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ABSTRACT 

Source code became one of the backbones for business and 

personal processes, with significant growth rate.  As applications 

are one of the most used attack surfaces against individuals and 

organizations from all sectors, their intrinsic vulnerability arising 

from the supporting source code must be reduced by design. 

Currently there are technology providers and open communities 

which provide Static Analysis Security Testing (SAST) solutions, 

able to detect vulnerabilities in code written in the most used 

programming languages and development frameworks. 

The proposed solution consists of a Code Analysis Module that can 

identify vulnerability patterns in source code written in languages 

with less coverage, including code developed in languages which 

have not been previously learned by the solution. The ability of 

understanding and transforming unknown programming languages 

to the Intermediate Representation, which is then analyzed by a 

common machine learning algorithm for vulnerability patterns, is 

core idea for this research project. 
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1. CONTEXT 

Source code became one of the backbones for business and 

personal processes, with significant growth rate. GitHub, the 

development platform used by 28 million developers, declared that 

more than 2.9 trillion lines of code have been committed in 2017 

alone [1]. As applications are one of the most used attack surfaces 

against individuals and organizations from all sectors in the last 

years, their intrinsic vulnerability arising from the supporting 

source code has to be reduced by design. Overall, there is a strong 

need for solutions being able to scan source code automatically and 

identify code level security vulnerabilities early in the software 

development phase. Currently, SAST solutions cover only Top 30 

most used programming languages and development frameworks. 

The remaining programming languages (e.g. D, R languages) are 

not secured as result of the gap in both supporting technology and 

security experts. This situation opens a huge attack surface for 

hackers willing to compromise applications and consequently, 

organizations’ or individuals’ security. Today, an amount of 995 

technical vulnerabilities - specific to different programming 

languages or common to all types of source code - is maintained by 

MITRE [3] as Common Weakness Enumeration (CWE) items. 

2.   PROPOSED SOLUTION 

We recommend the Code Analysis Module which identifies CWE 

patterns in source code written in both popular programming 

languages or in languages with less coverage, including languages 

which have not been learned by the solution. From a functional 

perspective, this consists of the following two blocks:  

 
Figure 1: Code Analysis Module – Functional Blocks 

 

The ML Based Translator is built on a Language-Agnostic 

scanner which transforms any language into an Intermediate 

Representation (IR) using similarities of lexical tokens within 

programming languages. Languages like C, Java and those 

inheriting them have quite similar keywords used by different but 

close grammars. This property can leverage the transformation of 

various languages in a common IR, using NLP-aware algorithms to 

choose the best IR keyword (rk
(IR), k=1..n, in Figure 2).  

Figure 2: Transformation of programming languages in IR 

 

For example, a snippet of CWE23 vulnerable code: 
 

recvResult = recv(connectSocket, (char *)(data + dataLen), sizeof(char) * 

(FILENAME_MAX - dataLen - 1), 0); pFile = FOPEN(data, "wb+");  

 

is represented in IR format as below, where keyword are tokens not 

yet attributed to CWEs, which preserve program’s context, and data 

flow is maintained through the relative positioning of tokens in the 

CWE classification input vector. The IR is practically an ordered 

set of CWE relevant tokens and generic identifiers, built using a 

specially designed Machine Learning algorithm. 
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IR for code snippet IR for CWE classification algorithm 
CWE_TOKENS['0'] = 'recv'  

CWE_TOKENS['1'] = 'FOPEN'  

CWE_TOKENS['2'] = '0'  

CWE_TOKENS['3'] = '0'  

CWE_KEYWORDS['0'] = 'char'  

CWE_KEYWORDS['1'] = 'sizeof'  

CWE_KEYWORDS['2'] = 'char'  

CWE_KEYWORDS['3'] = '0'  

CWE_KEYWORDS['4'] = '0'  

CWE_KEYWORDS['5'] = '0'  

IDENTIFIERS['0'] = 'recvResult'  

IDENTIFIERS['1'] = 'connectSocket'  

IDENTIFIERS['2'] = 'data'  

IDENTIFIERS['3'] = ''  

IDENTIFIERS['4'] = 'dataLen'  

IDENTIFIERS['5'] = 'FILENAME_MAX'  

IDENTIFIERS['6'] = 'dataLen'  

IDENTIFIERS['7'] = 'pFile'  

IDENTIFIERS['8'] = 'data'  

IDENTIFIERS['9'] = '"wb'  

