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1 Introduction 

The concept of “offset” is used to represent and quantify the phase difference, or synchronicity 
between two or more finite or infinite integer sequences. Another term, which could be used, 
would be “shift” to maintain the same analogy that is used in programming language commands 
like “shift string”. Even though, whatever the finite sequence of elements that will represent a 
real given sequence (finite or infinite), its elements may or may not be shifted from any index as 
a reference, and yet retain the same properties as the recurrence equation. 

The term offset is being used here because OEIS adopted this term. 
In these studies, we will focus on the offset in infinite sequences in the form of polynomials.  
Notice that any infinite integer polynomial sequence has no start and no end. The only start 

and end are our finite representations of the sequence. This justifies why the recurrence equation 
or modular arithmetic work in any segment of the sequence. In these studies, the segment of a 
sequence is a sequence representation in a finite string. We may have infinite many segments of 
the same infinite sequence. Also, these representations may be shifted one from another. In cases 
where there is a shift between different segments, then the offset concept will be applied. 

Every finite representation of an infinite polynomial sequence is made by the use of an index. 
The simplest possible index count is always done using Tally counting. Tally counting is the 
simplest and most intuitive system to represent the Natural numbers {1, 2, 3, 4, 5, 6…} used for 
counting. We also need to make it clear that the count of the index using Tally counting has a 
starting point. The starting point in Tally counting is the index Zero.  
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Thus, we can admit that all finite representations of a sequence have a starting point. To this 
starting point, we are giving the name "empty index" similar to the concepts empty sum and empty 
product. 

The concept of offset is present in all equations 𝑌[𝑦] that produce Integers as a function of 
variable 𝑦 (index). The Integer polynomial sequence where we cannot detect offset variation is 
the type 𝑌[𝑦] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. But, any expression where 𝑌[𝑦] varies as a function of 𝑦, offsetting 
is possible. This is because in any expression we can substitute the index 𝑦 by a new index ℎ =
𝑦 + 𝑓, or, more comprehensively, substitute 𝑦 by ℎ = 𝐻[𝑓] (a function of offset 𝑓) which can be 
a linear or any other desired function. 

A very simple example of offset concept is how we usually define positive Even numbers. We 
say that 𝑌[𝑦]  is a positive Even if 𝑌[𝑦] = 2𝑦. Very simple like that. And also, we usually want 
to make the expressions as simple as possible. We could also say that 𝑌[𝑦] is positive Even if 
𝑌[𝑦] = 2𝑦 + 2 or 𝑌[𝑦] = 2𝑦 − 6 or 𝑌[𝑦] = 2𝑦 + 1234567890 or 𝑌[𝑦] = 2𝑦 + 2𝑘 + 2𝑡, etc. 
Mathematically all are perfectly correct. As we can choose for simplicity, we always choose to 
say only 𝑌[𝑦] = 2𝑦. 

What about positive Odd numbers? Would it be 𝑌[𝑦] = 2𝑦 + 1 or 𝑌[𝑦] = 2𝑦 − 1? Or would 
it still be 𝑌[𝑦] = 2𝑦 + 3 or 𝑌[𝑦] = 2𝑦 − 3? Which one to choose? Although all of the forms are 
mathematically correct to express Odd numbers, here too, simplicity is always taken into 
consideration. We always choose 𝑌[𝑦] = 2𝑦 − 1 because of the simple form of indexes counting 
in Tally counting. Thus, we will have positive Odd numbers for Tally indexes 𝑦 = 1,2,3,4,5,6, . .. 
only in the equation 𝑌[𝑦] = 2𝑦 − 1. In the equation 𝑌[𝑦] = 2𝑦 + 1, when we count the indexes 
according to Tally counting, the first odd will be 3 and odd 1 will not have been considered 
because it has an offset from Tally counting. Thus, we consider 𝑌[𝑦] = 2𝑦 + 1 as an offset of 
𝑌[𝑦] = 2𝑦 − 1. In this example, only 𝑌[𝑦] = 2𝑦 − 1 covers all positive Odd numbers generated 
by the Tally count from the empty index. 

This means that if we had to define a single and absolute equation for the Odd numbers, for 
the sake of simplicity and use of universal Tally counting, we would choose the option 𝑌[𝑦] =
2𝑦 − 1. This would then be our zero offset equation and all other possible ones would be offset 
or shifted relative to this reference. 

Offset means that the same sequence of integers in the form of a polynomial can be represented 
by infinite many equations. It is like expressions, fractions, angles, etc. We can write them in the 
simplest form or any other infinitely many not simplified form. 

From these initial ideas, we will expand these concepts to all infinite polynomial sequences. 
In present study, we will start with the quadratic sequences. In the future study, we will expand 
to any other function. 

1.1 Previous conventions: 

Because our tables will show vertical sequences where the indexes will be on vertical and because 
on vertical, we have Y-axis in the XY-plane, so the sequences integers elements have to appear 
in X-axis as a function of the Y-axis. Due to that, in all these studies we will represent any 
polynomial equation as being in the function of 𝑦, or just function 𝑌[𝑦], or 𝑥 = 𝑌[𝑦]. 
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1.2 Notation for Polynomials In these studies 

Generically we will denote any polynomial element as being 𝑌[𝑦]. When we want to draw the 
polynomial in the XY-plane we will make 𝑥 in the function of 𝑦. In the cartesian plane (square 
lattice grid) we can consider 𝑥 = 𝑌[𝑦]. In different grid other than cartesian plane 𝑥 ≠ 𝑌[𝑦]. 

When we want to distinguish the 𝑑th-degree of the polynomial, we will notate 𝑌𝑑[𝑦] or 𝑥 =
𝑌𝑑[𝑦]. 

When we want to make a 𝑝th-power operation on an 𝑑th-degree polynomial, we will 
notate:	(𝑌𝑑[𝑦])!. 

• Constant (polynomial degree 0) will be noted as 

𝑌0[𝑦] = 𝑐 

• Linear (polynomial 1st-degree) will be noted as 

𝑌1[𝑦] = 𝑏𝑦 + 𝑐 

• Quadratic (polynomial 2nd-degree) will be noted as 

𝑌2[𝑦] = 𝑎𝑦" + 𝑏𝑦 + 𝑐 

• Cubic (polynomial 3rd-degree) will be noted as 

𝑌3[𝑦] = 𝑎#𝑦# + 𝑎𝑦" + 𝑏𝑦 + 𝑐 

• Quartic (polynomial  4th-degree) will be noted as 

𝑌4[𝑦] = 𝑎$𝑦$ + 𝑎#𝑦# + 𝑎𝑦" + 𝑏𝑦 + 𝑐 

• Quintic (polynomial 5th-degree) will be noted as 

𝑌5[𝑦] = 𝑎%𝑦% + 𝑎$𝑦$ + 𝑎#𝑦# + 𝑎𝑦" + 𝑏𝑦 + 𝑐 
And so on for Sextic, Septic, Octic, Nonic, Decic, etc. 
Generic equation of polynomial 𝑑th-degree: 

𝑌𝑑[𝑦] = 𝑎&𝑦& + 𝑎&'(𝑦&'( +⋯+ 𝑎$𝑦$ + 𝑎#𝑦# + 𝑎𝑦" + 𝑏𝑦 + 𝑐 
Generically, to be used in any recurrence equation, we will adopt these equalities notation: 

𝑌𝑑[−3] = 𝑒 
𝑌𝑑[−2] = 𝑓 
𝑌𝑑[−1] = 𝑔 = 𝑥( 
𝑌𝑑[0] = ℎ = 𝑥" 
𝑌𝑑[1] = 𝑖 = 𝑥# 
𝑌𝑑[2] = 𝑗 
𝑌𝑑[3] = 𝑘 
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1.3 Notation for index direction in any polynomial sequence (to be used in 
recurrence equations) 

Any polynomial Integer sequence has 2 directions. This is the reason any polynomial has 2 
recurrence equations. So, if the direction is given by 

𝑌𝑑[𝑦] ≡ (… , 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗, 𝑘, … ) =\(… , 𝑘, 𝑗, 𝑖, ℎ, 𝑔, 𝑓, 𝑒, … )\ 
then, the reversal direction will be given by 

\𝑌𝑑[𝑦]\≡ (… , 𝑘, 𝑗, 𝑖, ℎ, 𝑔, 𝑓, 𝑒, … ) =\(… , 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗, 𝑘, … )\ 

1.4 Inflection point vs. vertex nomenclature 

Because of the definition of the inflection point is in differential calculus “an inflection point, 
point of inflection, flex, or inflection (British English: inflexion[citation needed]) is a point on a 
continuous plane curve at which the curve changes from being concave (concave downward) to 
convex (concave upward), or vice versa”; and 

Because of the definition of the vertex in geometry as being “In geometry, a vertex (plural: 
vertices or vertexes) is a point where two or more curves, lines, or edges meet. As a consequence 
of this definition, the point where two lines meet to form an angle and the corners of polygons 
and polyhedra are vertices”; 

Because “In the geometry of planar curves, a vertex is a point of where the first derivative of 
curvature is zero”; 

And like all studies between polynomials, no feature or phenomenon indicates that there is a 
difference in behavior between quadratic and other polynomial orders, then, there is no reason to 
differentiate the inflection point phenomena in quadratics from other polynomials. So, there is no 
reason to have different names.  

In these studies, we will refer to this phenomenon in our tables, text and figures as being only 
inflection point, even in quadratics which usually has the usual vertex name. Moreover, higher 
degrees of polynomials then quadratics, besides inflection point may have two or more turning 
points. But, the common phenomenon among all polynomials is the inflection point. 

The definition of a single Inflection Point nomenclature in common to all polynomials 
becomes important when we compare the behavior of the offset at all degrees. 

In these studies, the coordinates of an inflection point in XY-plane will be given by 𝑥)! and 
𝑦)!. Also, we will denote an inflection point as being 𝑖𝑝(𝑥)!, 𝑦)!). 
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2 Infinitely many equations, infinitely many parabolas, only one 
sequence 

See the behavior represented in the 3 quadratic sequences below of the form 𝑌[𝑦] = 𝑎𝑦" + 𝑏𝑦 +
𝑐. The first set represents the sequence A165900 Values of Fibonacci polynomial, the second 
represents the sequence A002378 Oblong numbers, and the third represents A002061 Central 
polygonal numbers. 

 
Table 1. The sequences A165900 Fibonacci, A002378 Oblong, and A002061 Central polygonal 
numbers in offset range −3 ≤ 𝑓 ≤ 3. Note: to follow the XY plane, the index 𝑦 in the table is 

growing bottom-up. 

Perceive in each set occur a shift (phase/offset) of the sequence as long as we change the 
starting element from the starting element 𝑌[0] at index 𝑦 = 0.  

This means that, in each table, from each quadratic sequence to the next we are changing the 
𝑦)! (coordinate 𝑦 of the inflection point) following a staircase function by a unit step. Note that 
we maintain the same value for 𝑥)! (coordinate 𝑥 of the inflection point).  

In any case, for each set, the sequence of the elements will always be kept. There is no risk to 
occur inversions, missing, or scramble between elements. Always the result of the sequence of 
the elements is the same. The reason is only because of the proper adjustments in the coefficients 
(𝑎, 𝑏, 𝑐) that is the subject of the present study. 
  

