤ ||u⃗− t⃗||
for all u⃗ ∈ L(B).

Definition 9 (Shortest Basis Problem (SBP)). Given a basis
of a lattice L, find a basis C of L such that ||C|| ≤ ||D|| for
all bases D of L.

Definition 10 (Successive Minima). The ith successive min-
imum λi(L) for a lattice L of rank n is the radius of the
smallest sphere centered at the origin containing at least i
independent lattice vectors.

λi(L) = inf {r | dim(span(L ∩ B(0, r))) ≥ i}

where B(0, r) denotes the set of vectors in the ambient space
with norm at most r.

A direct consequence of this definition is as follows.



Lemma 11. Let S = {v⃗1, . . . , v⃗k} be a linearly independent
set of vectors of a L. Then there exists a v⃗ ∈ S such that
||v⃗|| ≥ λk.

A non-trivial relation between the norm of a shortest basis
of a lattice and the λn of the lattice is given in Lemma 12.

Lemma 12 (Corollary 7.2, [11]). For any lattice L, there exists
a basis B such that ||B|| ≤

√
nλn/2.

Definition 13 (Successive Minima Problem (SMP)). Given
a basis B of a lattice, find linearly independent vectors
s⃗1, s⃗2, . . . , s⃗n such that ||s⃗i|| = λi ∀i.

Definition 14 (Shortest Independent Vector Problem (SIVP)).
Given a basis B of a lattice, find n linearly independent vec-
tors s⃗1, . . . , s⃗n such that ||s⃗i|| ≤ ||s⃗i+1|| ∀i and ||s⃗n|| = λn.

Observe that a solution to SMP is also a solution to SIVP.

Theorem 15 (Corollary 4, [12]). There is a dimension and
rank preserving reduction from SMP and SIVP to CVP. The
reduction calls the CVP oracle poly(n, b) times where b is the
number of input bits.

Many interesting lattice problems are reducible to CVP. One
of the main challenges in the study of lattices is to find a
“good” basis in which SVP and CVP are easy to solve. For
example, {e⃗1, e⃗2, . . . , e⃗n} is a good basis of Zn. One way
to characterize the concept of “good” basis is that a shortest
vector of the lattice belongs to it so SVP becomes a trivial task.
Another desirable property is that for any lattice vector v⃗ its
nearest neighbour lattice vectors are given by {v⃗+B · z⃗ | z⃗ ∈
{−1, 0, 1}n}. This property makes CVP an easy problem to
solve. Most lattices do not have such an ideal basis. But our
attempt in this paper is to find bases which are close to the
ideal basis.

Definition 16 (Voronoi Cell). Let L be a lattice. The Voronoi
cell of the lattice is

C(L) = {x⃗ ∈ Rn | ∀v⃗ ∈ L \ {⃗0}, ||x⃗|| ≤ ||x⃗− v⃗||}

The half space for a lattice vector v⃗ is defined as

H(v⃗) = {x⃗ ∈ Rn | ||x⃗|| ≤ ||x⃗− v⃗||}

Observe that C(L) =
⋂
H(v⃗

v⃗∈L\{0⃗}
). The minimal set of lattice

vectors V (L) is called the set of Voronoi relevant vectors if
C(L) =

⋂
H(v⃗

v⃗∈V (L)

).

Theorem 17 (Voronoi, [13]). Let L be a lattice and v⃗ ∈ L be
any lattice vector. Then v⃗ is a Voronoi relevant vector if and
only if ±v⃗ are the only shortest vectors in the coset 2L+ v⃗.

Corollary 18. The number of Voronoi relevant vectors is upper
bounded by 2(2n − 1).

Proof. According to Theorem 17, if coset has a unique (along
with its negative) minimum vector, then that vector and its
negative are Voronoi relevant vectors. Therefore the total
number of Voronoi relevant vectors is bounded by the number

Fig. 1. Voronoi cells

of cosets of 2L, not including 2L itself, because 0⃗ is not a
Voronoi relevant vector. So the number of Voronoi relevant
vectors is at most 2(2n − 1). See Claim 6.

B. Hyperplane Sublattice and Basis

We define a rational subspace as the (n − 1)-dimensional
subspace perpendicular to an integer vector in Rn. An (n−1)-
dimensional subspace S of Rn contains an (n−1)-dimensional
sublattice of Zn if and only if S is a rational subspace. We
generalize the terminology to arbitrary lattice. Let L be any
lattice in Rn. An (n− 1) dimensional subspace is said to be
pseudo rational if it contains an (n−1)-dimensional sublattice
of L. In this section “subspace” will only refer to (n − 1)-
dimensional subspaces.

