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Abstract—Epilepsy is a neurological disorder characterized
by recurring episodes of seizures caused by abnormal electri-
cal activity in the brain. Predicting seizures can allow early
intervention by caregivers and improve patient outcomes. This
paper proposes a novel Random Neural Network (RNN)-based
method for prediction of epileptic seizures using feature vector
extracted from each segment of EEG data. The proposed model is
trained and tested using the CHB-MIT EEG database, employing
a 10-fold cross-validation technique. The proposed RNN-based
model, achieved an accuracy of 95.66%, sensitivity of 93.84%,
and specificity of 96.17% in predicting seizure states.

Index Terms—Epilepsy Prediction, Remote Healthcare, Ran-
dom Neural Network

I. INTRODUCTION

Epilepsy is a neurological disorder in which patients suf-
fer from recurring seizures caused by abnormal electrical
activity in the brain. Approximately two-thirds of patients
with epilepsy can be treated using medication and surgery.
However, there is no treatment currently available for the
remaining 30% epilepsy patients [1]. Therefore, it is imper-
ative to predict and manage subsequent seizures in a timely
manner once a patient is diagnosed with epilepsy [2]. Seizure
detection is a process of identifying a seizure after it has
occurred which can help neurologists with the diagnosis of
epilepsy. In contrast, seizure prediction provides an alert prior
to the onset of a seizure which is critical for pre-emptive
treatment, especially for patients who suffer from recurrent
seizures [3]. Epileptic seizures can be predicted by identifying
EEG segments preceding seizure events. The segments of EEG
data are categorised in multiple states depending upon its
time proximity with the seizure. The ’ictal’ state represents
segment that starts with the onset of a seizure. The segments
corresponding to the time before the seizure onset is known
as ’pre-ictal’ state while the normal EEG data segments are
identified as ’inter-ictal’ state [4]. The EEG signal in the three
states is displayed in Figure 1, covering a duration of 10
seconds. Epilepsy detection involves the classification of ictal
and inter-ictal EEG data which is relatively straightforward
due to the presence of characteristic abnormalities such as
spikes and sharp waves in the ictal signal. Epilepsy prediction
involves the classification of inter-ictal and pre-ictal signals
which is a challenging task due to the similarity between the
two signal types, as they may exhibit similar patterns and
features in the EEG signal.

Fig. 1. EEG signal in Ictal, Pre-Ictal, and Inter-Ictal States

Most of the research found in the literature is focused on
the detection of epileptic seizures [5]–[7]. Automatic seizure
detection can help in treatment and management of epilepsy.
However, early prediction of seizures can allow prompt inter-
vention and timely adjustment in medication, thereby reducing
the severity and frequency of seizures [8]. Gao. et. al [9]
considers detecting different states of epileptic seizures using
CNN and transfer learning. The four different classes include
inter-ictal, pre-ictal (duration to 30 min), pre-ictal (duration to
10 min), and seizures. Initially, the EEG signal is transformed
to power spectrum density energy before using it to train and
test the proposed model.

In [10], the authors designed a semi-supervised domain
adaptive seizure prediction model (SSDA-SPM) to predict
seizures. The idea is to utilize unlabelled data along with
available labelled data for adaptation. A feature alignment
(FA) transfers existing knowledge to the new model using the
data distribution. The consistency regularization (CR) module
presents additional capability of enhancing the discrimination
power. Similarly, Ouichka et. al., [11] examined the perfor-
mance of standard CNN model, and the fusions multiple CNNs
including fusions of 2, 3 and 4 CNNs, and transfer learning
with ResNet50. Additionally in [2], the authors proposed a



seizure prediction method based on Multi-Layer Perceptrons
(MLP). A weighted layer was introduced to assign weight
to the layers that contain more relevant information about
the seizures. The experiments are conducts on two datasets
including the CHB-MIT. The proposed model achieved a
sensitivity of 93.80% with 80.03% specificity.

A. Aims and Objectives
This research is aimed to develop a novel RNN-based

method for classification EEG signal for prediction of epileptic
seizures. The main contributions of this research are given
below:

• A novel RNN-based machine learning model is presented
for the prediction of seizures.

• The proposed model involves extracting six statistical
features from the EEG data that includes SD, Mean,
Kurtosis, Skewness, Min, Max.

• The performance of the proposed RNN based model is
evaluated by comparing the results with other state-of-
the-art epilepsy prediction models.

