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Abstract. Protein crystallization is a critical yet challenging step in determining protein struc-
tures, crucial for advancing our understanding of biological mechanisms. This study intro-
duces ESMCrystal, a novel approach leveraging protein embeddings derived from the advanced
Meta ESMFold?2 architecture to predict protein crystallization. By integrating transfer learning
techniques, ESMCrystal models demonstrate enhanced predictive performance across various
datasets, highlighting the potential of deep learning in structural biology. This research not only
improves the predictability of protein crystallization but also sets the stage for broader applica-
tions of machine learning in understanding complex biological systems. The standalone source
code and models, along with the inference server are available at
https://huggingface.co/jaykmr/ESMCrystal t6_8M _v1 and
https://huggingface.co/jaykmr/ESMCrystal t12_35M _v2.

1 Introduction

The quest to determine protein structures has long been pivotal in the field of biochemistry
and molecular biology, fundamentally inspiring advancements in medicine, genetics, and various
biotechnologies. Traditionally, the determination of these structures is primarily facilitated
through X-ray crystallography. However, this method poses significant challenges, notably its
high failure rate and the substantial costs associated with producing diffraction-quality crystals.
While the success rates of obtaining such crystals range only between 2 - 10% [1], the costs
attributed to unsuccessful attempts account for more than 70% [2]] of total expenses. This ineffi-
ciency underscores an urgent need for innovative approaches to predict protein crystallization
success more accurately and efficiently.

Historically, several machine learning and statistical methods have been developed to predict
protein crystallization propensity from sequence data [3, 4]. These models including CrystalP2
[S], PPCpred [6], PredPPCrys [7], XtalPred-RF [8], TargetCrys [9], Crysalis [3], Crysf [10],
fDETECT [[11]], DeepCrystal [12], and BCrystal [13]], which span from early statistical analyses
to more complex machine learning frameworks, have primarily hinged on feature extraction
techniques to identify critical biological and physiochemical features from protein sequences.
However, these methods often require intricate feature selection and substantial computational
resources, which can be a bottleneck for scalability and practical application in both academic
and industrial settings.

Our paper presents ESMCrystal, a model that utilizes deep learning and protein embeddings
[14] to predict protein crystallization, aiming to significantly reduce the computational and
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financial costs associated with traditional methods. Our study assesses these models across
various standard datasets including DeepCrystal Test, Balanced Test, SP Test, and TR Test, em-
ploying comprehensive evaluation metrics such as confusion matrices, accuracy, precision, recall,
F1-score, PR-AUC and ROC-AUC. The results obtained not only demonstrate high accuracy
levels but also highlight the robustness of protein embeddings in enhancing the predictability of
successful protein crystallization under diverse experimental conditions.

2 Data and Methods
2.1 Datasets

We perform our experiments on publicly available datasets, specifically from BCrystal [13]
and DeepCrystal [[12] dataset. Furthermore, the training dataset was completely based on the
DeepCrystal dataset, resulting in 26,821 training samples, of which 4,420 are crystallizable and
22,401 are non-crystallizable. Out of the 26,821 samples, 5% (1342 samples) were used for the
validation dataset, picked randomly before training. Additionally, there are 1,898 test samples,
with 898 being crystallizable and 1,000 non-crystallizable.

We treat the crystallization prediction problem as a binary classification problem, distinguish-
ing diffraction-quality crystals from the rest. The positive class or label 1 denotes crystallizable
protein sequence, while the negative class or label 0 denotes non-crystallizable protein sequence.

Additionally, we use two independent test sets for further validation and comparison. These
datasets, SP final (SwissProt) and TR final (Tremble) from [10], contain sequences with {25%
sequence similarity with the training set. We also, use a fairly balanced test set from [12],
consisting of 891 crystallizable and 896 non-crystallizable proteins for evaluation.

In the SP final dataset, there are 148 proteins belonging to the positive class, while the
remaining 89 sequences are non-crystallizable. In the TR final dataset, there are 374 crystallizable
proteins and 638 proteins belonging to the negative class.

Dataset Total Sequences Crystallizable Non-crystallizable
DeepCrystal Train 26281 4420 22401
DeepCrystal Test 1898 898 1000
Balanced Test 1787 891 896
SP Test 237 148 89
TR Test 1012 374 638

Table 1: Dataset Summary. Details of Datasets Used in the Study.