-1,3 -1,3 -1,3 -1,3 -1,3 -1,3 -1,3 -0,3 -0,3 -0,3 -0,3 -0,3 -0,3 -0,3 0,8 0,8 0,8 0,8 0,8 0,8 0,8
-1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-2,5 -1,5 -0,5 0,5 1,5 2,5 3,5 -2,5 -1,5 -0,5 0,5 1,5 2,5 3,5 -2,5 -1,5 -0,5 0,5 1,5 2,5 3,5
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 3 1 -1 -3 -5 -7 5 3 1 -1 -3 -5 -7 5 3 1 -1 -3 -5 -7
5 1 -1 -1 1 5 11 6 2 0 0 2 6 12 7 3 1 1 3 7 13

10 155 131 109 89 71 55 41 10 156 132 110 90 72 56 42 10 157 133 111 91 73 57 43
9 131 109 89 71 55 41 29 9 132 110 90 72 56 42 30 9 133 111 91 73 57 43 31
8 109 89 71 55 41 29 19 8 110 90 72 56 42 30 20 8 111 91 73 57 43 31 21
7 89 71 55 41 29 19 11 7 90 72 56 42 30 20 12 7 91 73 57 43 31 21 13
6 71 55 41 29 19 11 5 6 72 56 42 30 20 12 6 6 73 57 43 31 21 13 7
5 55 41 29 19 11 5 1 5 56 42 30 20 12 6 2 5 57 43 31 21 13 7 3
4 41 29 19 11 5 1 -1 4 42 30 20 12 6 2 0 4 43 31 21 13 7 3 1
3 29 19 11 5 1 -1 -1 3 30 20 12 6 2 0 0 3 31 21 13 7 3 1 1
2 19 11 5 1 -1 -1 1 2 20 12 6 2 0 0 2 2 21 13 7 3 1 1 3

Y[1] 1 11 5 1 -1 -1 1 5 Y[1] 1 12 6 2 0 0 2 6 Y[1] 1 13 7 3 1 1 3 7
Y[0] 0 5 1 -1 -1 1 5 11 Y[0] 0 6 2 0 0 2 6 12 Y[0] 0 7 3 1 1 3 7 13
Y[-1] -1 1 -1 -1 1 5 11 19 Y[-1] -1 2 0 0 2 6 12 20 Y[-1] -1 3 1 1 3 7 13 21

-2 -1 -1 1 5 11 19 29 -2 0 0 2 6 12 20 30 -2 1 1 3 7 13 21 31
-3 -1 1 5 11 19 29 41 -3 0 2 6 12 20 30 42 -3 1 3 7 13 21 31 43
-4 1 5 11 19 29 41 55 -4 2 6 12 20 30 42 56 -4 3 7 13 21 31 43 57
-5 5 11 19 29 41 55 71 -5 6 12 20 30 42 56 72 -5 7 13 21 31 43 57 73
-6 11 19 29 41 55 71 89 -6 12 20 30 42 56 72 90 -6 13 21 31 43 57 73 91
-7 19 29 41 55 71 89 109 -7 20 30 42 56 72 90 110 -7 21 31 43 57 73 91 111
-8 29 41 55 71 89 109 131 -8 30 42 56 72 90 110 132 -8 31 43 57 73 91 111 133
-9 41 55 71 89 109 131 155 -9 42 56 72 90 110 132 156 -9 43 57 73 91 111 133 157

-10 55 71 89 109 131 155 181 -10 56 72 90 110 132 156 182 -10 57 73 91 111 133 157 183

c c c

a a a
b b b

y_ip
ff

Latus Rectum

A165900 Values of Fibonacci polynomial A002378 Oblong numbers A002061 Central polygonal numbers

x_focus x_focus
x_ipx_ip

x_focus
x_ip

y_ip
f

y_ip
Latus Rectum Latus Rectum
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3 The behavior of sequences in the XY plane  

Following the table sets, as an illustration, see in the figure below how the sequence A002378 
Oblong numbers behave in XY plane in different offsets from −4 ≤ 𝑓 ≤ +4, and its respective 
equations: 

 
Figure 1. Sequence A002378 Oblong numbers in different offsets in the XY plane 

The other two quadratic sequences A165900 Values of Fibonacci polynomial and A002061 
Central polygonal numbers are the same as A002378 Oblong numbers, but one shifted one unit 
to the negative side of the X-axis and the other shifted one unit to the positive side of the X-axis, 
respectively.  

It is clear that in all cases there is no right or wrong choice in which parabola or quadratic 
equation we have to choose to get the integers sequence desired. For each table set, all parabolas 
and all equations are correct and generate the same sequence of integers. This happens because 
as far as we advance the index y, all equations generate the same sequence of elements in the X-
axis. 

The big difference between them is in the simplicity of the equation. Simplicity in writing and 
working with. After all, it becomes much easier to work with simplified fractions, small 
expressions, small numbers, small angles, than large. 
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4 The core concept of this study 

When we have 3 elements (𝑌[𝑦(], 𝑌[𝑦"], 𝑌[𝑦#])	defining completely a quadratic sequence, we 
mean that each of them is the 𝑌[𝑦] result of the equation 𝑌[𝑦] = 𝑎𝑦" + 𝑏𝑦 + 𝑐.  
where,  

• 𝑌[𝑦]	is the function result representing the sequence of the elements,  
• (𝑎, 𝑏, 𝑐) are the fixed coefficients, and  
• 𝑦 is the variable index as an Integer staircase function with constant step 1. 

In this case, 𝑌[𝑦*]is the resulting value for each value of 𝑦*. In these studies, 𝑦 or 𝑦* will be 
called the index. For each index 𝑦, we can calculate the value 𝑌[𝑦] of the element of a quadratic.  

Therefore, when we talk about a sequence of 3 elements producing a quadratic, we have 
defined perfectly the curve of a parabola in the XY plane. We mean that the 3 elements are 
generated for a sequence of 3 integers values of the index 𝑦. In other words, we have a sequence 
of 3 elements of the quadratic (𝑌[𝑦(], 𝑌[𝑦"], 𝑌[𝑦#]) where each of them was obtained by 3 
different indexes (𝑦(, 𝑦", 𝑦#): 

𝑌[𝑦(] = 𝑎𝑦(" + 𝑏𝑦( + 𝑐 
𝑌[𝑦(] = 𝑎𝑦"" + 𝑏𝑦" + 𝑐 
𝑌[𝑦(] = 𝑎𝑦#" + 𝑏𝑦# + 𝑐	

If (𝑌[𝑦(], 𝑌[𝑦"], 𝑌[𝑦#]) are sequential elements, then 𝑦(, 𝑦", 𝑦# are sequential indexes. 
Now, to be simpler, we usually take sequential indexes as consecutive integer indexes. So, for 

consecutive integer indexes 𝑦(, 𝑦", 𝑦#, we have: 
	𝑦# = 𝑦" + 1 = 𝑦( + 2	 

Now, considering generically, we have an index 𝑦* to obtain 𝑌[𝑦*] = 𝑎𝑦*" + 𝑏𝑦* + 𝑐: 
… 
𝑓𝑜𝑟	𝑦 = 3, 𝑡ℎ𝑒𝑛	𝑌[3] = 9𝑎 + 3𝑏 + 𝑐	
𝑓𝑜𝑟	𝑦 = 2, 𝑡ℎ𝑒𝑛	𝑌[2] = 4𝑎 + 2𝑏 + 𝑐	
𝑓𝑜𝑟	𝑦 = 1, 𝑡ℎ𝑒𝑛	𝑌[1] = 𝑎 + 𝑏 + 𝑐	
𝑓𝑜𝑟	𝑦 = 0, 𝑡ℎ𝑒𝑛	𝑌[0] = 𝑐 
𝑓𝑜𝑟	𝑦 = −1, 𝑡ℎ𝑒𝑛	𝑌[−1] = 𝑎 − 𝑏 + 𝑐	
𝑓𝑜𝑟	𝑦 = −2, 𝑡ℎ𝑒𝑛	𝑌[−2] = 4𝑎 − 2𝑏 + 𝑐 
𝑓𝑜𝑟	𝑦 = −3, 𝑡ℎ𝑒𝑛	𝑌[−3] = 9𝑎 − 3𝑏 + 𝑐	
… 

Here, perceive that we do not need necessarily 3 consecutive indexes generating 3 consecutive 
elements to find the 3 coefficients (𝑎, 𝑏, 𝑐). Any combination of 3 equations will be enough to 
find the 3 coefficients (𝑎, 𝑏, 𝑐). But, to be simpler, we will work with 3 consecutive indexes. 
Likewise, in a straight line: any 2 elements can define it exactly. It will be simpler to use 2 
consecutive Integer elements. 

Now, the question is: which 3 consecutive indexes should we take from infinite many 
possibilities to be simpler? Is there a setting that is simplest than all the others? Should it be 
simpler to use indexes (1,2,3) or indexes (0,1,2) or another set? 
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5 Analyzing the alternatives 

If we consider only the 7 equations above listed as examples and keep the simpler approach using 
sequential consecutive indexes, we can choose any set of 3 equations from the 5 possibilities 
below: 

• Set 1 of 5: 
o 𝑓𝑜𝑟	𝑦# = 3, 𝑡ℎ𝑒𝑛	𝑌[3] = 9𝑎 + 3𝑏 + 𝑐 
o 𝑓𝑜𝑟	𝑦" = 2, 𝑡ℎ𝑒𝑛	𝑌[2] = 4𝑎 + 2𝑏 + 𝑐	
o 𝑓𝑜𝑟	𝑦( = 1, 𝑡ℎ𝑒𝑛	𝑌[1] = 𝑎 + 𝑏 + 𝑐	

• Set 2 of 5: 
o 𝑓𝑜𝑟	𝑦# = 2, 𝑡ℎ𝑒𝑛	𝑌[2] = 4𝑎 + 2𝑏 + 𝑐	
o 𝑓𝑜𝑟	𝑦" = 1, 𝑡ℎ𝑒𝑛	𝑌[1] = 𝑎 + 𝑏 + 𝑐	
o 𝑓𝑜𝑟	𝑦( = 0, 𝑡ℎ𝑒𝑛	𝑌[0] = 𝑐	

• Set 3 of 5: 
o 𝑓𝑜𝑟	𝑦# = 1, 𝑡ℎ𝑒𝑛	𝑌[1] = 𝑎 + 𝑏 + 𝑐	
o 𝑓𝑜𝑟	𝑦" = 0, 𝑡ℎ𝑒𝑛	𝑌[0] = 𝑐	
o 𝑓𝑜𝑟	𝑦( = −1, 𝑡ℎ𝑒𝑛	𝑌[−1] = 𝑎 − 𝑏 + 𝑐	

• Set 4 of 5: 
o 𝑓𝑜𝑟	𝑦# = 0, 𝑡ℎ𝑒𝑛	𝑌[0] = 𝑐	
o 𝑓𝑜𝑟	𝑦" = −1, 𝑡ℎ𝑒𝑛	𝑌[−1] = 𝑎 − 𝑏 + 𝑐	
o 𝑓𝑜𝑟	𝑦( = −2, 𝑡ℎ𝑒𝑛	𝑌[−2] = 4𝑎 − 2𝑏 + 𝑐	

• Set 5 of 5: 
o 𝑓𝑜𝑟	𝑦# = −1, 𝑡ℎ𝑒𝑛	𝑌[−1] = 𝑎 − 𝑏 + 𝑐 
o 𝑓𝑜𝑟	𝑦" = −2, 𝑡ℎ𝑒𝑛	𝑌[−2] = 4𝑎 − 2𝑏 + 𝑐 
o 𝑓𝑜𝑟	𝑦( = −3, 𝑡ℎ𝑒𝑛	𝑌[−3] = 9𝑎 − 3𝑏 + 𝑐 

Because of Tally counting, always the first index will be 𝑦(, the second index will be 𝑦" and 
the last index will be 𝑦#. 

By convention, we'll refer from the first to the last index from the bottom up to remember the 
direction of the Y-axis in the usual XY plane. 

Note that, each set will produce different coefficients (𝑏, 𝑐) which will result in different 
quadratic equations. 

Each set of consecutive indexes (𝑦(, 𝑦", 𝑦#) will generate 3 different consecutive elements 
(𝑌[𝑦(], 𝑌[𝑦"], 𝑌[𝑦#]) of the same quadratic integer sequence. But, because all different 
consecutive elements generate different quadratic equations, then this will be reflected as a 
different quadratic curve (parabola) in the plane XY. The result will produce the same sequence 
of elements 𝑌[𝑦*] shifted one step (one element or one index) from the next. This is the principle 
of offset. 
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5.1 Set 1 of 5: 

If we look at Robert Sacks’ NumberSpiral study, we will conclude it was used this option set 1 
of 5: 

o 𝑓𝑜𝑟	𝑦# = 3, 𝑡ℎ𝑒𝑛	𝑘 = 𝑌[3] = 9𝑎 + 3𝑏 + 𝑐 
o 𝑓𝑜𝑟	𝑦" = 2, 𝑡ℎ𝑒𝑛	𝑗 = 𝑌[2] = 4𝑎 + 2𝑏 + 𝑐	
o 𝑓𝑜𝑟	𝑦( = 1, 𝑡ℎ𝑒𝑛	𝑖 = 𝑌[1] = 𝑎 + 𝑏 + 𝑐	

So, when NumberSpiral created 3 simultaneous equations for elements named (𝑖, 𝑗, 𝑘), they 
set 𝑦( = 1. And, they wrote: “the first number, 𝑌[1] = 𝑖, is generated when we plug 𝑦 = 1 into 
𝑌[𝑦] = 𝑎𝑦" + 𝑏𝑦 + 𝑐 expression. The next number,𝑌[2] = 𝑗, since it's the very next number in 
the sequence after 𝑌[1] = 𝑖, is generated by 𝑦 = 2. And similarly, 𝑌[3] = 𝑘 is generated by 𝑦 =
3.”  