• The analysing the results conclude that the proposed
model outperforms the traditional classification algo-
rithms of accuracy, sensitivity, and specificity.

II. EXPERIMENTAL ANALYSIS

In this section, the experimental setup for evaluating the
performance of the proposed epilepsy prediction model based
on RNN is described. The model utilizes the CHB-MIT
EEG database, which contains multi-channel surface EEG
recordings. The proposed RNN-based model aims to predict
seizures by computing statistical features for each channel
of the EEG data capturing vital characteristics of the EEG
signals. The proposed RNN-based model has been trained and
tested using k-fold cross-validation technique to validate the
model’s effectiveness in accurately classifying EEG signals
for the prediction of epileptic seizures. The proposed model is
trained and validated ten times. In each iteration, the dataset
is divided into ten subsets, with nine of the subsets used
for training while one is used for validation. The model that
demonstrates the highest validation accuracy that indicates su-
perior generalization capabilities is selected for further testing.

The experiment has been conducted using a computer
running the Microsoft Windows 11 operating system equipped
with an AMD Ryzen 7 3700X 8-Core Processor and 48 GB
of RAM. The implementation of data preparation, frequency
analysis, and feature extraction was performed in Python while
the data normalization and classification process using RNN
were carried out using MATLAB.

A. The Dataset
In this study, the CHB-MIT dataset is utilized which is

available publicly online [12]. The dataset is composed of
24 folders, each of which contains surface EEG recordings
in EDF format. Additionally, each folder has a corresponding
text file that contains a summary of the EEG recordings and
seizure information. We have selectively chosen to utilize only
the files that include seizure activity, as shown in Table I

TABLE I
SEIZURE INFORMATION IN CHB-MIT DATASET

Folder Number of Seizures Average Seizure Time (sec)
chb01 7 63.14
chb02 3 57.33
chb03 7 57.43
chb04 4 94.50
chb05 5 111.60
chb06 10 15.30
chb07 3 108.33
chb08 4 196.25
chb09 4 69.00
chb10 7 63.86
chb11 3 268.67
chb12 40 36.88
chb13 12 44.58
chb14 8 21.13
chb15 20 99.60
chb16 10 8.40
chb17 3 97.67
chb18 6 52.83
chb19 3 78.67
chb20 8 36.75
chb21 4 49.75
chb22 3 68.00
chb23 7 60.57

Fig. 2. EEG signal in Ictal, Pre-Ictal, and Inter-Ictal States

B. Data Preparation

Before training the proposed model, the raw data extracted
from the CHB-MIT database is pre-processed by dividing it
into segments using a sliding window approach. The data seg-
ments are 10 seconds long, with a 3-second overlap between
consecutive segments. The purpose of this segmentation is to
capture specific temporal patterns within the signal.

Figure 2 illustrates the segmentation where the segments
containing seizure activity are labeled as ’ictal’. In addition to
the ’ictal’ segments, two more classes have been defined based
on their temporal proximity to the seizure events. The period
preceding a seizure is represented by the segments that occur
less than 90 seconds before the onset of a seizure event and are
labeled as ’pre-ictal’. Similarly, the segments of data that occur
between seizures are identified as ’inter-ictal’ and are marked
at least 100 seconds after the end of a seizure. By dividing
the data into ’ictal’, ’pre-ictal’, and ’inter-ictal’ segments, we
enable the RNN-based machine learning model to capture the
distinctive features associated with different seizure states.

III. DATA PRE-PROCESSING

This section describes the pre-processing steps taken to the
raw EEG data from the CHB-MIT dataset before feeding it



Fig. 3. Data pre-processing and RNN Model Architecture

into the RNN-based model. The pre-processing steps consist
of data normalization, segmentation, and label assignment.
Figure 3 illustrates each step involved in data preparation, pre-
processing and the RNN model architecture.

A. band-pass Filtering

A band-pass filter is with a frequency range of 0-40Hz
applied to each channel of the raw EEG data to focus on the
frequency range associated with seizure activity. The purpose
of band-pass filter is to attenuate frequencies outside the
specified range and retain the relevant frequencies necessary
for epilepsy prediction. This step is to ensure that unwanted
noise and artefacts are removed from the EEG signal.

B. Segmentation and Label Assignment

To facilitate the classification process and capture temporal
patterns, the raw EEG data is divided into multiple segments
using a sliding window approach, where a window of fixed-
length slides over the data with a specified overlap. The
overlap segment length parameters need to be determined
based on the desired temporal resolution and the characteristics
of the seizures. In this study, a segment length of 10 seconds
is used, which has been determined using trial and error
method as optimal duration for capturing relevant information
in EEG signals. The overlap between consecutive segments is
set to 3 seconds to ensure sufficient coverage of the temporal
dynamics.