IDENTIFIERS['10'] = '"'  

IDENTIFIERS['11'] = '0' 

nr_cwe_tokens['0'] = '2'  

nr_cwe_tokens['1'] = '1'  

nr_cwe_tokens['2'] = '0'  

nr_cwe_tokens['3'] = '0'  

nr_cwe_keywords['0'] = '11'  

nr_cwe_keywords['1'] = '13'  

nr_cwe_keywords['2'] = '11'  

nr_cwe_keywords['3'] = '0'  

nr_cwe_keywords['4'] = '0'  

nr_cwe_keywords['5'] = '0'  

generic_identifiers['0'] = '1'  

generic_identifiers['1'] = '2'  

generic_identifiers['2'] = '3'  

generic_identifiers['3'] = '4'  

generic_identifiers['4'] = '5'  

generic_identifiers['5'] = '6'  

generic_identifiers['6'] = '5'  

generic_identifiers['7'] = '7'  

generic_identifiers['8'] = '3'  

generic_identifiers['9'] = '8'  

generic_identifiers['10'] = '9'  

generic_identifiers['11'] = '0' 

 

Generic identifiers are abstract representations of real identifiers, 

whose position in the source code is maintained very loosely via an 

empirical symbol table (only generic name and relative positions 

are maintained). The ability of understanding and transforming 

unknown programming languages to IR - based on lexical 

similarities between programming languages - is core to this 

research project.  

The ML Based CWE Classification block identifies CWE 

patterns in the IR, using machine learning algorithms for 

classification of non-linear patterns (e.g. SVM). The algorithm 

should be able to identify CWE classes for each source code 

snippet, using an “one versus all” approach. Code snippets may 

have more than one CWE vulnerability, consequently, the classifier 

may identify more than one class per each code snippet.  

3.   APPROACH 

Research is planned in three main phases, as defined below, 

Phase I: to design and build the training set for the CWE Classifier, 

starting from popular programming languages. The activities 

consist of identifying source code known as being vulnerable and 

the CWE-pattern relevant code snippets; designing the pre-

processing algorithm applied to IR data sets, for later use in ML 

Based CWE classification algorithm; and finally, building the 

training data set for one programming language (e.g. C) and one 

vulnerability (e.g. CWE 23). We use NIST Juliet Test Suite [2] with 

vulnerable C, Java, C# and PHP source code. For C/C++, the 

repository consists of 8.67 million lines of code covering 118 

CWEs. As today, the potential structure of IR has been designed 

considering the relevant tokens for specific CWEs, generalization 

of identifiers and relative positioning of tokens and identifiers, as a 

light data flow remanence. 

Phase II: to identify the best model for the machine learning 

algorithm used for CWE pattern identification, using the training 

data sets from Phase I, and to enrich the solution with one more 

class (CWE pattern) and one more language (Java code snippets). 

Phase III: to design and demonstrate the core concept of 

identifying CWE pattern in any-language source code. Includes 

Language Agnostic Scanner design for C and Java code translation 

to IR, adding new programming languages to adjust the algorithm, 

training the ML Based Translator to correctly represent the source 

code snippets in the IR format, and adjusting the accuracy of CWE 

pattern classification using the input resulted from the ML Based 

Translator, for C, Java and new languages. 

4.   RELATED WORK 

Studies for source code splitting in smaller pieces like code 

snippets, logically mapped to vulnerabilities or code clone [4] do 

focus on specific languages, the Language-Agnostic Scanner not 

being in general addressed by previous work. One similar approach 

[5] considers deep learning for source code vulnerability detection. 

The authors use “code gadgets” to represent programs in a granular 

way, then vectorized as input to deep learning. The authors declare 

solution’s limitations to C/C++ programs and to vulnerabilities 

dealing only with library/API calls.  

Other studies [6][7][9][10][14][12] propose static analysis methods 

strongly related to one or two programming languages, even when 

the concept may be replicated for different languages. The 

drawback comes from the cumulated time and from the required 

expertise in both the new language scanner to be implemented and 

the static analysis concept itself defined in the respective study. 

As an exception, ReDeBug [11] identifies latent security 

vulnerabilities in programs “written in different languages”, as 

result of “a lightweight syntax-based code clone detection system” 

but limited to languages used in OS distributions. A different 

concept is implemented using signal processing techniques [13], 

which maintains the method language-independent, with the 

limitation that security vulnerabilities’ localization is not realized. 
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