The sublattice contained in a pseudo rational subspace will
be called a hyperplane sublattice. Let S0 be a pseudo rational
subspace and L′ denote the hyperplane sublattice contained in
it. Let B be a basis of L and B1 be a basis of L′ expressed as
an (n−1)×(n−1) matrix. Then it can be shown that the dis-
tance between S0 and the nearest hyperplane parallel to S0 that
contains at least one lattice point is Det(B)/Det(B1). Let the
sequence . . . , S−2, S−1, S0, S1, S2, . . . denote the successive
hyperplanes parallel to S0 each of which contains at least one
L point. Since a lattice is invariant under the translation from
one lattice point to another, the distance between Si and Si+1

is also Det(B)/Det(B1) for all i.
There is an important relationship between the bases of

L and the bases of the hyperplane sublatices. If B1 =
{⃗b2, . . . , b⃗n} is a basis of the hyperplane sublattice of S0 and
b⃗1 ∈ S1 ∩L, then {⃗b1, b⃗2, . . . , b⃗n} is a basis of L. Conversely
if B = {⃗b1, . . . , b⃗n} is a basis of L and {⃗b2, . . . , b⃗n} spans S0,
then b⃗1 belongs to the hyperplane S1. Such pairs of b⃗1 and S0

will be called mutually compatible. Some times we may say b⃗1
is compatible to {⃗b2, . . . , b⃗n} or the other way around, where
the concerned pseudo-rational subspace is span(⃗b2, . . . , b⃗n)
and the vectors, b⃗2, . . . , b⃗n, form a basis of the hyperplane
sublattice on this pseudo-rational subspace.

Let us show the relation between all compatible vectors to
a given pseudo-rational subspace of a lattice. Similarly the
relation between the compatible subspaces to a given lattice
vector.

Lemma 19. Let S0 be a pseudo rational subspace of a lattice
with a sublattice basis B1 = [⃗b2, b⃗3, . . . , b⃗n] and b⃗1 be a lattice



vector which are mutually compatible. Then (i) any compatible
vector to S0 is given by b⃗1 +

∑n
i=2 αi .⃗bi for some integer

coefficients αi. (ii) Every pseudo-rational subspace compatible
with b⃗1 has a sublattice basis given by [⃗b2 −α2 · b⃗1, b⃗3 −α3 ·
b⃗1, . . . , b⃗n − αn · b⃗1] where αi are some integer coefficients.

Proof. (i) Suppose B′ = [⃗b′1, b⃗2, . . . , b⃗n] is also a basis of
the whole lattice, then b⃗′1 must also belong to S1, the next
parallel hyperplane with lattice points. Then b⃗′1 = b⃗1+v where
v ∈ L(B1). So b⃗′1 = b⃗1 +

∑n
i=2 αi .⃗bi for some αi ∈ Z.

(ii) Let [⃗b2, . . . , b⃗n] be compatible with b⃗1 so B =
[⃗b1, b⃗2, . . . , b⃗n] is a lattice basis. Its dual is D = (BT )−1 =
[d⃗1, d⃗2, . . . , d⃗n]. So d⃗1 is perpendicular to S0 and b⃗1 is
perpendicular to the subspace of [d⃗2, d⃗3, . . . , d⃗n]. By definition
d⃗1 and the subspace of [d⃗2, . . . , d⃗n] are compatible w.r.t. the
dual lattice.

Suppose B′
1 = {b⃗′2, . . . , b⃗′n} is a basis of the hyperplane

sublattice of another subspace compatible with b⃗1. Let d⃗′1 be
the normal to this subspace such that b⃗T1 · d⃗′1 = 1 So the
dual of B′ = [⃗b1, b⃗′2, . . . , b⃗′n] is of the form [d⃗′1, d⃗2, . . . , d⃗n].
Hence [d⃗′1, d⃗2, . . . , d⃗n] is also a basis of the dual lattice L∗.
Hence d⃗′1 is another compatible vector for [d⃗2, . . . , d⃗n]. From
the first part, there exist integers αi such that d⃗′1 = d⃗1 +∑n

i=2 αi · d⃗i. The dual of [d⃗1 +
∑n

i=2 αi · d⃗i, d⃗2, . . . , d⃗n] is
[⃗b1, b⃗2 − α2 · b⃗1, . . . , b⃗n − αn · b⃗1]. Then [b⃗′2, . . . , b⃗′n] and
[⃗b2−α2 · b⃗1, . . . , b⃗n−αn · b⃗1] are bases of the same hyperplane
sublattice, perpendicular to d⃗′1.

C. Some useful facts about Zn

Finally let us discuss the lattice Zn which is the set of
all integer vectors. Any set B of n linearly independent n-
dimensional integer vectors, spans a sublattice of Zn because
its integer-span contains only integer vectors. A necessary and
sufficient condition that L(B) = Zn is that B contains only
integer vectors and the density of lattice points in L(B) is
equal to that of Zn, which is 1. Hence L(B) = Zn if and
only if B is an n×n integer matrix and the Det(B) = 1, i.e.,
B is a unimodular matrix. Thus it is polynomially decidable
whether a given basis generates Zn.

Now let us consider the case when the basis vectors are
not specified in the reference frame {e⃗1, e⃗2, . . . , e⃗n}. Suppose
B = {⃗b1, . . . , b⃗n} is a basis of a lattice resulting from
rotating/refelcting Zn. So there exists an orthonormal matrix
R such that {R · b⃗1, . . . ,R · b⃗n} is a basis of Zn.