Then, the result obtained is: 

𝑎 =
𝑖	– 2𝑗 + 𝑘

2 =
𝑌[1]– 2𝑌[2] + 𝑌[3]

2 	
	𝑏 = 𝑗– 𝑖– 3𝑎 = 𝑌[2]– 𝑌[1]– 3𝑎	
𝑐 = 𝑖– 𝑎– 𝑏 = 𝑌[1]– 𝑎– 𝑏	

or, 

𝑎 =
𝑖	– 2𝑗 + 𝑘

2 =
𝑌[1]– 2𝑌[2] + 𝑌[3]

2 	

𝑏 =
−5𝑖 + 8𝑗 − 3𝑘	

2 =
−5𝑌[1] + 8𝑌[2] − 3𝑌[3]	

2 	
𝑐 = 3𝑖 − 3𝑗 + 𝑘 = 3𝑌[1] − 3𝑌[2] + 𝑌[3]	

Where the final expression of quadratic is given by: 

𝑌[𝑦] = Q
𝑖	– 2𝑗 + 𝑘

2 R 𝑦" + Q
−5𝑖 + 8𝑗 − 3𝑘	

2 R 𝑦 + (3𝑖 − 3𝑗 + 𝑘) 
or, 

𝑌+,-	(	/0	%[𝑦] = S
𝑌[1]	– 2𝑌[2] + 𝑌[3]

2 T 𝑦" + S
−5𝑌[1] + 8𝑌[2] − 3𝑌[3]

2 T 𝑦

+ (3𝑌[1] − 3𝑌[2] + 𝑌[3]) 
Perceive that: 
à NumberSpiral used (𝑦( = 1; 𝑦" = 2; 𝑦# = 3) 
à If we set (𝑦( = 2; 𝑦" = 3; 𝑦# = 4) we get the same coefficient 𝑎 = )	–"234

"
=

5[(]–"5["]35[#]
"

, but more complex factors for coefficients b and c than the factors in 
NumberSpiral set (𝑦( = 1; 𝑦" = 2; 𝑦# = 3).  

So, let’s continue in the lower direction and analyze set (𝑦( = 0; 𝑦" = 1; 𝑦# = 2). 
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5.2 Set 2 of 5: 

Considering, 
o 𝑓𝑜𝑟	𝑦# = 2, 𝑡ℎ𝑒𝑛	𝑌[2] = 4𝑎 + 2𝑏 + 𝑐	
o 𝑓𝑜𝑟	𝑦" = 1, 𝑡ℎ𝑒𝑛	𝑌[1] = 𝑎 + 𝑏 + 𝑐	
o 𝑓𝑜𝑟	𝑦( = 0, 𝑡ℎ𝑒𝑛	𝑌[0] = 𝑐	

Then, 
𝑐 = 𝑌[0] 

𝑌[1] 	= 𝑎 + 𝑏 + 𝑌[0] 
	𝑌[2] 	= 4𝑎 + 2𝑏 + 𝑌[0] 

Then, 
2𝑌[1] 	= 2𝑎 + 2𝑏 + 2𝑌[0] 

𝑌[2] − 2𝑌[1] = 4𝑎 + 2𝑏 + 𝑌[0] − 2𝑎 − 2𝑏 − 2𝑌[0] 
𝑌[2] − 2𝑌[1] = 2𝑎 − 𝑌[0] 

𝑎 =
𝑌[0] − 2𝑌[1] + 𝑌[2]

2  
Then, 

𝑌[1] 	= 𝑎 + 𝑏 + 𝑌[0] 

𝑌[1] 	=
𝑌[0] − 2𝑌[1] + 𝑌[2]

2 + 𝑏 + 𝑌[0] 
2𝑌[1] 	= 𝑌[0] − 2𝑌[1] + 𝑌[2] + 2𝑏 + 2𝑌[0] 
4𝑌[1] 	= 3𝑌[0] + 𝑌[2] + 2𝑏 

𝑏 =
−3𝑌[0] + 4𝑌[1] − 𝑌[2]

2  
Then, 

𝑌+,-	"	/0	%[𝑦] = S
𝑌[0]– 2𝑌[1] + 𝑌[2]

2 T 𝑦" + S
−3𝑌[0] + 4𝑌[1] − 𝑌[2]

2 T 𝑦 + 𝑌[0] 
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5.3 Set 3 of 5: 

Considering, 
o 𝑓𝑜𝑟	𝑦# = 1, 𝑡ℎ𝑒𝑛	𝑌[1] = 𝑎 + 𝑏 + 𝑐	
o 𝑓𝑜𝑟	𝑦" = 0, 𝑡ℎ𝑒𝑛	𝑌[0] = 𝑐	
o 𝑓𝑜𝑟	𝑦( = −1, 𝑡ℎ𝑒𝑛	𝑌[−1] = 𝑎 − 𝑏 + 𝑐	

Then, 
𝑐 = 𝑌[0]	
𝑌[−1] 	= 𝑎 − 𝑏 + 𝑌[0]	
	𝑌[1] 	= 𝑎 + 𝑏 + 𝑌[0] 

Then, 
𝑌[−1] + 𝑌[1] = 2𝑎 + 𝑌[0]	

𝑎 =
𝑌[−1] − 2𝑌[0] + 𝑌[1]

2  
Then, 

𝑌[1] − 𝑌[−1] = 2𝑏	

𝑏 =
𝑌[1] − 𝑌[−1]

2  
Then, 

𝑌+,-	#	/0	%[𝑦] = S
𝑌[−1]– 2𝑌[0] + 𝑌[1]

2 T 𝑦" + S
𝑌[1] − 𝑌[−1]

2 T 𝑦 + 𝑌[0] 

5.4 Set 4 of 5: 

Considering, 
o 𝑓𝑜𝑟	𝑦# = 0, 𝑡ℎ𝑒𝑛	𝑌[0] = 𝑐	
o 𝑓𝑜𝑟	𝑦" = −1, 𝑡ℎ𝑒𝑛	𝑌[−1] = 𝑎 − 𝑏 + 𝑐	
o 𝑓𝑜𝑟	𝑦( = −2, 𝑡ℎ𝑒𝑛	𝑌[−2] = 4𝑎 − 2𝑏 + 𝑐	

Then, 
𝑐 = 𝑌[0]	

𝑌[−2] 	= 4𝑎 − 2𝑏 + 𝑌[0]	
	𝑌[−1] = 𝑎 − 𝑏 + 𝑌[0] 

Then, 
𝑌[−2] − 2𝑌[−1] = 4𝑎 − 2𝑏 + 𝑌[0] − 2𝑎 + 2𝑏 − 2𝑌[0]	
𝑌[−2] − 2𝑌[−1] = 2𝑎 − 𝑌[0]	

𝑎 =
𝑌[−2] − 2𝑌[−1] + 𝑌[0]

2  
Then, 

𝑌[−2] − 4𝑌[−1] = 4𝑎 − 2𝑏 + 𝑌[0] − 4𝑎 + 4𝑏 − 4𝑌[0]	
𝑌[−2] − 4𝑌[−1] = 2𝑏 − 3𝑌[0]	

𝑏 =
𝑥( − 4𝑌[−1] + 3𝑌[0]

2  
Then, 
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𝑌+,-	$	/0	%[𝑦] = S
𝑌[−2]– 2𝑌[−1] + 𝑌[0]

2 T𝑦" + Q
𝑌[−2] − 4𝑌[−1] + 3𝑌[0]

2 R 𝑦 + 𝑌[0] 

5.5 Set 5 of 5: 

Considering, 
o 𝑓𝑜𝑟	𝑦# = −1, 𝑡ℎ𝑒𝑛	𝑌[−1] = 𝑎 − 𝑏 + 𝑐 
o 𝑓𝑜𝑟	𝑦" = −2, 𝑡ℎ𝑒𝑛	𝑌[−2] = 4𝑎 − 2𝑏 + 𝑐 
o 𝑓𝑜𝑟	𝑦( = −3, 𝑡ℎ𝑒𝑛	𝑌[−3] = 9𝑎 − 3𝑏 + 𝑐 

Then, 
𝑌[−2] − 𝑌[−1] = 4𝑎 − 2𝑏 + 𝑐 − 𝑎 + 𝑏 − 𝑐 = 3𝑎 − 𝑏 

𝑏 = 3𝑎 − 𝑌[−2] + 𝑌[−1] 
Then, 

𝑌[−3] = 	9𝑎 − 3𝑏 + 𝑐 = 9𝑎 − 3(3𝑎 − 𝑌[−2] + 𝑌[−1]) + 𝑐
= 3𝑌[−2] − 3𝑌[−1] + 𝑐 

𝑌[−2] = 	4𝑎 − 2𝑏 + 𝑐 = 4𝑎 − 2(3𝑎 − 𝑌[−2] + 𝑌[−1]) + 𝑐
= 4𝑎 − 6𝑎 + 2𝑌[−2] − 2𝑌[−1] + 𝑐 = −2𝑎 + 2𝑌[−2] − 2𝑌[−1] + 𝑐 

𝑌[−3] − 𝑌[−2] = 3𝑌[−2] − 3𝑌[−1] + 𝑐 − (−2𝑎 + 2𝑌[−2] − 2𝑌[−1] + 𝑐)
= 3𝑌[−2] − 3𝑌[−1] + 𝑐 + 2𝑎 − 2𝑌[−2] + 2𝑌[−1] − 𝑐
= 𝑌[−2] − 𝑌[−1] + 2𝑎 

𝑎 =
𝑌[−3] − 2𝑌[−2] + 𝑌[−1]

2  
Then, 

𝑏 = 3𝑎 − 𝑌[−2] + 𝑌[−1] = 3S
𝑌[−3] − 2𝑌[−2] + 𝑌[−1]

2 T − 𝑌[−2] + 𝑌[−1]

=
3𝑌[−3] − 6𝑌[−2] + 3𝑌[−1] − 2𝑌[−2] + 2𝑌[−1]

2  

𝑏 =
3𝑌[−3] − 8𝑌[−2] + 5𝑌[−1]

2  
Then, 

𝑐 = 𝑥# − 𝑎 + 𝑏 = 𝑌[−1] −
𝑌[−3] − 2𝑌[−2] + 𝑌[−1]

2 +
3𝑌[−3] − 8𝑌[−2] + 5𝑌[−1]

2  

𝑐 =
2𝑌[−1] − 𝑌[−3] + 2𝑌[−2] − 𝑌[−1] + 3𝑌[−3] − 8𝑌[−2] + 5𝑌[−1]

2  

𝑐 =
2𝑌[−3] − 6𝑌[−2] + 6𝑌[−1]

2  
Then, 

𝑌+,-	%	/0	%[𝑦] = S
𝑌[−3]– 2𝑌[−2] + 𝑌[−1]

2 T 𝑦" + S
3𝑌[−3] − 8𝑌[−2] + 5𝑌[−1]

2 T𝑦 + 𝑌[−3]

− 3𝑌[−2] + 3𝑌[−1] 
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5.6 The conclusion from all sets 

Perceive that if we set (𝑦( = −4; 𝑦" = −3; 𝑦# = −2) we get the same coefficient 𝑎 =
5[(]–"5["]35[#]

"
, but more complex factors for coefficients b and c than the factors in the last set 5 

of 5 (𝑦( = −3; 𝑦" = −2; 𝑦# = −1). 
So, let’s stop here the analysis. 
Then, the 5 sets together can be summarized as: 

𝑌+,-	(	/0	%[𝑦] = S
𝑌[1]	– 2𝑌[2] + 𝑌[3]

2 T 𝑦" + S
−5𝑌[1] + 8𝑌[2] − 3𝑌[3]

2 T 𝑦

+ (3𝑌[1] − 3𝑌[2] + 𝑌[3]) 

𝑌+,-	"	/0	%[𝑦] = S
𝑌[0]– 2𝑌[1] + 𝑌[2]

2 T 𝑦" + S
−3𝑌[0] + 4𝑌[1] − 𝑌[2]

2 T 𝑦 + 𝑌[0] 

𝑌+,-	#	/0	%[𝑦] = S
𝑌[−1]– 2𝑌[0] + 𝑌[1]

