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Abstract. The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, 
“complementary Peano arithmetic”, “Hilbert arithmetic”. They identify the foundations of both 
mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and 
the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. 
That new both mathematical and physical ground can be recognized as information complemented and 
generalized by quantum information. A few fundamental mathematical problems of the present such as 
Fermat’s last theorem, four-color theorem as well as its new-formulated generalization as “four-letter 
theorem”, Poincaré’s conjecture, “P vs NP” are considered over again, from and within the new-
founding conceptual reference frame of information, as illustrations. Simple or crucially simplifying 
solutions and proofs are demonstrated. The link between the consistent completeness of the system 
mathematics-physics on the ground of information and all the great mathematical problems of the 
present (rather than the enumerated ones) is suggested.   
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I INTRODUCTION 
Prehistory and background:  
Cantor’s set theory involving the concept of actual infinity as a complete whole seemed to 

be a base of mathematics. However, a series of paradoxes were revealed in it, e.g. Russell’s 
(1902). One of the main directions for overcoming the crisis was set theory to be reduced to a 
model in arithmetic.  

However, arithmetic is obviously finite. Utilizing the commonly accepted Peano axioms1, 
one can prove that all natural numbers are finite:  

1 is finite. Adding 1 to any natural number, which is finite, a finite natural number is 
obtained, again. Consequently, all natural numbers are finite according to the axiom of 
induction.  

Arithmetic being thus finite seems not to have any access to actual infinity underlying set 
theory. Indeed, Gödel’s work (1931) demonstrates that any mathematical theory containing 
arithmetic, including the arithmetic itself as that theory, is necessary either incomplete or 
contradictory. If one admits to identify any mathematical theory with set theory as its base, 
complemented by additional axioms to the mathematical theory at issue, for philosophical 
consideration, the result of Gödel seems to be even obvious in the present context:  

                                                            
1 In fact, it is offered by R. Dedekind (1888) as Peano himself pointed out expressly in his work (1889: 5). 
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Arithmetic is finite, and set theory needs the concept of actual infinity. Then, either 
arithmetic should be somehow complemented to be compensated missing actual infinity, or it 
is contradictory immediately adding actual infinite, just being finite as above.  

In fact, the concept of actual infinity, e.g. meaning the commonly accepted ZFC axioms of 
set theory for certainty, is added by a consideration arithmetical in essence by the axiom of 
infinity. No contradiction arises in set theory, for the axiom of induction, necessary to be proved 
the finiteness of arithmetic as above, is not included in ZFC.  

Arithmetic is anyway added to set theory, but “at last”, by means of the axiom of choice. 
Indeed, that axiom is equivalent to the well-ordering principle, according to which any set is 
well-orderable and thus representable by some initial segment of natural numbers. If the axiom 
of induction holds, any set is representable by some finite set for all natural numbers are finite 
in that case.  

If the axiom of induction does not hold (or particularly, it is replaced by the axiom of 
transfinite induction), any set is anyway countable in Cantor’s sense.  

Skolem (1922) was who noted that the axiom of choice implies the “relativity of ‘set’” 
meaning those representations of any set either as finite or at least as countable.  

Thus, arithmetic and set theory distinguish correspondingly the finite mathematics 
absolutely representable by arithmetical models from the mathematics of infinity needing actual 
infinity and irrepresentable by them both completely and consistently. The relation between the 
two kinds of mathematics might be regulated by both axioms of (transfinite) induction and 
choice. Any utilization of mathematical models in human activity, as far as being finite, thus 
needs arithmetizability.  

In another branch of human knowledge, Shannon (1948) suggested the quantity of 
information to describe encoding, processing and transmitting of data. It can be featured as the 
measure of ordering or assigning a value (e.g. and usually a number) to a variable. The unit of 
that assignation is a bit definable as assigning either “0” or “1” to a variable. The quantity of 
information in any data can be considered also as the minimal length of that algorithm able to 
construct them (Kolmogorov 1965, 1968). Furthermore, its mathematical model is an 
immediate and natural generalization of the statistic and thermodynamic quantity of entropy 
expressing the “degree of chaos” of an ensemble of atoms, molecules, etc. Then, information 
admits still one interpretation as the measure of simile of two probability distributions.   

Shannon’s information means the record or reading of a number represented in some 
numerical system, e.g. binary or decimal. A natural generalization might be that to an infinite 
numerical system:  

Quantum information, introduced by quantum mechanics to interpret itself in terms of the 
theory of information, is equivalent to that “infinite information”. Thus, any physical process 
or phenomenon, being always quantum in its base, can be interpreted informationally. Quantum 
information might be interpreted as the classical one both as (1) the minimal length (eventually 
transfinite) of that algorithm able to construct the quantum data in question and as (2) the 
measure of simile of two probability distributions (represented by their characteristic functions 
as an operator in the complex Hilbert space). 

One can summarize in a few words so:  
Arithmetic being finite is insufficient to ground all mathematics, but sufficient to represent 

the human utilization of mathematical models. Set theory and arithmetic seem to be sufficient 



for that foundation, but the consistency of each of them is unprovable and even doubtful. Then, 
they together might found mathematics consistently if their relationships are relevantly 
formalized for both to coexist without reducing to the other.        