These datasets contain a diverse range of protein sequences annotated based on their crystal-
lization outcome. This diversity is crucial for testing the robustness and generalizability of our
prediction models across different experimental scenarios and protein types.

2.2 Training Procedure

The models were trained using a transfer learning approach, starting with pre-trained em-
beddings from the ESMFold2 architecture [[15], which were then adapted to the specific task
of protein crystallization prediction. This method leverages the general protein structure under-
standing of ESMFold2, fine-tuning it further to predict crystallization outcomes from protein
sequences.

2.3 Models
We trained two state-of-the-art machine learning models based on the Meta ESMFold archi-
tecture, fine-tuning it specifically for protein crystallization prediction:
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Figure 1: Transfer Learning Architecture for Protein Crystallization Prediction. This diagram illustrates the
transfer learning process utilizing the ESMFold2 base model to predict protein crystallization. Starting with an input
protein sequence, the architecture employs the foundational layers of Meta’s ESMFold2, which are fine-tuned with
specific protein crystallization datasets. The predictive model outputs two labels: *Non-crystallizable’ (Label 0)
and ’Crystallizable’ (Label 1), demonstrating an application of advanced machine learning techniques in structural
biology.

1. ESMCrystal_t6_8M_v1: This smaller model is finetuned on the esm2_t6_8M_URS50D data,
with 6 hidden layers and 8 million parameters. The model size is approximately 31.4MB.
It is likely faster to train and requires less computational resources but may capture less
complex patterns compared to the larger model.

2. ESMCrystal_t12_35M_v2: This larger and more complex model is fine-tuned on
esm2_t12_35M_URS0D, featuring 12 hidden layers and 35 million parameters, with a
total size of approximately 136MB. Since it has more hidden layers, it is more capable of
capturing complex patterns in the protein sequence.

The dimensionality of the hidden states in smaller model is set to 320 while in the larger
model is set to 480, which determines the size of the vector representations learned by the model.
Within each transformer block, the dimensionality of the intermediate layer in the feedforward
network is set to 1280 in the smaller model and 1920 in the larger model, which processes the
output of the attention mechanism. These configurations are used as default from the ESMFold2
architecture.

Both models have 20 attention heads, which means they are equally capable of parallelizing
the process of attending to different parts of the input sequence. This feature is particularly
useful in tasks like protein sequence analysis where different segments of the sequence might
have various functional implications.

We disabled dropout for attention probabilities and hidden layers in both the models as model
robustness is not much of an issue due to less variation in protein sequence data. We use “rotary”
position embeddings, ideal for maintaining relative positional information, crucial in protein
sequences. We also, enable token dropout, which helps improve generalization by randomly
dropping tokens during training.

2.4 Evaluation Metrics

Confusion matrices were generated for a thorough assessment of true positives (TP), false
positives (FP), false negatives (FN), and true negatives (TN) across all test datasets. To assess the
performance of our models, several metrics were generated and compared based on confusion
metrics, such as precision (PRE), recall (REC), F-score (F), accuracy (ACC), Matthews Correla-
tion Coefficient (MCC), negative predictive value (NPV), receiver operating characteristic - area
under curve (ROC), and Precision-Recall Area Under Curve (PR-AUC). A detailed definition of
these sets and the importance of each of these evaluation metrics are provided in [[16} 12, [17].

Based on the testing across the specified datasets, each model’s performance was documented,
focusing on their predictive accuracy.
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ROC-AUC and PR-AUC curves were plotted for both models across all tests, providing visual
insights into model performance and the trade-offs between sensitivity and specificity that each

model exhibits.
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Figure 2: ROC curve for ESMCrystal t6_8M_v1.
This diagram plots the Receiver Operating Char-
acteristic curve for ESMCrystal t6_8M_v1 on the
different test datasets.
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Figure 4: PR curve for ESMCrystal_t6_8M _v1.
This diagram plots the Precision-Recall curve for
ESMCrystal_t6_8M_v1 on the different test datasets.

3 Results
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Figure 3: ROC curve for ESMCrys-
tal t12 35M _v2. This diagram plots the
Receiver Operating Characteristic curve for
ESMCrystal t12_ 35M_v2 on the different test
datasets.
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Figure 5: PR curve for ESMCrystal_t12_35M_v2.
This diagram plots the Precision-Recall curve
for ESMCrystal_t12_35M_v2 on the different test
datasets.