2 T 𝑦" + S
𝑌[1] − 𝑌[−1]

2 T𝑦 + 𝑌[0] 

𝑌+,-	$	/0	%[𝑦] = S
𝑌[−2]– 2𝑌[−1] + 𝑌[0]

2 T𝑦" + Q
𝑌[−2] − 4𝑌[−1] + 3𝑌[0]

2 R 𝑦 + 𝑌[0] 

𝑌+,-	%	/0	%[𝑦] = S
𝑌[−3]– 2𝑌[−2] + 𝑌[−1]

2 T 𝑦" + S
3𝑌[−3] − 8𝑌[−2] + 5𝑌[−1]

2 T𝑦

+ (𝑌[−3] − 3𝑌[−2] + 3𝑌[−1]) 
In conclusion, we do have the simplest general equation for a quadratic function. 
The simplest general quadratic equation is 

𝑌+,-	#	/0	%[𝑦] = 𝑌[𝑦] = S
𝑌[−1]– 2𝑌[0] + 𝑌[1]

2 T 𝑦" + S
𝑌[1] − 𝑌[−1]

2 T𝑦 + 𝑌[0] 
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6 Quadratic parameters from the simplest equation 

Once we have defined our general most simple 2nd-degree polynomial equation as being 

𝑌[𝑦] = S
𝑌[−1]– 2𝑌[0] + 𝑌[1]

2 T 𝑦" + S
𝑌[1] − 𝑌[−1]

2 T 𝑦 + 𝑌[0] 

then, let’s find all parameters related to it. 
To facilitate the visualization of calculations and results, we will make 

𝑌[−1] = 𝑥( 
𝑌[0] = 𝑥" 
𝑌[1] = 𝑥# 

This brings us to the re-write the simplest 2nd-degree polynomial equation as 

𝑌[𝑦] = Q
𝑥(	– 2𝑥" + 𝑥#

2 R 𝑦" + V
𝑥# − 𝑥(
2 W 𝑦 + 𝑥" 

6.1 Coefficient a 

𝑎 =
𝑥(	– 2𝑥" + 𝑥#

2  

6.2 Coefficient b 

𝑏 =
𝑥# − 𝑥(
2  

6.3 Coefficient c 

𝑐 = 𝑥" 

6.4 Equation of the Y coordinate of the inflection point 

𝑦)! = −
𝑏
2𝑎 = −

𝑥# − 𝑥(
2

2 𝑥(	– 2𝑥" + 𝑥#2
 

𝑦)! = −
𝑏
2𝑎 =

−(𝑥# − 𝑥()
2(𝑥( − 2𝑥" + 𝑥#)
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6.5 Equation of the X coordinate of the inflection point 

𝑥)! = −
∆
4a = −

𝑏" − 4𝑎𝑐
4𝑎 = −

V𝑥# − 𝑥(2 W
"
− 4V𝑥(	– 2𝑥" + 𝑥#2 W 𝑥"

4 V𝑥(	– 2𝑥" + 𝑥#2 W

=
4 V𝑥(	– 2𝑥" + 𝑥#2 W 𝑥" − V

𝑥# − 𝑥(
2 W

"

2(𝑥(	– 2𝑥" + 𝑥#)
=
2(𝑥(	– 2𝑥" + 𝑥#)𝑥" −

(𝑥# − 𝑥()"
4 	

2(𝑥(	– 2𝑥" + 𝑥#)

=
8(𝑥(	– 2𝑥" + 𝑥#)𝑥" − (𝑥# − 𝑥()"	

8(𝑥(	– 2𝑥" + 𝑥#)

=
8𝑥(𝑥" − 16𝑥"" + 8𝑥"𝑥# − (𝑥(" + 𝑥#" − 2𝑥(𝑥#)

8(𝑥(	– 2𝑥" + 𝑥#)

=
8𝑥(𝑥" − 16𝑥"" + 8𝑥"𝑥# − 𝑥(" − 𝑥#" + 2𝑥(𝑥#

8(𝑥(	– 2𝑥" + 𝑥#)

=
−𝑥(" − 16𝑥"" − 𝑥#" + 8𝑥(𝑥" + 8𝑥"𝑥# + 2𝑥(𝑥#

8(𝑥(	– 2𝑥" + 𝑥#)

=
−𝑥(" − (4𝑥")" − 𝑥#" + 2𝑥((4𝑥") + 2(4𝑥")𝑥# + 2𝑥(𝑥#

8(𝑥(	– 2𝑥" + 𝑥#)
 

Or a more simplified way: 

𝑥)! = −
𝑏" − 4𝑎𝑐

4𝑎 = 𝑐 −
𝑏"

4𝑎 = 𝑥" −
V𝑥# − 𝑥(2 W

"

4 V𝑥(	– 2𝑥" + 𝑥#2 W
= 𝑥" −

(𝑥# − 𝑥()"
4

2(𝑥(	– 2𝑥" + 𝑥#)
 

𝑥)! = −
∆
4a = −

𝑏" − 4𝑎𝑐
4𝑎 = 𝑥" −

(𝑥# − 𝑥()"

8(𝑥(	– 2𝑥" + 𝑥#)
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6.6 Discriminant equation 

Note that 

𝑥)! = −
𝑏" − 4𝑎𝑐

4𝑎 = −
∆
4𝑎 

And, 

𝑥)! =
−𝑥(" − 16𝑥"" − 𝑥#" + 8𝑥(𝑥" + 8𝑥"𝑥# + 2𝑥(𝑥#

8(𝑥(	– 2𝑥" + 𝑥#)

= −
𝑥(" + 16𝑥"" + 𝑥#" − 8𝑥(𝑥" − 8𝑥"𝑥# − 2𝑥(𝑥#

16(𝑥(	– 2𝑥" + 𝑥#)
2

= −
𝑥(" + 16𝑥"" + 𝑥#" − 8𝑥(𝑥" − 8𝑥"𝑥# − 2𝑥(𝑥#

16𝑎  

𝑥)! = −
Q𝑥(

" + 16𝑥"" + 𝑥#" − 8𝑥(𝑥" − 8𝑥"𝑥# − 2𝑥(𝑥#
4 R

4𝑎  

So, 

∆=
𝑥(" + 16𝑥"" + 𝑥#" − 8𝑥(𝑥" − 8𝑥"𝑥# − 2𝑥(𝑥#

4  

∆=
𝑥(" + (4𝑥")" + 𝑥#" − 2𝑥((4𝑥") − 2(4𝑥")𝑥# − 2𝑥(𝑥#

4  

We know that, 
(𝑋 − 𝑌 − 𝑍)" = 𝑋" + 𝑌" + 𝑍" − 2𝑋𝑌 − 2𝑋𝑍 + 2𝑌𝑍 

So, 
𝑋" + 𝑌" + 𝑍" − 2𝑋𝑌 − 2𝑋𝑍 − 2𝑌𝑍 = (𝑋 − 𝑌 − 𝑍)" − 4𝑌𝑍 

Then, 
𝑋" + 𝑌" + 𝑍" − 2𝑋𝑌 − 2𝑋𝑍 − 2𝑌𝑍 = (𝑋 − 𝑌 − 𝑍 + 2√𝑌𝑍)(𝑋 − 𝑌 − 𝑍 − 2√𝑌𝑍) 

Now, being 𝑋 = 𝑥(, 𝑌 = 4𝑥", 𝑍 = 𝑥#, then: 
𝑥(" + (4𝑥")" + 𝑥#" − 2𝑥((4𝑥") − 2𝑥(𝑥# − 2(4𝑥")𝑥#

= ]𝑥( − 4𝑥" − 𝑥# + 2^4𝑥"𝑥#_]𝑥( − 4𝑥" − 𝑥# − 2^4𝑥"𝑥#_ 
𝑥(" + (4𝑥")" + 𝑥#" − 2𝑥((4𝑥") − 2𝑥(𝑥# − 2(4𝑥")𝑥#

= (𝑥( − 4𝑥" − 𝑥# + 4^𝑥"𝑥#)(𝑥( − 4𝑥" − 𝑥# − 4^𝑥"𝑥#) 
𝑥(" + (4𝑥")" + 𝑥#" − 2𝑥((4𝑥") − 2𝑥(𝑥# − 2(4𝑥")𝑥#

= V𝑥( − 𝑥# − 4]𝑥" −^𝑥"𝑥#_W V𝑥( − 𝑥# − 4]𝑥" +^𝑥"𝑥#_W 
𝑥(" + (4𝑥")" + 𝑥#" − 2𝑥((4𝑥") − 2𝑥(𝑥# − 2(4𝑥")𝑥#

= V𝑥( − 𝑥# − 4^𝑥"]^𝑥" − ^𝑥#_W V𝑥( − 𝑥# − 4^𝑥"]^𝑥" +^𝑥#_W 

∆=
V𝑥( − 𝑥# − 4√𝑥"]√𝑥" − ^𝑥#_W V𝑥( − 𝑥# − 4√𝑥"]√𝑥" +^𝑥#_W

4  
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7 The offset mechanism in quadratics 

When we study the general quadratic equation 𝑥 = 𝑎𝑦" + 𝑏𝑦 + 𝑐 we learn that: 
• As the second derivative of the equation is only proportional to the coefficient 𝑎, then 

coefficient 𝑎 is the only one responsible for opening or closing the "mouth" of the 
quadratic. No other coefficient will change the “mouth” shape of a quadratic. This is 
only given by “latus rectum”; 

𝐿𝑎𝑡𝑢𝑠	𝑅𝑒𝑐𝑡𝑢𝑚 = 𝐿𝑅 = d
1
𝑎d 

o Note that here is where a quadratic is born. Whatever the equation of a 
quadratic, it will always be of the form 𝑥 = 𝑎𝑦".  

o The form of a quadratic always starts at the inflection point in the dot (𝑋, 𝑌) =
(0,0) with the orientation of the opening of its “mouth” determined by 
coefficient 𝑎. This is because the form 𝑥 = 𝑎𝑦" of a quadratic contains the 
coefficients 𝑏 and 𝑐 zeroed and therefore 𝑥)! = 0 and 𝑦)! = 0. No matter the 
value of the coefficient 𝑎, the inflection point of the form 𝑥 = 𝑎𝑦" of a quadratic 
never leaves the position (0,0). 

• If we want to change the position of the inflection point from (0,0) we have to use the 
other two coefficients (𝑏, 𝑐) properly. 

o Once we have coefficient 𝑎 determined and constant, knowing that 𝑦)! = − 8
"9

, 
then, the coefficient 𝑏 is the only responsible for the shift (offset/phase) of the 
inflection point of the quadratic along the Y-axis. Coefficient 𝑐 does not change 
the inflection point along Y-axis. 

o Because 𝑥)! = − 8!'$9:
$9

= − 8!

$9
+ 𝑐 then changes in coefficient 𝑏 also cause a 

shift of the inflection point along the X-axis. 
o In other words, to shift the inflection point along the Y-axis we have to vary 

only the coefficient 𝑏. But, when we vary the coefficient 𝑏 for the inflection 
point to reach the desired value of 𝑦)!, we automatically change the value of 𝑥)! 
proportional to the square of the coefficient 𝑏.  

• Once the general quadratic equation is 𝑥 = (𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔	2𝑛𝑑	𝑑𝑒𝑔𝑟𝑒𝑒) + (constant	𝑐), 
then, the coefficient 𝑐 is responsible only for the shift of the inflection point along the 
X-axis. 

o This also can be seen in the equation 𝑥)! = − 8!

$9
+ 𝑐. 

o So, if we want to cancel the inflection point shift caused by the coefficient 𝑏 on 
the X-axis, we can compensate it using properly the coefficient 𝑐 that only 
changes shift on the X-axis. So, to maintain the 𝑥)! fixed, the compensation to 
be done in coefficient 𝑐 has to be proportional to 𝑏". 
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See in the figure below the offset mechanism showed for A002378 Oblong numbers: 

  
Figure 2. Offset mechanism for sequence A002378 Oblong numbers 

Note the distances between the inflection points and the D-parabola 𝑥 = −𝑦" follow the sequence 
of A002378 Oblong numbers (… ,12,6,2,0,0,2,6,12, … ).  
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7.1 Offset mechanism algebra 

Considering the quadratic equation  
𝑌[y] = 𝑎𝑦" + 𝑏𝑦 + 𝑐 

when we shift the parabola curve along the Y-axis in steps of a unit, we are not changing the 
possible values that 𝑥 assumes in the X-axis. For example, when we shift the quadratic 	
𝑌[y] = 𝑦" + 5𝑦 + 6 in 5 units step up along the Y-axis, then if initially, 𝑌[−1] had the value 2 
now 𝑌[−1 + 5] = 𝑌[4] is also 2.  