Definition 20 (Zn Isomorphism Problem). Given a linearly in-
dependent set of n-dimensional real vectors B = {⃗b1, . . . , b⃗n},
the lattice L(B) is called isomorphic to Zn if there exists
an orthonormal transformation matrix R such that B′ =
{R · b⃗1, . . . ,R · b⃗n} is a basis of Zn. The Zn Isomorphism
problem is to determine whether the lattice generated by a
given basis is isomorphic to Zn.

We have shown that a matrix U is a basis of Zn if and only
if its is a unimodular matrix. Consider any L, isomorphic to
Zn. A matrix B is a basis of L if and only if there exists an

orthonormal matrix R and a unimodular matrix U such that
B = R ·U.

Before ending this section let us state two necessary con-
ditions for Zn isomorphism. We know that Zn is self dual
because transpose and inverse of a unimodular matrix is also
unimodular. If B is a basis of a lattice isomorphic to Zn and
D is its dual, then self duality implies that D ⊆ L(B). We
have the following result.

Lemma 21. Let B be a basis of a full rank lattice in Rn.
Then if Det(B) ̸= 1 or D ̸⊆ L(B) where D is dual of B,
then L(B) is not isomorphic to Zn. Both these conditions can
be decided in polynomial time.

III. PROOF OF THE THEOREM 1
The proof of the main theorem heavily depends on a result

from [14].

Theorem 22 (Theorem 2, [14]). Let {a1, . . . , an} be a mul-
tiset of positive integers. Let m = max{a1, . . . , an} and
gk = gcd(ak, . . . , an), then there exists an integer solution
to the equation x1a1 + · · · + xnan = g1 which satisfies
−gj+1

2gj
< xj ≤

gj+1

2gj
,∀j ∈ [n− 1] and |xn| ≤ max(

m

2g1
, 1).

An immediate corollary of the above lemma is as follows.

Corollary 23. Let gcd(a1, a2) = g. Then, there exists integers
x1, x2 such that x1a1 + x2a2 = g and

|x1|

{
= 1 if |a1| = 1

≤ |a2

2g | if |a1| > 1
(1)

Another useful corollary is as follows.

Corollary 24. Let a⃗ = (a1, a2, . . . , an) be a primitive vector
in Zn. Then there exists a vector x⃗ = (x1, . . . , xn) in the
lattice such that a⃗T · x⃗ = 1 and either ||x⃗|| = 1 or ||x⃗|| ≤
||⃗a||/2.

Proof. The bound to be proven for ||x⃗|| is only dependent
on the norm of a⃗ so w.l.g. assume that an is the largest
component.

Let gk = gcd{ak, ak+1, . . . , an}. Since a⃗ is a primitive
vector so 1 = g1 = gcd{a1, a2, . . . , an}. From the above
theorem there exist x1, . . . , xn such that a1x1+ · · ·+anxn =
g1 = 1 such that x2

j ≤ (gj+1/2gj)
2 for 1 ≤ j ≤ n − 1 and

x2
n ≤ (max{an/(2g1), 1}2.
Observe that gj+1 ≤ aj .gj . So

∑n−1
j=1 (gj+1/2gj)

2 ≤
(1/4).

∑n−1
j=1 a2j . So

∑n−1
j=1 x2

j ≤ (1/4).
∑n−1

j=1 a2j .
Now consider two cases: an > 1 and an = 1. In the first

case x2
n ≤ a2n/4. In this case ||x⃗||2 ≤ (1/4)||⃗a||2, where x⃗ =

(x1, x2, . . . , xn).
Next consider the case an = 1. In this case define x⃗ =

(0, 0 . . . , 0, 1).

We will now focus on the proof of the main theorem which
constructs an n×n integer matrix B with determinant 1 which
contains v⃗ as a column and the norm of all other columns being
less than ||v⃗||. We prove this theorem using induction on the
dimension n.



(1) Base case is n = 2. Let b⃗2 = (a, b). So there exists
c, d such that c.a + d.b = 1 where |c| < |b| and |d| < |a|.
Let b⃗1 = (−d, c). Then B = {⃗b2, b⃗1} spans Z2 because the
determinant of B is a.c+ b.d = 1. Further ||⃗b2||2 = a2+ b2 >
d2 + c2 = ||⃗b1||2. Hence the claim holds for this case.

Next steps will address the cases with n > 2.
(2) Let v⃗ = (v1, . . . , vn)

T . First consider the case where at
least one component of v⃗ is zero. Without loss of generality
assume that vn = 0. We will reduce the problem to n − 1
dimensional case. Let b⃗′n = (v1, . . . , vn−1). From induction
hypothesis we have a basis B′ = [b⃗′2, . . . , b⃗′n] which spans
Zn−1 and ||b⃗′i|| < ||b⃗′n|| for all 2 ≤ i ≤ n − 1. Define the
basis matrix B for Zn as follows. Here 0⃗ denotes an (n− 1)-
dimensional zero vector.