The experimental results obtained from employing the ESMCrystal t6_8M_v1 and ESM-
Crystal _t12_35M_v2 models on various test datasets have provided significant insights into the
efficacy of using advanced machine learning techniques for predicting protein crystallization.
Below, we detail the performance outcomes and findings for each of these models across our

testing environments.
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Dataset TP FP FN TN Precision Recall F1 Ace ROC MCC NPV

DeepCrystal 532 362 34 966 0.5951 0.9399 0.7288 0.7909 0.9467 0.6119 0.9660
Balanced 531 360 31 865 0.5960 0.9448 0.7309 0.7812 0.9396 0.6045 0.9654
SP 80 68 4 85 0.5405 0.9524 0.6897 0.6962 0.9328 0.5017 0.9551
TR 207 167 16 622 0.5535 0.9283 0.6935 0.8192 0.9562 0.6153 0.9749

Table 2: Performance of ESMCrystal t6_8M _v1. Performance of the smaller model on different test datasets

3.1 ESMCrystal t6_8M _vI Results

The model’s performance underscored its potential to predict protein crystallization across
different datasets effectively, particularly emphasized by its higher performance in more homo-
geneous test environments (TR Test).

3.2 ESMCrystal t12_35M _v2 Results

Dataset TP FP FN TN Precision Recall F1 Acc ROC MCC NPV

DeepCrystal 579 319 30 970 0.6448 0.9507 0.7684 0.8161 0.9403 0.6575 0.9700
Balanced 573 318 30 866 0.6431 0.9502 0.7671 0.8053 0.9396 0.6446 0.9665
SP Test 97 51 5 &4 0.6554 0.9510 0.7760 0.7637 0.9293 0.5861 0.9438
TR Test 225 149 14 624 0.6016 0.9414 0.7341 0.8389 0.9562 0.6588 0.9781

Table 3: Performance of ESMCrystal_t12_35M_v2. Performance of the larger model on different test datasets

3.3 Observations

The ESMCrystal t12_35M_v2 model illustrated a noticeable improvement over the 6-layer
model, particularly in handling the dataset complexities more effectively, which is attributed to
its more hidden layers and more parameters, i.e. deeper learning structure.

The comparison between ESMCrystal_t6_8M_v1 and ESMCrystal_t12_35M_v2 models clearly
shows the advantage of a deeper neural network architecture, as evidenced by the consistently
higher performance metrics across all test datasets by the latter.

Both models have shown high predictive reliability, emphasized by high ROC-AUC scores
across datasets. The ESMCrystal_t12_35M_v2 model generally reported better precision and
recall rates, especially evident in the TR Test dataset.

Despite the varied nature of the test datasets, the robustness of ESMFold-based models under
different experimental conditions was commendable. It suggests that transfer learning from a
pre-trained model on a broad dataset allows effective generalization across divergent protein
sequences.

3.4 Comparative Analysis

The performance of ESMCrystal models was compared against several state-of-the-art
sequence-based protein crystallization predictors, including BCrystal, DeepCrystal, Crysf,
Crysalis I and II, fDETECT, TargetCrys, XtalPred-RF, PPCPred and CrystalP2. The com-
parison with Crysf was conducted only on the SP and TR datasets as Crysf required Uniprot ids
as input, which were available only for these two datasets.

These results underline the significant potential of using deep learning techniques, specifi-
cally those harnessing robust pre-trained models like Meta’s ESMFold, in advancing protein
crystallization predictions. Furthermore, the study advocates for additional explorations into
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Models Accuracy MCC  AUC F-score Recall Precision NPV
PPCpred 0.672  0.359 0.754 0.616  0.528 0.740  0.635
fDETECT 0.646  0.355 0.778 0.504  0.360 0.840 0.593
Crysalis | 0.777  0.556  0.865 0.767  0.738 0.799  0.758
Crysalis 1T 0.804 0.610 0.888 0.796  0.767 0.828 0.784
XtalPred-RF 0.650 0.301  0.710 0.654 0.663 0.645  0.655
TargetCrys 0.627  0.255 0.637 0.637  0.656 0.619  0.593
CrystalP2 0.585 0.177  0.608 0.627  0.700 0.568 0.613
DeepCrystal 0.828  0.658 0.903 0.822  0.795 0.851  0.809
BCrystal 0.954 0.908 0.981 0.954 0.970 0.939  0.969
ESMCrystal t6_8M_v1 0.7812 0.6045 0.9396 0.7309 0.9448 0.5960 0.9654