So, we can express the general quadratic equation above as: 
𝑌[𝑦 ± ℎ] = 𝑎(𝑦 ± ℎ)" + 𝑏(𝑦 ± ℎ) + 𝑐 

where 
𝑥)![𝑦 ± ℎ] = 𝑥)![𝑦] 

Whatever the Integer value of ℎ, all equations 𝑌[𝑦 ± ℎ] will always generate the same Integer 
sequence in 𝑌[𝑦*]. And, we can express: 

𝑌[𝑦 ± ℎ] = 𝑎(𝑦 ± ℎ)" + 𝑏(𝑦 ± ℎ) + 𝑐 
𝑌[𝑦 ± ℎ] = 𝑎(𝑦" ± 2ℎ𝑦 + ℎ") + 𝑏𝑦 ± 𝑏ℎ + 𝑐 
𝑌[𝑦 ± ℎ] = 𝑎𝑦" ± 2𝑎ℎ𝑦 + 𝑎ℎ" + 𝑏𝑦 ± 𝑏ℎ + 𝑐 
𝑌[𝑦 ± ℎ] = 𝑎𝑦" + (𝑏 ± 2𝑎ℎ)𝑦 + (𝑎ℎ" ± 𝑏ℎ + 𝑐) 
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7.2 Inflection point X coordinate mechanism with offset 

Note that the quadratic curve (parabola) shift along the Y-axis is represented here by variable ℎ 
in 𝑌[𝑦 ± ℎ]. In all cases, we are considering the absolute value of ℎ to express the existing shift. 

So, we are predicting: 
𝑌[𝑦 + ℎ] = 𝑎𝑦" + (𝑏 + 2𝑎ℎ)𝑦 + (𝑎ℎ" + 𝑏ℎ + 𝑐) will shift the parabola in the negative 

direction along the Y-axis, and 
𝑌[𝑦 − ℎ] = 𝑎𝑦" + (𝑏 − 2𝑎ℎ)𝑦 + (𝑎ℎ" − 𝑏ℎ + 𝑐) will shift the parabola in the positive 

direction along the Y-axis. 
In both cases, 𝑥)! will be the same. 
For 

𝑌[𝑦] = 𝑥 = 𝑎𝑦" + 𝑏𝑦 + 𝑐 
Then, 

𝑥)![𝑦] = −
𝑏"

4𝑎 + 𝑐 

And, for: 
𝑌[𝑦 ± ℎ] = 𝑎(𝑦 ± ℎ)" + 𝑏(𝑦 ± ℎ) + 𝑐	
𝑌[𝑦 ± ℎ] = 𝑎𝑦" + (𝑏 ± 2𝑎ℎ)𝑦 + (𝑎ℎ" ± 𝑏ℎ + 𝑐) 

𝑥)![𝑦 ± ℎ] = −
(𝑏 ± 2𝑎ℎ)"

4𝑎 + (𝑎ℎ" ± 𝑏ℎ + 𝑐) 

When, 

𝑥)![𝑦 + ℎ] = −
(𝑏 + 2𝑎ℎ)"

4𝑎 + (𝑎ℎ" + 𝑏ℎ + 𝑐)	

𝑥)![𝑦 + ℎ] =
4𝑎(𝑎ℎ" + 𝑏ℎ + 𝑐)

4𝑎 −
(𝑏 + 2𝑎ℎ)"

4𝑎 	

𝑥)![𝑦 + ℎ] =
4𝑎"ℎ" + 4𝑎𝑏ℎ + 4𝑎𝑐 − 𝑏" − 4𝑎"ℎ" − 4𝑎𝑏ℎ

4𝑎 	

𝑥)![𝑦 + ℎ] = 𝑐 −
𝑏"

4𝑎 = 𝑥)![y] 

Also, 

𝑥)![𝑦 − ℎ] = −
(𝑏 − 2𝑎ℎ)"

4𝑎 + (𝑎ℎ" − 𝑏ℎ + 𝑐)	

𝑥)![𝑦 − ℎ] =
4𝑎(𝑎ℎ" − 𝑏ℎ + 𝑐)

4𝑎 −
(𝑏 − 2𝑎ℎ)"

4𝑎 	

𝑥)![𝑦 − ℎ] =
4𝑎"ℎ" − 4𝑎𝑏ℎ + 4𝑎𝑐 − 𝑏" + 4𝑎"ℎ" − 4𝑎𝑏ℎ

4𝑎 	

𝑥)![𝑦 − ℎ] = −
𝑏"

4𝑎 = 𝑥)![y] 
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7.3 Inflection point Y coordinate mechanism with offset 

Considering, 
𝑌[y] = 𝑥 = 𝑎𝑦" + 𝑏𝑦 + 𝑐 

𝑦)! = −
𝑏
2𝑎 

Or, we can express: 

𝑦)![ℎ = 0] = −
𝑏
2𝑎	

𝑌[𝑦 ± ℎ] = 𝑎(𝑦 ± ℎ)" + 𝑏(𝑦 ± ℎ) + 𝑐	
𝑌[𝑦 ± ℎ] = 𝑎𝑦" + (𝑏 ± 2𝑎ℎ)𝑦 + (𝑎ℎ" ± 𝑏ℎ + 𝑐)	

𝑦)![ℎ] = −
𝑏 ± 2𝑎ℎ
2𝑎 	

𝑦)![ℎ] = −
𝑏
2𝑎 ∓ ℎ	

𝑦)![ℎ] = 𝑦)!(ℎ = 0) ∓ ℎ 
So, there is an inversion of sign between 𝑦)! and 𝑜𝑓𝑓𝑠𝑒𝑡 = ℎ. 
This confirms that for ℎ > 0: 

• 𝑋[𝑦 + ℎ] = 𝑎𝑦" + (𝑏 + 2𝑎ℎ)𝑦 + (𝑎ℎ" + 𝑏ℎ + 𝑐) will be a shift in the parabola in the 
negative direction along the Y-axis, and 

• 𝑋[𝑦 − ℎ] = 𝑎𝑦" + (𝑏 − 2𝑎ℎ)𝑦 + (𝑎ℎ" − 𝑏ℎ + 𝑐) will be a shift in the parabola in the 
positive direction along the Y-axis. 

When we increase offset in positive values, we decrease the value of 𝑦)!. 
So, for any 𝑋[𝑦 ± ℎ] = 𝑎𝑦" + (𝑏 ± 2𝑎ℎ)𝑦 + (𝑎ℎ" ± 𝑏ℎ + 𝑐), where|𝑏 ± 2𝑎ℎ| > |𝑏| we can 

always find a new equation where h=0 and still represents the same sequence. 
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7.4 Quadratics roots mechanism with Offset 

Another way to see the effect of the offset is by analyzing what happens to the roots of quadratics 
as we vary the offset. 

See the equation of the roots of the quadratic equation: 𝑥 = 𝑎𝑦" + 𝑏𝑦 + 𝑐. 

𝑥(," =
−𝑏 ± √𝑏" − 4𝑎𝑐

2𝑎 	

𝑥(," =
−𝑏
2𝑎 ±

√𝑏" − 4𝑎𝑐
2𝑎 	

𝑥(," =
−𝑏
2𝑎 ±

o𝑏
" − 4𝑎𝑐
4𝑎" 	

𝑥(," =
−𝑏
2𝑎 ±

o ∆
4𝑎"	

𝑥(," =
−𝑏
2𝑎 ±

o ∆
4𝑎 ∗

1
𝑎	

𝑥(," = 𝑦)! ± q−𝑥)! ∗ 𝑙𝑎𝑡𝑢𝑠	𝑟𝑒𝑐𝑡𝑢𝑚 

When we vary the offset of a quadratic, coefficient a and 𝑥)! are constant. The only variable 
is 𝑦)!. So, 

𝑥(," = 𝑦)! ± constant 
The roots vary proportionally with 𝑦)! and opposite with ℎ. 
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7.5 Coefficient c mechanism with Offset 

The roots are given by 

𝑥(," =
−𝑏
2𝑎 ±

o𝑏
" − 4𝑎𝑐
4𝑎"  

𝑥(," =
−𝑏
2𝑎 ±

o 𝑏"

4𝑎" −
4𝑎𝑐
4𝑎" 

𝑥(," =
−𝑏
2𝑎 ±

oQ−
𝑏
2𝑎R

"

−
𝑐
𝑎 

𝑥(," = 𝑦)! ±q𝑦)!" −
𝑐
𝑎 

But we know that  

q𝑦)!" −
𝑐
𝑎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = o ∆

4𝑎" 

Then, 

𝑦)!" −
𝑐
𝑎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑘 =

∆
4𝑎"	

𝑦)!" −
𝑐
𝑎 = 𝑘	

𝑎𝑦)!" − 𝑐 = 𝑎𝑘	
𝑐 = 𝑎𝑦)!" − 𝑎𝑘	
𝑐 = 𝑎(𝑦)!" − 𝑘) 

Because 𝑎 and 𝑘 are constant, then, coefficient c is only proportional to 𝑦)!" . 
Remember that 
• When in offset zero at ℎ = 0, then 𝑥 = 𝑌[𝑦 = 0] = 𝑎 ∗ 0 + 𝑏 ∗ 0 + 𝑐 = 𝑥". When we 

move the parabola along Y-axis from this initial position, coefficient 𝑐 will change 
proportionally with 𝑦)!" . 

• Another way to see, coefficient c is only dependent on the square of 𝑦)! position. 
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8 Definition of offset zero 

We will define offset zero and denote it as 𝑓 = 0 when |𝑦)!| is the closest as possible or equal 
to zero. 

We are using the absolute value of 𝑦)! because we want to count the indexes 𝑦 according to 
Tally counting. We want to use  the same reasoning that we did in the Introduction of this study 
with Odd numbers. 

In this definition, we are determining offset	𝑓 ∈ ℤ to follow 𝑦)! ∈ ℝ. 
In XY plane, 𝑦)! is a Real continuous function and 𝑓 is an Integer staircase function with 

constant step 1. 
So, the closest |𝑦)!|	to zero will be in the range: 

−0.5 < 𝑦)![@𝑜𝑓𝑓𝑠𝑒𝑡	𝑧𝑒𝑟𝑜] ≤ 0.5 

−0.5 <
𝑥( − 𝑥#

2𝑥( − 4𝑥" + 2𝑥#
≤ 0.5 

−1 <
𝑥( − 𝑥#

𝑥( − 2𝑥" + 𝑥#
≤ 1 

−𝑥( + 2𝑥" − 𝑥# < 𝑥( − 𝑥# ≤ 𝑥( − 2𝑥" + 𝑥# 
From 

𝑥( − 𝑥# ≤ 𝑥( − 2𝑥" + 𝑥# 
−2𝑥# ≤ −2𝑥" 

Then, 
𝑥# ≥ 𝑥" 

From 
−𝑥( + 2𝑥" − 𝑥# < 𝑥( − 𝑥# 

2𝑥" < 2𝑥( 
Then, 

𝑥" < 𝑥( 
So, the quadratic condition to result in offset zero is: 

𝑥# ≥ 𝑥" < 𝑥( 
Or 

𝑌[1] ≥ 𝑌[0] < 𝑌[−1] 
So, in the simplest quadratic equation, 𝑥" = 𝑌[0] = 𝑐 is the “inflection point integer” because 

it is the closest integer to 𝑥)!. This means that once determined 𝑥", any 𝑥( > 𝑥" and 𝑥# ≥ 𝑥" will 
define the quadratic curve with offset zero. 
  



25 
 
 
 

8.1 Offset f and Inflection point Y coordinate 

Now we have defined offset zero as being −0.5 < 𝑦)![@𝑜𝑓𝑓𝑠𝑒𝑡	𝑧𝑒𝑟𝑜] ≤ 0.5, then 
• For 𝑦)! = −1, offset is 𝑓 = −1. 
• For 𝑦)! = − #

$
, offset is 𝑓 = −1. 

• For 𝑦)! = − (
"
, offset is 𝑓 = −1. 

• For 𝑦)! = − (
$
, offset is 𝑓 = 0. 