B =

[
0⃗ B′

1 0⃗T

]
Observe that the rightmost column is v⃗.

(3) Next we consider the case when at least one component
of v⃗ is 1. Case in which one component is −1 can be handled
similarly. Without loss of generality assume that vn = 1. Since
vn = 1, we have a trivial solution B = [e⃗1, e⃗2, . . . , e⃗n−1, v⃗].

Observe that Det(B) = 1 and all columns, other than v are
unit vector.

(4) Finally we consider the case where vi ̸∈ [−1, 0, 1],∀i.
For convenience we will denote v⃗ by (vn, vn−1, . . . , v1)

T .
Define d1 = v1 and for all i > 1, we define di =
GCD(v1, . . . , vi) and ri, si ∈ Z such that rivi+ sidi−1 = di.
Observe that dn = 1. Define matrix Ti for i > 1 as follows.

Ti =



1 0 . . . 0 0 0 0 . . .
0 1 . . . 0 0 0 0 . . .
...
0 0 . . . ri si 0 0 . . .
0 0 . . . −di−1/di vi/di 0 0 . . .
0 0 . . . 0 0 1 0 . . .
...


where (n + 1 − i)-th column is
(0, . . . , 0, ri,−di−1/di, 0, . . . , 0)

T in which ri is the
(n + 1 − i)-th entry and the (n + 2 − i)-th column is
(0, . . . , 0, si, vi/di, 0, . . . , 0)

T in which vi/di is the n+1− i-
th entry.

Observe that di divides vi and di−1. Therefore each entry of
Ti is an integer. Further, Det(Ti) = (rivi + sidi−1)/di = 1.
So Ti is a unimodular matrix. The inverse of Ti, given below,
is also unimodular.

T−1
i =



1 0 . . . 0 0 . . .
0 1 . . . 0 0 . . .
...
0 0 . . . vi/di −si . . .
0 0 . . . di−1/di ri . . .
...



Define B = T−1
2 T−1

3 . . .T−1
n which is a unimodular

matrix. Our next objective is to show that the first column
of B is v⃗. To do this we determine the structure of B. To
begin with, the product of the rightmost two matrices is

T−1
n−1.T

−1
n =


vn −sn 0 . . .

vn−1 vn−1rn/dn−1 −sn−1 . . .
dn−2 dn−2rn/dn−1 rn−1 . . .

...


and the product of T−1

n−2 with the above matrix is

T−1
n−2T

−1
n−1T

−1
n =

vn −sn 0 0 . . .
vn−1 vn−1rn/dn−1 −sn−1 0 . . .
vn−2 vn−2rn/dn−1 vn−2rn−1/dn−2 −sn−2 . . .
dn−3 dn−3rn/dn−1 dn−3rn−1/dn−2 rn−2 . . .

...


So, finally we will get

B =

vn −sn 0 0 . . . 0 0

vn−1
vn−1rn

dn−1

−sn−1 0 . . . 0 0

vn−2
vn−2rn

dn−1

vn−2rn−1

dn−2

−sn−2 . . . 0 0

vn−3
vn−3rn

dn−1

vn−3rn−1

dn−2

vn−3rn−2

dn−3

. . . 0 0

...
v2

v2rn

dn−1

v2rn−1

dn−2

v2rn−2

dn−3

. . .
v2r3

d2

−s2

v1
v1rn

dn−1

v1rn−1

dn−2

v1rn−2

dn−3

. . .
v1r3

d2

r2


Observe that the first column of B is v⃗, as desired. In the

last step we will show that the norm of all columns other than
v⃗ is strictly less than ||v⃗||. Label the columns of B, from left
to right, by b⃗n, b⃗n−1, . . . , b⃗1 respectively.

Square of the norm of vector b⃗k is

||⃗bk||2 = s2k+1 + (r2k+1/d
2
k)[v

2
k + v2k−1 + · · ·+ v21 ]

Since ri.vi + si.di−1 = di, from Corollary 23, |ri| ≤
|di−1|/(2.|di|) because |vi| > 1. Also, |si| = 1 if |di−1| = 1.
Otherwise |si| ≤ |vi|/(2.|di|). We will plug these values into
the expression for ||⃗bk||2.

First, the case of |dk| = 1. In this case

||⃗bk||2 ≤ 1 +
1

4d2k+1

· (v2k + v2k−1 + · · ·+ v21)

≤ 1 + (v2k + v2k−1 + · · ·+ v21)/4

≤ v2k+1/4 + (v2k + v2k−1 + · · ·+ v21)/4

< ||⃗bn||2 = ||v⃗||2

In case |dk| > 1,

||⃗bk||2 ≤
v2k+1

4.d2k+1

+
1

4.d2k+1

· (v2k + v2k−1 + · · ·+ v21)

≤ (1/4)(v2k+1 + v2k + · · ·+ v21)

< ||⃗bn||2 = ||v||2



In [14], the authors also show that the xi’s in Theorem 22
can be computed in polynomial time. Therefore, the basis B
in Theorem 1 can also be computed in polynomial time.