After data segmentation, each segment is assigned a label
based on the seizure states: ictal, pre-ictal, and inter-ictal. The
process of labeling involves associating each segment with the
corresponding label based on its temporal proximity to seizure
events. The segments falling during a seizure are labeled as
ictal, while the segments preceding a seizure event within a 90

seconds time window are labeled as pre-ictal. The rest of the
segments occurring between seizures and at least 100 seconds
after a seizure event are labeled as inter-ictal.

C. Feature Extraction

The feature extraction step is crucial for reducing the
dimensionality of the data and improving computational effi-
ciency by removing redundant and irrelevant information. Six
statistical features (standard deviation, mean, kurtosis, skew-
ness, minimum, and maximum) are extracted from each EEG
channel to capture the discriminating characteristics of the
EEG signals. These features represent quantitative information
about the distribution, shape, and range of the EEG signals in
each channel. The resulting feature vector for each segment
combines the relevant features from all channels, resulting in
a comprehensive representation of the signal characteristics.

D. Data Normalization

Data normalization is performed to ensure that the EEG
data is consistent and comparable across different statistical
features and channels. In this research, min-max scaling is
employed to normalize the data between 0 and 1. Min-
max scaling transforms the data to the specified range while
preserving the relative characteristics of the data. The data is
scaled using the following min-max formula:

Normalized Value =
Max Value − Min Value

Original Value − Min Value

E. RNN Model Architecture

The proposed RNN model architecture consists of three
layers, including the input layer, hidden layers, and the output
layer. The input layer receives the pre-processed EEG data
containing a feature vector of 138 values, which is then fed
into the RNN. The hidden layer in the proposed RNN-based
model consists of 50 nodes.

The RNN layers capture the spiking behavior and temporal
dependencies in the data. In the RNN model, each neuron has
a potential state indicating its accumulated signals represented
by a non-negative integer. The neurons in RNN transition
between an idle state (ki(t) ≤ 0) and an excited state
(ki(t) > 0) depending on whether the received input is
excitatory or inhibitory.

In each neuron in the RNN layers , the activation function
fi is calculated as shown in Equations 1 and 2 of the
RNN description. The excitatory and inhibitory inputs of a
neuron i are represented by λ+

i and λ−
i . These inputs are

computed based on the firing rates rj , activation functions
fj , and probabilities p+j,i and p−j,i of the neurons in the
preceding layer. The weights in RNN are similar to those in
classical neural networks and are adjusted through a learning
process employing gradient descent algorithm to minimize the
network’s loss.

fi =
λ+
i

ri + λ−
i

(1)



Fig. 4. Confusion Matrix for RNN-based epilepsy prediction

fi =

∑N
j=1 fjrjp

+
j,i

ri +
∑N

j=1 fjrjp
−
j,i

(2)

Finally, the output layer produces the final prediction based
on the learned representation from the hidden layer in the RNN
architecture. In our case, the output layer contains 3 nodes
corresponding to the 3 classes in the classification problem.

F. Training and Evaluation

The RNN-based model is trained using the feature vector
obtained after pre-processing the EEG data. The model learns
to predict seizures based on the feature vector and associated
labels through iterative parameter updates using optimization
method namely gradient descent to minimize the loss.

Figure 4 illustrates the results of proposed RNN-based
epilepsy prediction scheme in terms of confusion matrix. The
vertical axis represents the true classes (aka actual classes
or ground truth) including inter-ictal, ictal, and pre-ictal. The
predicted outcomes by proposed scheme, in terms of the same
classes as given on vertical axis, are illustrated on horizontal
axis. The numbers in diagonal cells of the confusion matrix,
for example, at positions (1,1), (2,2), and (3,3) illustrate how
accurately the given true class has been predicted by the model
under consideration. The additional row-wise cells demon-
strate the wrong predictions of the true class into the predicted
class, given on horizontal axis. The confusion matrix of an
ideal algorithm will put all the classifications in the diagonal
cells illustrating that all the predictions have been achieved
with a 100% accuracy. Lower values in the diagonal cells and
higher values in other cells of a confusion matrix means more
miss-predictions as compared to correct predictions.