• For 𝑦)! = 0, offset is 𝑓 = 0. 
• For 𝑦)! =

(
$
, offset is 𝑓 = 0. 

• For 𝑦)! =
(
"
, offset is 𝑓 = 0. 

• For 𝑦)! =
#
$
, offset is 𝑓 = 1. 

• For 𝑦)! = 1, offset is 𝑓 = 1. 

When 𝑦)! increases, the offset 𝑓	will increase and vice-versa. This means we have to match 
offset as opposed to the shift ℎ imposed to the index 𝑦	in the polynomial equation 𝑌[𝑦]: 

𝑓 = −ℎ 
So, when offset increases, the “ℎ” displacement decreases and vice-versa. 
Also, because 

−0.5 < 𝑦)![@𝑜𝑓𝑓𝑠𝑒𝑡	𝑧𝑒𝑟𝑜] ≤ 0.5 
Being 𝑏º the coefficient 𝑏 in the quadratic equation with offset zero, then 

−0.5 < −
𝑏º
2𝑎 ≤ 0.5 

−1 < −
𝑏º
𝑎 ≤ 1 

−𝑎 < −𝑏º ≤ 𝑎 
In conclusion, the condition to have offset zero is:  

𝑎 > 𝑏º ≥ −𝑎 
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9 General quadratic equation including offset 

Let’s define the quadratic equation in offset zero as being  

𝑌/00<,-=>[y] = 𝑌'>.%@A"#B>.%[y] = 𝑌º[y] = 𝑎𝑦" + 𝑏º𝑦 + 𝑐º 
Then, 

𝑦)!@/00<,-=> = −
𝑏º
2𝑎	

𝑥)!@/00<,-=> =
−∆
4𝑎 = −

𝑏º" − 4𝑎𝑐º
4𝑎  

So, 
𝑥/00<,-DE,F/ = 𝑎(𝑦 + ℎ)" + 𝑏º(𝑦 + ℎ) + 𝑐º	
𝑥/00<,-DE,F/ = 𝑎(𝑦" + ℎ" + 2ℎ𝑦) + 𝑏º𝑦 + 𝑏ºℎ + 𝑐º	
𝑥/00<,-DE,F/ = 𝑎𝑦" + 𝑎ℎ" + 2𝑎ℎ𝑦 + 𝑏º𝑦 + 𝑏ºℎ + 𝑐º	
𝑥/00<,-DE,F/ = 𝑎𝑦" + (2𝑎ℎ𝑦 + 𝑏º𝑦) + (𝑎ℎ" + 𝑏ºℎ + 𝑐º) 

Which result in the general offset equation concerning the coefficients of offset zero: 
𝑥/00<,-DE,F/ = 𝑎𝑦" + (𝑏º + 2𝑎ℎ)𝑦 + (𝑎ℎ" + 𝑏ºℎ + 𝑐º) 

When we apply offset, there is no alteration in coefficient 𝑎. Now, the new	𝑏 and 𝑐 coefficients 
are: 

𝑏 = 𝑏º + 2𝑎ℎ	
𝑐 = 𝑎ℎ" + 𝑏ºℎ + 𝑐º	

𝑦)!@/00<,-D> = −
𝑏
2𝑎 = −

𝑏º + 2𝑎ℎ
2𝑎 = −

𝑏º
2𝑎 − ℎ	

𝑦)!@/00<,-D> = 𝑦)!@/00<,-=> − ℎ	
𝑥)!@/00<,-D> = 𝑥)!@/00<,-=>	

−
𝑏" − 4𝑎𝑐

4𝑎 = −
𝑏º" − 4𝑎𝑐º

4𝑎 	

𝑏" − 4𝑎𝑐 = 𝑏º" − 4𝑎𝑐º	
(2𝑎ℎ + 𝑏º)" − 4𝑎(𝑎ℎ" + 𝑏ºℎ + 𝑐º) = 𝑏º" − 4𝑎𝑐º	

4𝑎"ℎ" + 𝑏º" + 4𝑎ℎ𝑏º − 4𝑎"ℎ" − 4𝑎𝑏ºℎ − 4𝑎𝑐º = 𝑏º" − 4𝑎𝑐º	
4𝑎"ℎ" + 𝑏º" + 4𝑎ℎ𝑏º − 4𝑎"ℎ" − 4𝑎𝑏ºℎ − 4𝑎𝑐º = 𝑏º" − 4𝑎𝑐º 

0 = 0 
From 𝑦)!@/00<,-D> = − 8º

"9
− ℎ = 𝑦)!@/00<,-D> − ℎ equation, we can see that as far as we 

increase ℎ > 0, the value of 𝑦)!@/00<,-D> will decrease from 𝑦)!@/00<,-=>. 
So, if we want the offset parameter to follow 𝑦)! direction, we have to change the signal 

between offset and parameter ℎ: 
𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑓 = −ℎ 

So, from our general offset equation 
𝑥 = 𝑎𝑦" + (𝑏º − 2𝑎𝑓)𝑦 + (𝑎𝑓" − 𝑏º𝑓 + 𝑐º) 

we will have 
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𝑦)! = −
𝑏º − 2𝑎𝑓

2𝑎  

𝑦)! = 𝑓 −
𝑏º
2𝑎 

and 

𝑥)! = −
∆
4𝑎 = −

(𝑏º − 2𝑎𝑓)" − 4𝑎(𝑎𝑓" − 𝑏º𝑓 + 𝑐º)
4𝑎 =

4𝑎(𝑎𝑓" − 𝑏º𝑓 + 𝑐º) − (𝑏º − 2𝑎𝑓)"

4𝑎

=
4𝑎"𝑓" − 4𝑎𝑏º𝑓 + 4𝑎𝑐º − (𝑏º" − 4𝑎𝑏º𝑓 + 4𝑎"𝑓")

4𝑎

=
4𝑎"𝑓" − 4𝑎𝑏º𝑓 + 4𝑎𝑐º − 𝑏º" + 4𝑎𝑏º𝑓 − 4𝑎"𝑓"

4𝑎

=
4𝑎"𝑓" − 4𝑎𝑏º𝑓 + 4𝑎𝑐º − 𝑏º" + 4𝑎𝑏º𝑓 − 4𝑎"𝑓"

4𝑎 =
4𝑎𝑐º − 𝑏º"

4𝑎  

𝑥)! = −
𝑏º" − 4𝑎𝑐º

4𝑎 = 𝑐º −
𝑏º"

4𝑎  

From 𝑥)! and 𝑦)! equations above, we can deduct: 
• Once 𝑎, 𝑏º and 𝑐º are fixed values 𝑥)! is a fixed value for any offset. 
• Only 𝑦)! varies in function of offset 𝑓. 
• Starting from the inflection point, when moving on the quadratic curve along with one 

of the two possible directions, we will increase or decrease the value of the index y 
along the Y-axis. In any of the quadratics of our example, we will always arrive exactly 
at the same values of 𝑥. This means that anyone generates the same sequence of integers 
numbers. 

9.1 Another approach 

Studying the figure 1. above, we have: 
• In the curve 𝑥 = 𝑦" − 7𝑦 + 12  from inflection point given by    

 (𝑥)! = −0.25;	𝑦)! = 3.5) we get the sequence (0, 2, 6, 12, 20, … )  
• In	the	curve	𝑥 = 𝑦" − 5𝑦 + 6  from inflection point given by    

 (𝑥)! = −0.25;	𝑦)! = 2.5) we get the sequence (0, 2, 6, 12, 20, … ) 
• In the curve 𝑥 = 𝑦" − 3𝑦 + 2  from inflection point given by    

 (𝑥)! = −0.25;	𝑦)! = 1.5) we get the sequence (0, 2, 6, 12, 20, … ) 
• In	the	curve	𝑥 = 𝑦" − 𝑦   from inflection point given by    

 (𝑥)! = −0.25;	𝑦)! = 0.5) we get the sequence (0, 2, 6, 12, 20, … ) 
• In	the	curve	𝑥 = 𝑦" + 𝑦   from inflection point given by    

 (𝑥)! = −0.25;	𝑦)! = −0.5) we get the sequence (0, 2, 6, 12, 20, … ) 
• In	the	curve	𝑥 = 𝑦" + 3𝑦 + 2  from inflection point given by    

 (𝑥)! = −0.25;	𝑦)! = −1.5) we get the sequence (0, 2, 6, 12, 20, … ) 
• In	the	curve	𝑥 = 𝑦" + 5𝑦 + 6  from inflection point given by    

 (𝑥)! = −0.25;	𝑦)! = −2.5) we get the sequence (0, 2, 6, 12, 20, … ) 
• In	the	curve	𝑥 = 𝑦" + 7𝑦 + 12  from inflection point given by    

 (𝑥)! = −0.25;	𝑦)! = −3.5) we get the sequence (0, 2, 6, 12, 20, … ) 
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All of them generate the same integer sequence of numbers as far as we increase or decrease 
𝑦 value from 𝑦)! as reference. 

Also, note that in these cases, to assure Integer sequences 𝑦)! varies following the staircase 
function with constant step 1, and to assure the same Integer sequence among all parabolas 𝑥)! 
remains constant in all cases. 

Notice that when we fix a value of the index 𝑦 = 𝑦* as the same for all curves, each equation 
will generate a different element value in X-axis.  

That’s why, when we want to synchronize the sequence generated by them, we have to 
consider offset in the equation. 

9.2 Offset possibilities 

Purposely we have an example with a quadratic integer sequence with 2 simplest equations: 
1. 𝑥 = 𝑦" − 𝑦 from inflection point (𝑥)! = −0.25;	𝑦)! = 0.5) we get the sequence 

(0, 2, 6, 12, 20, … ), and 
2. 𝑥 = 𝑦" + 𝑦 from inflection point (𝑥)! = −0.25;	𝑦)! = −0.5) we get the same sequence 

(0, 2, 6, 12, 20, … ). 
Which one to choose as being offset zero? 
We have to define only one equation as being  𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑓 = 0. How to choose? 
Option 1: 
If we define 𝑥 = 𝑦" + 𝑦 with 𝑦)! = −0.5 as being 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑓 = 0, then 𝑥 = 𝑦" − 𝑦 with 

𝑦)! = 0.5 would have 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑓 = 1. 
Consequently, the whole set would be like this: 
• In the curve 𝑥 = 𝑦" − 7𝑦 + 12 we have 𝑦)! = 3.5 and 𝑓 =

4. Sequence	(0, 2, 6, 12, 20, … ) will appear in index sequence 4 ≤ 𝑦 < ∞ 
• In the curve 𝑥 = 𝑦" − 5𝑦 + 6 we have 𝑦)! = 2.5 and 𝑓 =

3. Sequence	(0, 2, 6, 12, 20, … ) will appear in index sequence 3 ≤ 𝑦 < ∞ 
• In the curve 𝑥 = 𝑦" − 3𝑦 + 2 we have 𝑦)! = 1.5 and 𝑓 =

2. Sequence	(0, 2, 6, 12, 20, … ) will appear in index sequence 2 ≤ 𝑦 < ∞ 
• In the curve 𝑥 = 𝑦" − 𝑦 we have 𝑦)! = 0.5 and 𝑓 = 1. Sequence	(0, 2, 6, 12, 20, … ) 

will appear in index sequence 1 ≤ 𝑦 < ∞ 
• In the curve 𝒙 = 𝒚𝟐 + 𝒚 we have 𝒚𝒊𝒑 = −𝟎. 𝟓 and 𝒇 =

𝟎. 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞	(𝟎, 𝟐, 𝟔, 𝟏𝟐, 𝟐𝟎,… ) will appear in index sequence 𝟎 ≤ 𝒚 < ∞ 
• In the curve 𝑥 = 𝑦" + 3𝑦 + 12 we have 𝑦)! = −1.5 and 𝑓 =

−1. Sequence	(0, 2, 6, 12, 20, … ) will appear in index sequence −1 ≤ 𝑦 < ∞ 
• In the curve 𝑥 = 𝑦" + 5𝑦 + 12 we have 𝑦)! = −2.5 and 𝑓 =

−2. Sequence	(0, 2, 6, 12, 20, … ) will appear in index sequence −2 ≤ 𝑦 < ∞ 
• In the curve 𝑥 = 𝑦" + 7𝑦 + 12 we have 𝑦)! = −3.5 and 𝑓 =

−3. Sequence	(0, 2, 6, 12, 20, … ) will appear in index sequence −3 ≤ 𝑦 < ∞ 
In this choice the equation seems to be expressed as: 

𝑓 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔�𝑦)!� = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 �−
𝑏
2𝑎� = �−

𝑏
2𝑎� 

Option 2: 
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If we define 𝑥 = 𝑦" − 𝑦 with 𝑦)! = 0.5 as being 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑓 = 0, then 𝑥 = 𝑦" + 𝑦 with 
𝑦)! = −0.5 would have offset 𝑓 = −1. 