IV. MIN DISTANCE VECTOR AND MAX DISTANCE
SUBSPACE

Definition 25 (Minimum Distance Vector (MDV)). Let L be
a lattice and S be a pseudo-rational subspace of L. A shortest
lattice vector compatible with S is called MDV of S.

Lemma 26. Let S be a pseudo-rational subspace of some
lattice. That S-compatible lattice vector is MDV of S which
make the least angle with the normal to S.

Definition 27 (Maximum Distance Subspace (MDS)). Let b⃗
be any primitive vector of a lattice. Then that b⃗-compatible
subspace S is the MDS of b⃗ whose normal makes the least
angle with b⃗. Equivalently, that compatible S on which the
projection of b⃗ is smallest.

Lemma 28. Let B = [⃗b1, b⃗2, . . . , b⃗n] be a lattice basis and
D = [d⃗1, . . . , d⃗n] be its dual basis. Then, b⃗1 is the MDV of
[⃗b2, . . . , b⃗n] if and only if [d⃗2, . . . , d⃗n] is MDS of d⃗1.

Proof. Recall that b⃗1 is normal to Span(d⃗2, . . . , d⃗n) and d⃗1 is
normal to span(⃗b2, . . . , b⃗n). Let θ denotes the angle between
b⃗1 and d⃗1. Then b⃗1 is MDV of [⃗b2, . . . , b⃗n] if and only if θ is
minimum if and only if [d⃗2, d⃗3, . . . , d⃗n] is MDS of d⃗1.

One of the consequences of Lemma 19 is the following
result.

Lemma 29. Let {⃗b1, b⃗2, . . . , b⃗n} be a basis of a lattice. Then
the MDV of [⃗b2, . . . , b⃗n] is b⃗1 +

∑n
i=2 αi .⃗bi for some integers

αi.
Similarly the MDS of b⃗1 has a sublattice basis given by

[⃗b2 − β2 .⃗b1, . . . , b⃗n − βn .⃗b1], where βi are integers.

Following results shows that MDV and MDS properties
together impose a strong condition.

Lemma 30. Let B = {⃗b1, . . . , b⃗n} be a basis of a lattice
isomorphic to Zn. Let D = {d⃗1, . . . , d⃗n} be its dual basis. If
||d⃗1|| ≤ ||⃗b1|| and ||⃗b1|| > 1, then b⃗1 is not an MDV.

Proof. First consider the case that d⃗1 = e⃗1. In this case
span(⃗b2, . . . , b⃗n) = span(e⃗2, . . . , e⃗n) which is isomorphic to
Zn−1. If b⃗1 was MDV, then b⃗1 = e⃗1. This contradicts the given
fact that ||⃗b1|| > 1. Hence b⃗1 cannot be an MDV.

Now consider the case that ||d⃗1|| > 1. Then 1 < ||d⃗1|| ≤
||⃗b1||. From Corollary 24, there exists a primitive vector b⃗′1
such that d⃗T1 · b⃗′1 = 1 and ||b⃗′1|| ≤ max{1, ||d⃗1||/2}. So
||b⃗′1|| ≤ max{1, ||⃗b1||/2}.

d⃗T1 ·⃗b1 = 1 = d⃗T1 ·b⃗′1 implies that the length of the projection
of b⃗′1 on d⃗1 is equal to that of b⃗1, namely, 1/||d⃗1||. Hence b⃗′1
is also compatible with [⃗b2, . . . , b⃗n], i.e., [⃗b′1, b⃗2, . . . , b⃗n] is also
a lattice basis. Since ||b⃗′1|| < ||⃗b1||, b⃗1 cannot be an MDV.

Theorem 31. Let B be a basis of a lattice isomorphic to Zn.
If b⃗1 is MDV of [⃗b2, . . . , b⃗n] and [⃗b2, . . . , b⃗n] is MDS of b⃗1,
then ||⃗b1|| = 1.

Proof. Let B = [⃗b1, . . . , b⃗n] be a basis and D = [d⃗1, . . . , d⃗n]
be its dual. Suppose b⃗1 is the MDV of [⃗b2, . . . , b⃗n] and
[⃗b2, . . . , b⃗n] be the MDS of b⃗1.

If d⃗1 is not the MDV of [d⃗2, . . . , d⃗n], then some d⃗′1 is its
MDV. So D′ = [d⃗′1, d⃗2, d⃗3, . . . , d⃗n] is a basis of the lattice and
angle(⃗b1, d⃗′1) < angle(⃗b1, d⃗1). Let B′ = [b⃗′1, b⃗′2, . . . , b⃗′n]
be the dual of D′. Since b⃗′1 is the primitive vector perpen-
dicular to [d⃗2, . . . , d⃗n], b⃗′1 = b⃗1. So [b⃗′2, . . . , b⃗′n] is also
compatible to b⃗1. Since d⃗′1 is perpendicular to [b⃗′2, . . . , b⃗′n]
and angle(⃗b1, d⃗′1) < angle(⃗b1, d⃗1) so [⃗b2, . . . , b⃗n] cannot be
the MDS of b⃗1. That is absurd. So d⃗1 must be the MDV of
[d⃗2, . . . , d⃗n].