ESMCrystal_t12_35M_v2 0.8053 0.6446 0.9396 0.7671 0.9502 0.6431 0.9665

Table 4: Comparision of ESMCrystal models on balanced dataset. ESMCrystal performs comparably with other
protein crystallization predictors on the balanced test data

Models Accuracy MCC  AUC F-score Recall Precision NPV
Crysf 0.700 0.426 0.811 0.727  0.641 0.840 0.572
PPCpred 0.666  0.403 0.784 0.675  0.554 0.863  0.535
fDETECT 0.616  0.381  0.837 0.580  0.425 0913 0.49%4
Crysalis I 0.725 0.448 0.835 0.763  0.709 0.826  0.609
Crysalis IT 0.751  0.505 0.851 0.783  0.722 0.856  0.633
XtalPred-RF 0451 0.149 0.449 0.548  0.553 0.564  0.288
TargetCrys 0.611 0.223  0.641 0.659  0.601 0.729  0.486
CrystalP2 0.658  0.257  0.696 0.734  0.756 0.713  0.550
DeepCrystal 0.759 0.530 0.874 0.788 0.716 0.876  0.637
BCrystal 0.894 0.774  0.951 0919  0.966 0.877  0.932
ESMCrystal t6_8M _v1 0.6962 0.5017 0.9328 0.6897 0.9524 0.5405 0.9551

ESMCrystal_t12_35M_v2 0.7637 0.5861 0.9293  0.7760 0.9510 0.6554 0.9438

Table 5: Comparision of ESMCrystal models on SP dataset. ESMCrystal performs comparably with other
protein crystallization predictors on the SP test data

refining these models, with particular attention on enhancing their ability to manage datasets
marked by high variability and complexity.

4 Conclusion

This study highlights the potent capabilities of advanced machine learning, specifically
utilizing Meta’s ESMFold [18, [15] architecture, to predict protein crystallization from sequence
data. The ESMCrystal models, especially the ESMCrystal t12_35M_v2, have demonstrated
exceptional accuracy in forecasting crystallization potential, showcasing the adaptability and
robustness of deep learning in tackling complex biological problems. These results validate the
effectiveness of these sophisticated models in structural biology and suggest broader applications
for these techniques.

The superior performance of the ESMCrystal _t12_35M_v2 model, owing to its deeper ar-
chitecture and extensive training, underscores the potential for further advancements in this
technology. This research opens pathways for refining these models using even Alphafold [19],
enhancing their accuracy and reliability. Moreover, the successful application of transfer learning
methodologies within this study advocates for their expanded use across the life sciences, reduc-
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Models Accuracy MCC  AUC F-score Recall Precision NPV
Crysf 0.841 0.663  0.887 0.747  0.631 0918 0.817
PPCpred 0.748 0.448 0.819 0.640  0.606 0.677  0.782
fDETECT 0.750 0.447  0.847 0.548 0.411 0.823  0.733
Crysalis I 0.787 0.546  0.870 0.715 0.724 0.707  0.836
Crysalis 11 0.816  0.603  0.892 0.748  0.740 0.756  0.849
XtalPred-RF 0.451 0.040 0.525 0452  0.537 0.390 0.651
TargetCrys 0.634 0.325 0.693 0.614  0.788 0.503  0.733
CrystalP2 0.581 0.241 0.673 0.577  0.775 0460  0.780
DeepCrystal 0.841  0.657 0.910 0.781  0.762 0.800  0.864
BCrystal 0.963 0.922 0.988 0951  0.970 0.933  0.982
ESMCrystal t6_8M _v1 0.8192 0.6153 0.9562 0.6935 0.9283 0.5535 0.9749

ESMCrystal_t12_35M_v2 0.8389 0.6588 0.9562 0.7341 0.9414 0.6016 0.9781

Table 6: Comparision of ESMCrystal models on TR dataset. ESMCrystal performs comparably with other
protein crystallization predictors on the TR test data

ing the need for extensive manual intervention and facilitating more efficient, high-throughput
predictions.

In conclusion, the findings from this study set a solid foundation for the use of deep learning
in predicting protein crystallization, emphasizing the transformative impact of Al and machine
learning in structural biology. As we continue to innovate and refine these computational strate-
gies, integrating them with broader biological data, we pave the way for significant advancements
in understanding protein structures and their complex functions. This ongoing evolution in com-
putational biology promises to accelerate scientific discoveries, pushing the boundaries of our
knowledge and capabilities.
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