Consequently, the whole set would be like this: 
• In the curve 𝑥 = 𝑦" − 7𝑦 + 12 we have 𝑦)! = 3.5 and 𝑓 =

3. Sequence	(0, 2, 6, 12, 20, … ) will appear in index sequence 4 ≤ 𝑦 < ∞ 
• In the curve 𝑥 = 𝑦" − 5𝑦 + 6 we have 𝑦)! = 2.5 and 𝑓 =

2. Sequence	(0, 2, 6, 12, 20, … ) will appear in index sequence 3 ≤ 𝑦 < ∞ 
• In the curve 𝑥 = 𝑦" − 3𝑦 + 2 we have 𝑦)! = 1.5 and 𝑓 =

1. Sequence	(0, 2, 6, 12, 20, … ) will appear in index sequence 2 ≤ 𝑦 < ∞ 
• In the curve 𝒙 = 𝒚𝟐 − 𝒚 we have 𝒚𝒊𝒑 = 𝟎. 𝟓 and 𝒇 =

𝟎. 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞	(𝟎, 𝟐, 𝟔, 𝟏𝟐, 𝟐𝟎,… ) will appear in index sequence 𝟏 ≤ 𝒚 < ∞ 
• In the curve 𝑥 = 𝑦" + 𝑦 we have 𝑦)! = −0.5 and 𝑓 =

−1. Sequence	(0, 2, 6, 12, 20, … ) will appear in index sequence 0 ≤ 𝑦 < ∞ 
• In the curve 𝑥 = 𝑦" + 3𝑦 + 12 we have 𝑦)! = −1.5 and 𝑓 =

−2. Sequence	(0, 2, 6, 12, 20, … ) will appear in index sequence −1 ≤ 𝑦 < ∞ 
• In the curve 𝑥 = 𝑦" + 5𝑦 + 12 we have 𝑦)! = −2.5 and 𝑓 =

−3. Sequence	(0, 2, 6, 12, 20, … ) will appear in index sequence −2 ≤ 𝑦 < ∞ 
• In the curve 𝑥 = 𝑦" + 7𝑦 + 12 we have 𝑦)! = −3.5 and 𝑓 =

−4. Sequence	(0, 2, 6, 12, 20, … ) will appear in index sequence −3 ≤ 𝑦 < ∞ 
In this choice the equation seems to be expressed as: 

𝑓 = 𝑓𝑙𝑜𝑜𝑟�𝑦)!� = 𝑓𝑙𝑜𝑜𝑟 �−
𝑏
2𝑎� = �−

𝑏
2𝑎� 

When we refer to the offset of a quadratic Integers sequence generated by equations 𝑌([𝑦] =
𝑎𝑦" + 𝑏(𝑦 + 𝑐( and 𝑌"[𝑦] = 𝑎𝑦" + 𝑏"𝑦 + 𝑐", we just mean that there is a displacement of the 
terms (elements of the sequence) generated on the X-axis in the function of index y. In XY-plane 
offset between two identical sequences is equivalent to moving the quadratic curve only along 
the Y-axis in an integer shift (integer y step) without moving the curve along the X-axis. 

Remembering the initial example of odd numbers, we want our sequence to appear using Tally 
counting. 

Therefore, the only option where we will have 𝑦)! the closest to zero and we can count the 
indexes y as Tally counting is just this second option	𝑥 = 𝑦" − 𝑦. 
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So, from our definition: “offset zero is the equation which results in 𝑦)! positive most close to 
𝑦 = 0” then, we expect to see this behavior in yellow: 

 

Table 2. Searching the correct equation function for the Offset 

9.3 Conclusion 

In conclusion, there is no current equation function to express exactly the result of the offset. So, 
we will introduce a new mathematical function called roundz to calculate the offset. 
  

 Function 1 Function 2 Function 3 Function 
Expected 

𝑦$% floor"𝑦$%# ceiling"𝑦$%# round"𝑦$%# roundz"𝑦$%# 
3,5 3 4 4 3 
3,25 3 4 3 3 

3 3 3 3 3 
2,75 2 3 3 3 
2,5 2 3 3 2 
2,25 2 3 2 2 

2 2 2 2 2 
1,75 1 2 2 2 
1,5 1 2 2 1 
1,25 1 2 1 1 

1 1 1 1 1 
0,75 0 1 1 1 
0,5 0 1 1 0 
0,25 0 1 0 0 

0 0 0 0 0 
-0,25 -1 0 0 0 
-0,5 -1 0 0 -1 
-0,75 -1 0 -1 -1 

-1 -1 -1 -1 -1 
-1,25 -2 -1 -1 -1 
-1,5 -2 -1 -1 -2 
-1,75 -2 -1 -2 -2 

-2 -2 -2 -2 -2 
-2,25 -3 -2 -2 -2 
-2,5 -3 -2 -2 -3 
-2,75 -3 -2 -3 -3 

-3 -3 -3 -3 -3 
-3,25 -4 -3 -3 -3 
-3,5 -4 -3 -3 -4 
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10 Formal offset equation 

The closest equation to the desired result is the round equation. The problem with the round 
equation appears when 𝑦)! = 0.5 or any other 𝑦)! =

KLL
"

. For example, the offset for 
𝑓@(A"#=>.%) = 0, but 𝑟𝑜𝑢𝑛𝑑[0.5] = 1.  

𝑟𝑜𝑢𝑛𝑑�𝑦)!� = 0	𝑓𝑜𝑟	]−0.5 ≤ 𝑦)! < 0.5_ 
So, the round function should be changed to meet offset zero (𝑓 = 0) for −0.5 < 𝑦)! ≤ +0.5.  

𝑂𝑓𝑓𝑠𝑒𝑡 = 𝑓 = 0	𝑤ℎ𝑒𝑛	 − 0.5 < 𝑦_𝑖𝑝	(@𝑜𝑓𝑓𝑠𝑒𝑡 = 0) = −𝑏/2𝑎 ≤ +0.5 
If we create a new equation function called “round to zero” abbreviated as “roundz” where 

𝑟𝑜𝑢𝑛𝑑𝑧�𝑦)!� = 0	𝑓𝑜𝑟	]−0.5 < 𝑦)! ≤ 	0.5_ 
Then, we will meet the desired behavior: 
𝑓 = 0 when −0.5 < − 8

"9
≤ +0.5 

Expanding: 
𝑓 = −3 when −3.5 < − 8

"9
≤ −2.5 

𝑓 = −2 when −2.5 < − 8
"9
≤ −1.5 

𝑓 = −1 when −1.5 < − 8
"9
≤ −0.5 

𝑓 = 0 when −0.5 < − 8
"9
≤ 0.5 

𝑓 = 1 when 0.5 < − 8
"9
≤ 1.5 

𝑓 = 2 when 1.5 < − 8
"9
≤ 2.5 

𝑓 = 3 when 2.5 < − 8
"9
≤ 3.5 

In the computer, these calculations are almost equivalent to use the function “round” but 
adjusted to meet the new round to zero (roundz) function. 

So, from now on we will define the equation of offset as being: 

𝑓 = 𝑟𝑜𝑢𝑛𝑑𝑧 �−
𝑏
2𝑎� = 𝑟𝑜𝑢𝑛𝑑 �−

𝑏
2𝑎 − 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑠𝑖𝑚𝑎𝑙� 

So, 

𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑓 = 𝑟𝑜𝑢𝑛𝑑 �−
𝑏
2𝑎 − 𝜀� = 𝑟𝑜𝑢𝑛𝑑 �𝑓 −

𝑏º
2𝑎 − 𝜀� 

Or using a new function “roundz” (Round Minus Infinitesimal or Round to Zero) 

𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑓 = 𝑟𝑜𝑢𝑛𝑑𝑧 �−
𝑏
2𝑎� = 𝑟𝑜𝑢𝑛𝑑𝑧 �𝑓 −

𝑏º
2𝑎� 
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11 Example I: offset zero in Fibonacci polynomial 

Question: which quadratic equation should we use to represent A165900 in offset zero? Which 
should be considered the simplest equation 𝑌[𝑦] = 𝑦" + 𝑦 − 1 or 𝑌[𝑦] = 𝑦" − 𝑦 − 1?  

Let’s define: 
𝜑 = √1.25 − 0.5 = 0.618033988749895… 
Φ = √1.25 + 0.5 = 1.618033988749895. .. 

So, 
1
𝜑 =

1
√1.25 − 0.5

=
√1.25 + 0.5

]√1.25 − 0.5_]√1.25 + 0.5_
=

Φ
1.25 − 0.25 = Φ 

1
Φ =

1
√1.25 + 0.5

=
√1.25 − 0.5

]√1.25 + 0.5_]√1.25 − 0.5_
=

𝜑
1.25 − 0.25 = 𝜑 

𝜑" = ]√1.25 − 0.5_
"
= 1.25 − √1.25 + 0.25 = 1.5 − √1.25 = 1 − 𝜑 

Φ" = ]√1.25 + 0.5_
"
= 1.25 + √1.25 + 0.25 = 1.5 + √1.25 = 1 + Φ 

11.1 Representing A165900 as being 𝒀[𝐲] = 𝒚𝟐 + 𝒚 − 𝟏 

In this case, 
𝜑" + 𝜑 − 1 = 0 
𝜑" + 𝜑 = 1 
𝜑(𝜑 + 1) = 1 

𝜑 =
1

𝜑 + 1 =
𝜑 − 1

(𝜑 + 1)(𝜑 − 1) =
𝜑 − 1
𝜑" − 1 =

𝜑 − 1
1 − 𝜑 − 1 =

𝜑 − 1
−𝜑 =

1 − 𝜑
𝜑 =

1
𝜑 − 1 

Or we could do: 

𝜑 + 1 =
1
𝜑 

Then, 

𝜑 =
1
𝜑 − 1 =

1
1

1
1

1
1

1
𝜑 − 1

− 1
− 1

− 1
− 1

− 1
− 1 =

1
1

1
1

1
1

1
… − 1

− 1
− 1

− 1
− 1

− 1
− 1 

Another approach: 
Φ− 𝜑 = 1 
−𝜑 = 1 − Φ 
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−𝜑 = 1 −

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1
1

1
1

1
1

1
Φ + 1

+ 1
+ 1

+ 1
+ 1

+ 1
+ 1

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

=
−1
1

1
1

1
1

1
Φ + 1

+ 1
+ 1

+ 1
+ 1

+ 1

=
−1
1

1
1

1
1

𝜑 + 1 + 1
+ 1

+ 1
+ 1

+ 1
=

1
1

1
1

1
1

−𝜑 + 1 + 1
+ 1

+ 1
+ 1

+ 1
 

In this option when A165900 is represented by 𝑌[𝑦] = 𝑦" + 𝑦 − 1, then  
• The golden number is a continued fraction less a unit. 
• The equation 𝑌[𝑦] = 𝑦" + 𝑦 − 1 has the sum of the roots equal to −1. 
• This is the way how nature decrease. 

11.2 Representing A165900 as being 𝒀[𝐲] = 𝒚𝟐 − 𝒚 − 𝟏 

In this case, 
Φ" −Φ− 1 = 0 
Φ" −Φ = 1 
Φ(Φ − 1) = 1 

Φ =
1

Φ − 1 =
Φ+ 1

(Φ − 1)(Φ + 1) =
Φ + 1
Φ" − 1 =

Φ+ 1
1 + Φ − 1 =

Φ+ 1
Φ =

1
Φ + 1 

Or we could do: 

Φ− 1 =
1
Φ 

Then, 

Φ =
1
Φ + 1 =

1
1

1
1

1
1

1
Φ + 1

+ 1
+ 1

+ 1
+ 1

+ 1
+ 1 =

1
1

1
1

1
1

1
… + 1

+ 1
+ 1

+ 1
+ 1

+ 1
+ 1 

Another approach: 
Φ− 𝜑 = 1 
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−Φ = −1 − 𝜑 

−Φ = −1 −

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1
1

1
1

1
1

1
𝜑 − 1

− 1
− 1

− 1
− 1

− 1
− 1

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

=
−1
1

1
1

1
1

1
𝜑 − 1

− 1
− 1

− 1
− 1

− 1

=
−1
1

1
1

1
1

Φ − 1 − 1
− 1

− 1
− 1

− 1
=

1
1

1
1

1
1

−Φ − 1 − 1
− 1

− 1
− 1

− 1
 

 
 

In this option when A165900 is represented by 𝑌[𝑦] = 𝑦" − 𝑦 − 1, then  
• The golden number is a continued fraction plus a unit. 
• The equation 𝑌[𝑦] = 𝑦" + 𝑦 − 1 has the sum of the roots equal to +1. 
• This is the way how nature grows. 