Suppose ||d⃗1|| ≤ ||⃗b1||. Since b⃗1 is MDV, from Lemma 30,
||⃗b1|| = 1. Hence ||d⃗1|| = 1. Reversing the roles of primal and
dual bases apply the same argument to again conclude that b⃗1
and d⃗1 are both unit vectors.

Corollary 32. If B is a basis of a lattice isomorphic to Zn

such that for all i ∈ [n], b⃗i is MDV of B \ {⃗bi} and B \ {⃗bi}
is MDS of b⃗i, then B is the orthonormal basis.

V. ON AMDV BASES

In this section we investigate the bases, B = {⃗b1, . . . , b⃗n},
in which b⃗i is the MDV of B \ {⃗bi} for each i. Such a basis
will be called an AMDV (all MDV) basis. It is easy to see
that if D is the dual of an AMDV basis, then D is an AMDS
(all MDS) basis of the dual lattice.

Corollary 33. Let L be a lattice isomorphic to Zn. Let B =
[⃗b1, . . . , b⃗n] be an AMDV basis of L and [d⃗1, . . . , d⃗n] be its
dual. Then for each i, either ||⃗bi|| = 1 or ||⃗bi|| < ||d⃗i||.

Lemma 34. {e⃗1, . . . , e⃗n} is the only Zn basis which is AMDV
and totally unimodular.

Proof. Let B = [⃗b1, . . . , b⃗n] be an AMDV basis of Zn which
is also totally unimodular. If any b⃗i is a unit vector, then B \
{⃗bi} must span Zn−1. In this case we can reduce the problem
to (n− 1) dimensions.

So to assume the contrary we assume that ||⃗bi|| > 1,∀i ∈
[n]. The inverse matrix B−1 = [c1, . . . , cn] is also a totally
unimodular matrix, so B−1 ∈ {−1, 0, 1}n×n. Without loss of
generality, we can assume that (B−1)1,1 = 1. Since Bc1 = e⃗1,
1 = ||Bc1|| = ||⃗b1+

∑n
j=2(c1)j .⃗bj ||. But ||⃗b1|| > 1 so ||⃗b1|| >

||⃗b1 +
∑n

j=2(c1)j .⃗bj ||. This means that b⃗1 is not MDV.

VI. SHORTEST VECTOR IN HYPERPLANE LATTICE

In [15], the author showed that SVP is NP-complete in ℓ∞
norm. Let L be a lattice isomorphic to Zn. In this section
we will show that SVP in L can be polynomially reduced to
SVP in hyperplane sublattice of L. This result reduces the Zn

isomorphism problem into SVP on hyperplane sublattices.

Lemma 35. Let L be a lattice isomorphic to Zn where
n ≥ 4 and b⃗ be an arbitrary vector in L. Let L1 denote
the hyperplane sublattice of L on subspace perpendicular to
b⃗. Then the shortest vector v⃗ in L1 is either a unit vector or
||v⃗|| ≤ ||⃗b||/

√
2.



Proof. To prove this claim we will work in the reference frame
in which L is Zn. Let b⃗ = (a1, a2, . . . , an). Consider the case
where ai = 0 for some i. Then e⃗i ∈ L1

Now consider the case where all the components of b⃗ are
non-zero. Let ai and aj be the two magnitude-wise smallest
components of b⃗, i.e., |ai| ≤ |aj | ≤ |ak| for all k ∈ [n] \
{i, j}. Let u⃗ = (0, . . . ,−aj , 0 . . . , 0, ai, 0, . . . ) where the i-th
component is −aj and the j-th component is ai. Clearly u⃗

is perpendicular to b⃗ so u⃗ belongs to L1. Further, ||u⃗||2 =
a2i + a2j ≤ (2/n)||⃗b||2 ≤ (1/2)||⃗b||2.

This result suggests an algorithm to compute a shortest
vector in any lattice isomorphic to Zn by iteratively computing
the shortest vector on hyperplane sublattices. Start with an
arbitrary vector, b⃗, from L. If b⃗ is a unit vector then the task
is over. Otherwise compute the hyperplane sublattice, L1, of
L perpendicular to b⃗. Compute a shortest vector b⃗1 in L1.
Then either b⃗1 is a unit vector (which is the desired result) or
||⃗b1|| ≤ ||⃗b||/

√
2. Thus b⃗1 is the new b⃗ and we repeat this step.

This algorithm requires at most 2. log2 ||⃗b|| iterations. Hence
we have the following result.

Theorem 36. SVP on any lattice isomorphic to Zn can be
solved using polynomially many calls to an oracle that solves
SVP on a hyperplane sublattice of L.