The confusion matrix in Figure 4 represents the prediction
results in terms of percentage. For example, the cell (1,1)
represents the percent of correctly predicted inter-ictal samples
to the total number of true inter-ictal samples. Similarly,

the results in diagonal cells (2,2), and (3,3) represent the
percentage of predictions for ictal and pre-ictal classes. The
results show that the proposed algorithm was able to achieve
satisfactory results by correctly predicting inter-ictal, ictal, and
pre-ictal classes with an accuracy of 97.18%, 94.82%, and
89.53%, respectively. However, it was more challenging to
predict pre-ictal as compared to other two classes due to the
complex nature of the EEG signal in this case. The similar
trend can be found in various works proposed in the literature.
Moreover, the most miss-predictions (more than 6%) of pre-
ictal samples were made in the ictal class as compared to the
inter-ictal class. These results show large similarity between
the signals of the two classes, as shown in Figure 1.

The prediction results of proposed RNN-based scheme are
illustrated in Table II. The percent of prediction accuracy,
sensitivity, and specificity are given for inter-ictal, ictal, and
pre-ictal classes obtained from testing the proposed model
using the test set. These results follow the same argument
concluded from the confusion matrix, i.e., the model can
predict the inter-ictal class with higher accuracy as compared
to predicting ictal and pre-ictal classes. Similarly, the Ictal
class can be identified easier than the pre-ictal. Furthermore,
the sensitivity follows a similar trend to that of accuracy for
all the classes. However, the specificity for pre-ictal class is
the highest among the three classes followed by inter-ictal in
the list and then the ictal with the least specificity of all. A
reason can be higher miss-predictions of the ictal class into the
pre-ictal class due high similarity among the characteristics of
the samples.

TABLE II
ACCURACY, SENSITIVITY AND SPECIFICITY FOR RNN-BASED SEIZURE

PREDICTION

Class Accuracy (%) Sensitivity (%) Specificity (%)
Inter-ictal 96.56 97.18 96.19

Ictal 95.74 94.82 94.26
Pre-Ictal 94.6 89.53 98.07

A comparative analysis of the proposed RNN-based model
with the state-of-the-art techniques in literature is given in
Table III. The three algorithms in the analysis include EESC
[9], SSDA [10], and 4D-CNN [11]. These algorithms have
been primarily selected among because they have been pub-
lished in the last three years (2020 to 2023). Moreover, these
algorithms focused on the prediction of seizures which makes
them perfectly aligned with scope of current work.

In [13], the authors used performed epilepsy prediction
using CNN. In feature extraction phase, a featured Stability
Index has been added to the feature set which is calculated
using multivariate autoregressive model. The model achieved
an overall accuracy of 94.5% and sensitivity of 90.1%. Simi-
larly, Kapoor et al. [14] extracted 8 statistical features from the
raw EEG data for epilepsy prediction. The classification was
performed using ensemble classifier combining AdaBoost, ran-
dom forest and decision trees. The proposed model achieved
a sensitivity of 90.18% with an accuracy of 92.31%. In
comparative analysis given here, the best results reported by



TABLE III
COMPARISON OF RNN-BASED EPILEPSY PREDICTION MODEL WITH

OTHER METHODS

Ref Method Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Gao et al. [9] EESC 92.6 92.3 97
Liang et al. [10] SSDA 88.80

Ouichka et al. [11] 4D CNN 95.00
Chang et al. [2] MLP 93.80 80.03
Assali et al. [13] CNN 94.5 90.10 88.60
Kapoor et al. [14] AdaBoost+DT+RF 93.91 91.67 88.56

This work RNN 95.66 93.84 96.17

these studies have been added to prove the efficiency of
proposed RNN-based epileptic seizure prediction.

Table III shows that the proposed model was able to beat
the other algorithms in terms of achieving higher accuracy,
and sensitivity. The results of proposed algorithm presented
here are averaged across the accuracies, sensitivities, and
specificities across all the classes, i.e., inter-ictal, ictal, and
pre-ictal. The proposed RNN-based seizure prediction model
achieved highest accuracy of 95.66% among all the given set
of models. In addition, the EESC [9] algorithm was able to
achieve higher specificity of 97% as compared to the proposed
algorithm with specificity of 96.17%.