11.3 Conclusion 

Because of the way nature grows, A165900 is represented by 𝑌[𝑦] = 𝑦" − 𝑦 − 1 is the 
simplest equation with offset zero.  
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12 Example II: misuse of offset in infinite series 

See what happens when we misuse the concept of offset in the infinite series. For example, let's 
be 

𝑆 = ¨2*
O

*=(

 

Then, 
𝑆 = 2 + 4 + 8 + 16 + 32 + 64 +⋯ 

So, 
𝑆 = 2(1 + 2 + 4 + 8 + 16 + 32 + 64 +⋯) 

Then, 
𝑆 = 2(1 + 𝑆) 
𝑆 = 2 + 2𝑆 
𝑆 = −2 

Conclusion: 

𝑆 = ¨2*
O

*=(

= −2	 

Clearly that a sum of only positive numbers resulting in a negative number indicates that 
something here is very wrong. 

Where is the error? 
The error is here 

𝑆 = 2(1 + 𝑆) 
The correct equation should be: 

𝑆 = 2(1 + 𝑆<P)0-,&) 
Where 𝑆 ≠ 𝑆<P)0-,&. 
First that if we use the same concept of continued fraction in the expression 𝑆 = 2(1 + 𝑆) we 

get  
𝑆 = 2(1 + 𝑆) 

𝑆 = 2(1 + 2(1 + 2(1 + 2(1 + 2(1 + 2(1 +⋯)))))) 
This clearly cannot be true for any infinite series S. 
We cannot substitute the shifted infinite sum by the original infinite sum again, because they 

are out of phase, and we are starting from a finite index in the infinite S sum. The correct treatment 
is: 

𝑆 = ¨2*
O

*=(

= 2 + 4 + 8 + 16 + 32 + 64 +⋯ 

𝑆 = 2¨2*'(
O

*=(

= 2 + 4 + 8 + 16 + 32 + 64 +⋯ 

𝑆 = 2¨2*'(
O

*=(

= 2(1 + 2 + 4 + 8 + 16 + 32 + 64 +⋯) 
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Or, 

𝑆 = 2¨2*
O

*=>

= 2(1 + 2 + 4 + 8 + 16 + 32 + 64 +⋯) 

So, 
𝑆
2 = ¨2*

O

*=>

= 1 + 2 + 4 + 8 + 16 + 32 + 64 +⋯ 

Or, 

¨2*
O

*=>

= 1 + 2 + 4 + 8 + 16 + 32 + 64 +⋯ 

©¨2*
O

*=>

ª − 1 = 2 + 4 + 8 + 16 + 32 + 64 +⋯ 

©¨2*
O

*=>

ª − 1 = 𝑆 

©¨2*
O

*=>

ª − 1 = ¨2*
O

*=(

 

¨2*
O

*=>

−¨2*
O

*=(

= 1 

At the end we need to operate the equations with indexes synchronized: 

¨2*'(
O

*=(

−¨2*
O

*=(

= 1 

¨(2*'(
O

*=(

− 2*) = 1 

When we start or end an infinite series with a finite index, we do have to respect the offset, 
the phase, or the synchronism between them. When we respect the offset, we have concise results.  

When we are dealing with series covering the infinite indexes without a starting or ending 
index, then we may write: 

𝑆 = ¨ 2A3*
O

A='O

= ¨ 2A3Q
O

A='O

 

Where the integers powers 𝑦 + 𝑛 and 𝑦 +𝑚 may or may not be equal. This is because in the 
infinite the offset does not affect. 

In our studies, we interpret the infinite as being the place where the offset does not have 
meaning. 
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13 Example III: misuse of offset in infinite series 

There is a draft (not published) from Ramanujan where he wrote: 

 
Figure 3. Snippet from Srinivasa Ramanujan's first notebook, chapter 8, concerning an alternate 

derivation of 1 + 2 + 3 + 4 + ⋯ = −1/12 (Public Domain) 

So, he concluded 

1 + 2 + 3 + 4 + 5 + 6 +⋯ = −
1
12 

Just because of the signal difference between the two sides of the equality, there is something 
very confused here. 

Similar to the previous example II, Ramanujan wrote 
𝑐 = 1 + 2 + 3 + 4 + 5 + 6 +⋯ 
4𝑐 = 0 + 4 + 0 + 8 + 0 + 12 +⋯ 

So, he concluded: 
𝑐 − 4𝑐 = 1 − 2 + 3 − 4 + 5 − 6 +⋯ 

Where is the error? 
The problem here appears when we add zeroes in 4𝑐. In all finite sums, no problem at all. But, 

from the perspective of offset in infinite series, this is an error. The reason is that the sum of 2 or 
more infinite series cannot lose the phase (or synchronism) in the indexes between the series. 
When we add the zeroes in 4c we are losing the synchronism between the elements from c and 
4c. 

If 
𝑐 = 1 + 2 + 3 + 4 + 5 + 6 +⋯ 

Then, 
4𝑐 = 4 + 8 + 12 + 16 + 20 + 24 +⋯ 

And, 
𝑐 − 4𝑐 = −3 − 6 − 9 − 12 − 15 − 18 −⋯ = −3𝑐 

Because: 

𝑐 = 1 + 2 + 3 + 4 + 5 + 6 +⋯ = ¨𝑦
O

A=(

 

then, 

4𝑐 = 4 + 8 + 12 + 16 + 20 + 24 +⋯ =¨4𝑦 = 4
O

A=(

¨𝑦
O

A=(
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Now, 

0 + 4 + 0 + 8 + 0 + 12 + 0 + 16 + 0 + 20 + 0 + 24. . . = ¨2𝑦 V«𝑐𝑜𝑠 V
𝑦𝜋
2 W«W

O

A=(

=¨2𝑦𝑐𝑜𝑠" V
𝑦𝜋
2 W

O

A=(

	 

So, the error in the Ramanujan draft was to consider the same value the two differences 

¨𝑦
O

A=(

− 4¨𝑦
O

A=(

 

and 

=¨𝑦
O

A=(

−¨2𝑦𝑐𝑜𝑠" V
𝑦𝜋
2 W

O

A=(

 

13.1 The Ramanujan differences not considering offset: 

𝑐 − 4𝑐 = −3𝑐 = (1 + 2 + 3 + 4+. . . ) − (4 + 8 + 12 + 16+. . . ) = −(3 + 6 + 9 + 12+. . . )

= −3(1 + 2 + 3 + 4+. . . ) = ¨𝑦
O

A=(

−¨4𝑦
O

A=(

=¨(−3𝑦)
O

A=(

= −3¨𝑦
O

A=(

 

13.2 The Ramanujan differences considering offset: 

𝑐 − 4𝑐 = (1 + 2 + 3 + 4+. . . ) − (0 + 4 + 0 + 8+. . . ) = (1 − 2 + 3 − 4+. . . )

= ¨𝑦
O

A=(

−¨2𝑦 V«𝑐𝑜𝑠 V
𝑦𝜋
2 W«W

O

A=(

=­S𝑦 − 2𝑦 V«𝑐𝑜𝑠 V
𝑦𝜋
2 W«WT

O

A=(

=­S𝑦 − 2𝑦𝑐𝑜𝑠" V
𝑦𝜋
2 WT

O

A=(

 

Note that,  the sum (1 − 2 + 3 − 4+. . . ) is the formal power series expansion of the function 
(

(('R)!
= 1 + 2𝑥 + 3𝑥"+. . . +(𝑘 + 1)𝑥4 +⋯ with 𝑥 = −1. Then, 

(1 − 2 + 3 − 4+. . . ) =
1

(1 + 1)" =
1
4 =­S𝑦 − 2𝑦 V«𝑐𝑜𝑠 V

𝑦𝜋
2 W«WT

O

A=(

=­S𝑦 − 2𝑦𝑐𝑜𝑠" V
𝑦𝜋
2 WT

O

A=(

 

In conclusion: 
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𝑐 − 4𝑐 = −3𝑐 = ¨𝑦
O

A=(

−¨4𝑦
O

A=(

=¨(−3𝑦)
O

A=(

= (−3 − 6 − 9 − 12 −⋯) 

and 

(1 − 2 + 3 − 4+. . . ) =­S𝑦 − 2𝑦 V«𝑐𝑜𝑠 V
𝑦𝜋
2 W«WT

O

A=(

=­S𝑦 − 2𝑦𝑐𝑜𝑠" V
𝑦𝜋
2 WT

O

A=(

=
1
4 
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14 General summary 

General 2nd-degree polynomial equation 
𝑌[𝑦] = 𝑎𝑦" + 𝑏𝑦 + 𝑐 

Then, given 3 consecutive elements of the sequence (𝑌[𝑦(], 𝑌[𝑦"], 𝑌[𝑦#]) = (𝑥(, 𝑥", 𝑥#), the 
simplest equation is 

𝑌[𝑦] = Q
𝑥(	– 2𝑥" + 𝑥#

2 R 𝑦" + V
𝑥# − 𝑥(
2 W 𝑦 + 𝑥" 

Where the simplest coefficients are: 

𝑎 =
𝑥(	– 2𝑥" + 𝑥#

2 	

𝑏 =
𝑥# − 𝑥(
2 	

𝑐 = 𝑥" 
And 

𝑦)! = −
𝑏
2𝑎 = −

𝑥# − 𝑥(
2𝑥( − 4𝑥" + 2𝑥#

 

The offset of this equation is given by: 

𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑓 = 𝑟𝑜𝑢𝑛𝑑𝑧�𝑦)!� = 𝑟𝑜𝑢𝑛𝑑𝑧 �−
𝑏
2𝑎� = 𝑟𝑜𝑢𝑛𝑑𝑧 �−

1
2 ∗

𝑥# − 𝑥(
𝑥( − 2𝑥" + 𝑥#

� 

The discriminant is: 

∆= 𝑏" − 4𝑎𝑐 =
𝑥(" + (4𝑥")" + 𝑥#" − 2𝑥((4𝑥") − 2(4𝑥")𝑥# − 2𝑥(𝑥#

4

=
V𝑥( − 𝑥# − 4√𝑥"]√𝑥" − ^𝑥#_W V𝑥( − 𝑥# − 4√𝑥"]√𝑥" + ^𝑥#_W

4 	

𝑥)! = −
∆
4𝑎 = 𝑐 −

𝑏"

4𝑎 = 𝑥" −
(𝑥# − 𝑥()"

8(𝑥(	– 2𝑥" + 𝑥#)

= −
𝑥(" + (4𝑥")" + 𝑥#" − 2𝑥((4𝑥") − 2(4𝑥")𝑥# − 2𝑥(𝑥#

8(𝑥(	– 2𝑥" + 𝑥#)

= −
V𝑥( − 𝑥# − 4√𝑥"]√𝑥" −^𝑥#_W V𝑥( − 𝑥# − 4√𝑥"]√𝑥" +^𝑥#_W

8(𝑥(	– 2𝑥" + 𝑥#)
	

𝐿𝑎𝑡𝑢𝑠	𝑅𝑒𝑐𝑡𝑢𝑚 = d
1
𝑎d = d

2
𝑥(	– 2𝑥" + 𝑥#

d 

So, 
𝑌[𝑦] = 𝑎𝑦" + 𝑏𝑦 + 𝑐 = 𝑥 = 𝑎𝑦" + (𝑏º − 2𝑎𝑓)𝑦 + (𝑎𝑓" − 𝑏º𝑓 + 𝑐º) 

Then, 
𝑎 = 𝑎º 𝑎º = 𝑎 

𝑏 = 𝑏º − 2𝑎𝑓 𝑏º = 𝑏 + 2𝑎𝑓 
𝑐 = 𝑎º𝑓" − 𝑏º𝑓 + 𝑐º 𝑐º = 𝑎𝑓" + 𝑏𝑓 + 𝑐 
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