One way to solve Zn isomorphism is to solve SVP. If the
shortest vector is a unit vector s⃗1, then compute the subspace
perpendicular to s⃗1, determine a basis of the corresponding
hyperplane sublattice and recursively prove that this sublattice
is isomorphic to Zn−1. If the shortest vector is not a unit
vector, then the given lattice cannot be isomorphic to Zn.

Corollary 37. Zn isomorphism problem can be reduced to
SVP on hyperplane sublattice of a Zn-isomorphic lattice.

VII. SHORT VECTORS THAT ARE VORONOI RELEVANT

We first prove the following claim that will be used later in
the proof of the main result.

Claim 38. Let S = {s⃗1, . . . , s⃗n} be a solution to SMP of
a lattice L, i.e., it is a set of n linearly independent lattice
vectors such that ||s⃗i|| = λi(L). If w⃗ ∈ L and ||w⃗|| < λj ,
then w⃗ ∈ span(s⃗1, . . . , s⃗j−1).

Proof. We are given that ||w⃗|| < λj so w⃗ ∈ B(0, λj−ϵ) where
ϵ = (λj − ||w⃗||)/2 > 0. Since B(0, λj − ϵ) has at most j − 1
linearly independent vectors and s⃗1, . . . , s⃗j−1 is one such set,
w⃗ ∈ span(s⃗1, . . . , s⃗j−1).

An obvious corollary of Claim 38 is as follows.

Corollary 39. Let S = {s⃗1, . . . , s⃗n} and S′ = {s⃗′1, . . . , s⃗′n}
be any two solutions of SMP. If λi < λi+1, then
span(s⃗1, . . . , s⃗i) = span(s⃗′1, . . . , s⃗′i).

In [16], it is proved that for any s⃗ ∈ L and ||s⃗|| = λ1, s⃗
belongs to the set of Voronoi relevant vectors. We extend this
result in the following theorem.

Theorem 40. If S = {s⃗i, . . . , s⃗n} is a solution to SMP for a
lattice L, then S ⊆ V (L).

Proof. From theorem 17, if v⃗ ∈ L is not a Voronoi relevant

vector, then there exist w⃗ ∈ L \ {0, v⃗} such that || v⃗
2
− w⃗|| ≤

|| v⃗
2
||. We will use this criterion to prove the claim.

We first show that s⃗1 is Voronoi relevant. If s⃗1 is not Voronoi
relevant, then from the above criterion we consider two cases.

• || s⃗1
2

− w⃗|| < || s⃗1
2
|| : In this case ||s⃗1 − 2w⃗|| < ||s⃗1||

which is a contradiction because s⃗1 is the shortest vector
in L.

• ||s⃗1/2 − w⃗|| = ||s⃗1/2|| : Then w⃗, s⃗1 and 0⃗ occur on the
circumference of the circle centered at s⃗1/2 and radius
||s⃗1||/2. So vector s⃗1 forms the diameter of the circle.
Since w⃗ ̸= s⃗1, vector w⃗ forms a chord other than s⃗1, So
w⃗ must be shorter than s⃗1. This is absurd.

This implies that s⃗1 ∈ V (L). Now to argue using induction
assume that s⃗1, . . . , s⃗i−1 belong to V (L) and s⃗i /∈ V (L), for
some i. Again we consider two cases based on the criterion.

• ||s⃗i−2w⃗|| < ||s⃗i|| : From the Claim 38, s⃗i−2w⃗ belongs
to X = span(s⃗1, . . . , s⃗i−1) . Due to triangular inequality,
we have ||w⃗|| = ||w⃗ − s⃗i/2 + s⃗i/2|| < ||s⃗i||. So w⃗ ∈ X .
Combining with the fact that s⃗i − 2w⃗ ∈ X , we get that
s⃗i also belongs to X . But that is impossible because s⃗i
is linearly independent from s⃗1, . . . , s⃗i−1.

• ||s⃗i − 2w⃗|| = ||s⃗i|| : Using the argument in the second
part of the above proof we conclude that ||w⃗|| < ||s⃗i||.
So w⃗ ∈ X = span(s⃗1, . . . , s⃗i−1).
Next consider the following. Points 0⃗, s⃗i and 2w⃗ form
an isosceles triangle with 2w⃗ being the base. Therefore
w⃗ · (s⃗i − w⃗) = 0. So ||s⃗i||2 = ||s⃗i − 2w⃗||2 = ||s⃗i −
w⃗||2 + ||w⃗||2 − 2w⃗ · (s⃗i − w⃗) = ||s⃗i − w⃗||2 + ||w⃗||2. So
||s⃗i − w⃗|| < ||s⃗i||.
This implies that s⃗i − w⃗ also belongs to X . Thus we
deduce that s⃗i must also belong to X , which is absurd
because s⃗i is linearly independent from s⃗1, . . . , s⃗i−1.