IV. CONCLUSION

In this study, we presented a novel RNN-based epilepsy pre-
diction scheme. The proposed model was trained and test on
the CHB-MIT dataset, which is widely used among researchers
for training and testing AI-based epilepsy prediction models.
The data was divided into 3 classes. The EEG segments
corresponding to the seizure events were labelled as ictal,
while those segments that fell just before the seizure were
labelled as pre-ictal and the segments falling after the seizure
events were labelled as inter-ictal. The EEG segments of
100 second duration after the seizure events were ignored
to account for the post-ictal data. Statistical features were
extracted from each EEG channel to form feature vector for
training the RNN model. A 10-fold cross-validation method
was followed to ensure reliability of the results. The proposed
RNN-based model achieved an overall accuracy of 95.66%
with 93.84% sensitivity and 96.17% specificity. The RNN-
based model achieved superior performance as compared to
state-of-the-art methods found in literature.

REFERENCES

[1] S. M. Usman, S. Khalid, and Z. Bashir, “Epileptic seizure prediction
using scalp electroencephalogram signals,” Biocybernetics and Biomed-
ical Engineering, vol. 41, no. 1, pp. 211–220, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0208521621000024

[2] C. Li, C. Shao, R. Song, G. Xu, X. Liu, R. Qian, and X. Chen,
“Spatio-temporal mlp network for seizure prediction using eeg
signals,” Measurement, vol. 206, p. 112278, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0263224122014749

[3] K. Devarajan, E. Jyostna, K. Jayasri, and V. Balasampath, “Eeg-based
epilepsy detection and prediction,” International Journal of Engineering
and Technology, vol. 6, no. 3, p. 212, 2014.

[4] S. Ghosh-Dastidar, H. Adeli, and N. Dadmehr, “Mixed-band wavelet-
chaos-neural network methodology for epilepsy and epileptic seizure
detection,” IEEE transactions on biomedical engineering, vol. 54, no. 9,
pp. 1545–1551, 2007.

[5] S. Saminu, G. Xu, S. Zhang, I. Ab El Kader, H. A. Aliyu, A. H. Jabire,
Y. K. Ahmed, and M. J. Adamu, “Applications of artificial intelligence
in automatic detection of epileptic seizures using eeg signals: A review,”
in Artificial Intelligence and Applications, vol. 1, no. 1, 2023, pp. 11–25.

[6] A. A. E. Shoka, M. M. Dessouky, A. El-Sayed, and E. E.-D. Hemdan,
“An efficient cnn based epileptic seizures detection framework using
encrypted eeg signals for secure telemedicine applications,” Alexandria
Engineering Journal, vol. 65, pp. 399–412, 2023.

[7] X. Qiu, F. Yan, and H. Liu, “A difference attention resnet-lstm network
for epileptic seizure detection using eeg signal,” Biomedical Signal
Processing and Control, vol. 83, p. 104652, 2023.

[8] J. Wu, Y. Wang, L. Xiang, Y. Gu, Y. Yan, L. Li, X. Tian, W. Jing,
and X. Wang, “Machine learning model to predict the efficacy of
antiseizure medications in patients with familial genetic generalized
epilepsy,” Epilepsy Research, vol. 181, p. 106888, 2022.

[9] Y. Gao, B. Gao, Q. Chen, J. Liu, and Y. Zhang, “Deep convolutional
neural network-based epileptic electroencephalogram (eeg) signal clas-
sification,” Frontiers in neurology, vol. 11, p. 375, 2020.

[10] D. Liang, A. Liu, Y. Gao, C. Li, R. Qian, and X. Chen, “Semi-
supervised domain-adaptive seizure prediction via feature alignment and
consistency regularization,” IEEE Transactions on Instrumentation and
Measurement, vol. 72, pp. 1–12, 2023.

[11] O. Ouichka, A. Echtioui, and H. Hamam, “Deep learning models for
predicting epileptic seizures using ieeg signals,” Electronics, vol. 11,
no. 4, p. 605, 2022.

[12] A. H. Shoeb, “Application of machine learning to epileptic seizure onset
detection and treatment,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2009.

[13] I. Assali, A. G. Blaiech, A. B. Abdallah, K. B. Khalifa, M. Carrère, and
M. H. Bedoui, “Cnn-based classification of epileptic states for seizure
prediction using combined temporal and spectral features,” Biomedical
Signal Processing and Control, vol. 82, p. 104519, 2023.

[14] B. Kapoor, B. Nagpal, P. K. Jain, A. Abraham, and L. A. Gabralla,
“Epileptic seizure prediction based on hybrid seek optimization tuned
ensemble classifier using eeg signals,” Sensors, vol. 23, no. 1, p. 423,
2023.