Corollary 41. For any lattice L

λn(L) ≤ ||V (L)|| ≤ n3/2

2
λn(L)

Proof. The lower bound is obvious due to Theorem 40. Let
B be a shortest basis of L. Using Lemma 12, we know that
||B|| ≤

√
nλn(L)/2. Also, the norm of the shortest vector in

the coset 2L+ v⃗, where v⃗ ∈ L, is at most ||v⃗||. We know that
all possible cosets are given by 2L+Bz⃗ where z⃗ ∈ {0, 1}n.
Therefore, the norm of the shortest vector cannot be more
than the sum of the norms of the vectors of B, irrespective of
the choice of z⃗. The latter cannot be more than n.||B||. Thus
||V (L)|| ≤ n3/2λn(L)/2.

The algorithm given by Micciancio et al. [17] computes all
the Voronoi relevant vectors, then Algorithm 1 computes a
solution of SMP.



Theorem 42. Algorithm 1 computes a solution of SMP.

Proof. From Theorem 40 we know that the list of Voronoi
relevant vectors contain all the solutions of SMP. It is obvi-
ous that the algorithm will compute n linearly independent
lattice vectors. Let the sorted sequence of the vectors of
V (L) be {v⃗1, v⃗2, . . . }. Let {v⃗j1 , . . . , v⃗jn} be any arbitrary
solution of SMP. Suppose the algorithm computes the set
S = {v⃗i1 , . . . , v⃗in} where i1 < i2 < . . . in. Next we will
show that ip ≤ jp.

Assume that ip > jp. So we have iq ≤ jp <
iq+1 for some q < p. From the algorithm we know
that each of the vectors v⃗1, v⃗2, . . . , v⃗jp can be spanned by
{v⃗i1 , . . . , v⃗iq}. So span(v⃗j1 , . . . , v⃗jp) ⊆ span(v⃗i1 , . . . , v⃗iq ).
Observe that v⃗j1 , . . . , v⃗jp is a linearly independent set. Sim-
ilarly (v⃗i1 , . . . , v⃗iq ) is also linearly independent. Therefore
p ≤ q, which is a contradiction!

From Lemma 11 ||v⃗ip || ≥ λp for all p. Also from the above
result ||v⃗ip || ≤ ||v⃗jp || = λp for all p. Hence ||v⃗ip || = λp for
all p.

The number of Voronoi relevant vectors is at most 2(2n−1),
the sorting would take time Õ(2n). The number of iterations
in the while loop is O(2n) and in each iteration, the amount
of time required to check whether a vector is to be included
in the set S is polynomial. Therefore, the entire running time
of the algorithm is Õ(22n) because this is the time complexity
of Micciancio’s algorithm to compute V (L).

In [18], the authors defined a new concept of c-compact
basis as follows. For any c > 0, a basis B of a lattice L is
c-compact if

V (L) ⊆ {Bz⃗ : z⃗ ∈ Zn and ||z⃗||∞ ≤ c}

A 1-compact basis is simply called a compact basis.
Since, a compact basis B generates V (L) with coefficients

from {−1, 0, 1}, one would expect B to consist of short
vectors. But, consider the lattice Zn with the following basis

B =



1 1 21 . . . 2n−3 2n−2

0 1 1 . . . 2n−4 2n−3

0 0 1 . . . 2n−5 2n−4

...
...

...
...

...
...

0 0 0 . . . 1 1
0 0 0 . . . 0 1


This basis is compact whereas B ⊆

(
2n−1C(Zn)

)
∩ Zn

which contains vectors with exponentially large norms.

Claim 43. For any compact basis B of L, B ⊆
(
n.n! ×

2C(L)
)
∩ L. Also, ||B|| ≤ n.n!λn.

Proof. Since B is a compact basis and using theorem 6, we
have S = BY where S is any solution to SMP and Y ∈
{0,±1}n×n. This implies that B = SY−1. The entries of
Y−1 are bounded by n!, therefore each b⃗i is sum of vectors
in n!× 2C(L). Therefore, ||B|| ≤ n.n!.λn.

Input: A basis B = [⃗b1, . . . , b⃗n] for L.
Compute the set of all Voronoi relevant vector V ;
Sort V in the order of non-decreasing norm;
S := {}, i = 1;
while |S| < n do

if V [i] ̸∈ Span(S) then
S = S ∪ {V [i]};

end
i = i+ 1;

end
Return S.

Algorithm 1: Algorithm for solving SMP

REFERENCES

[1] J. C. Lagarias, H. W. Lenstra, and C.-P. Schnorr, “Korkin-zolotarev
bases and successive minima of a lattice and its reciprocal lattice,”
Combinatorica, vol. 10, no. 4, pp. 333–348, 1990.

[2] R. Kannan, “Minkowski’s convex body theorem and integer program-
ming,” Mathematics of operations research, vol. 12, no. 3, pp. 415–440,
1987.

[3] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials
with rational coefficients,” Mathematische annalen, vol. 261, no. ARTI-
CLE, pp. 515–534, 1982.

[4] I. Haviv and O. Regev, “On the lattice isomorphism problem,” in Pro-
ceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms. SIAM, 2014, pp. 391–404.
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