Problem:  
Can the theory of information represent exhaustedly the relationships of arithmetic and set 

theory in a non-reductionist way, and thus mathematics to be founded on the theory of 
information?  

Thesis:  
The concept of information is enough to represent both (1) the generation of arithmetic from 

set theory by the axiom of choice, and (2) the generation of set theory from arithmetic by the 
axiom of transfinite induction (equivalent to standard, but complementary induction): (1) 
involves the interpretation of information as a string length of an assigned value, encoding, or 
algorithm, and (2): as a relation of two probability distributions.  

A few comments of the thesis: 
1 The equivalence of those two interpretations of information mentioned in the thesis is not 

necessary, but consistent to the thesis. 
2 The generation of arithmetic from the set theory by the axiom of choice seems to be both 

rather obvious and historically justified. The axiom of choice is equivalent to the well-ordering 
principle (“theorem”). The natural numbers are definable as the classes of equivalence of well-
orderings as R. Dedekind did (1888), from which Peano took his axioms as he himself referred. 
Furthermore, the unit of information is interpretable as both an elementary choice between two 
equally probable alternatives and a binary digit2 of any well-ordering represented by binary 
digits. 

3 The generation of set theory from arithmetic by the axiom of induction is nontrivial:  
3.1 It needs preliminarily the choice of some finite set as a nonstandard interpretation of any 

given infinite set in the sense of Skolem’s “relativity” to be founded as necessarily random. 
Indeed, the axiom of choice guarantees a choice of an element of any set even if any 
constructive way to be chosen that element does not exist (in principle). One needs to postulate 
that non-constructiveness of the choice as its randomness: an element chosen in a 
nonconstructive way is chosen randomly. Further, no finite set can be mapped one-to-one to 
any infinite set. However, that finite set should exist “purely”, i.e. non-constructively according 
to the Skolem argument about the “relativity of ‘set’”. This means that finite set exists, but no 
one can know which it is: It should be different after each one given choice, or in other words, 
it be randomly chosen each time.  

Consequently, the Skolem nonstandard finite equivalent to any infinite set is necessarily 
random. This implies that any infinite set can be unambiguously represented by some 
probability distribution interpretable as the statistics of experiments for choosing a finite 
equivalent set for that infinite set. 

3.2 One has to associate probability distributions to some sets of natural numbers by means 
of the axiom of induction unambiguously. If one utilizes the axiom of induction to one and the 
same property many times, the corresponding set is always finite, but the number of its elements 
might be as constant as variable as both cases are consistent to the Peano axioms. A probability 

                                                            
2 The etymology of “bit” originates just from “binary digit”.   



distribution as the statistics of the number of the elements of that set after all experiments of 
induction in the latter case can be unambiguously associated with this set. One can say that the 
number of its elements is undetermined or uncertain and define as “infinite” in the sense of 
Peano arithmetic, where all natural numbers are finite. On the contrary, if the case is the former, 
i.e. the number of the elements of the set is constant after an arbitrarily series of experiments 
for induction, it is defined as “properly finite”. 

4. Quantum mechanics in terms of quantum information would be another interpretation of 
both arithmetic and set theory as above. The complex Hilbert space is a basic model as for 
quantum mechanics as for that pair. The theorems about the absence of hidden variables in 
quantum mechanics (Neumann 1932; Kochen and Specker 1968) would mean an internal proof 
of completeness and consistency as to the joint system of arithmetic and set theory.  

The paper is organized as follows: 
The new concepts are defined in Section II. Those are: “complementary Peano arithmetic”; 

“nonstandard interpretation of Peano arithmetic”; “generalized Peano arithmetic”; “Hilbert 
arithmetic”; “quantum neo-Pythagoreanism”; “physical and mathematical transcendentalism”. 
The statement about the consistent completeness of Hilbert arithmetic is argued. It is identified, 
furthermore, as the separable complex Hilbert space of quantum mechanics. That identity is the 
ground of a few related fundamentally new conceptions: the unity of the physical and 
mathematical world; the absence of any boundary, and smooth transition between them; the 
option of the identity of mathematical model and physical reality; the quantum resurrection of 
Pythagoreanism as the quantum neo-Pythagoreanism; the arithmetical reduction of physical 
quantities, entities, and laws. The unity of the consistent completeness of both mathematics (by 
means of its foundations) and quantum mechanics is demonstrated. Links to paradoxes of the 
foundations of mathematics are elucidated and thus, ways for resolving them. The Gödel 
completeness (1930) and incompleteness (1931) papers are reinterpreted. The equivalence of 
the set the Gödel irresolvable statement and all statements satisfying Yablo’s paradox is 
inferred. The idea of “physical and mathematical transcendentalism” on the ground of the 
philosophical “totality”. Ways of inferring the concept of information from the totality are 
shown. “Quantum information” (as it is deduced in quantum mechanics) as a generalization or 
specification of “information” as to infinite series and sets is deduced. That generalized 
information underlies the unity of physics and mathematics (made visible by the new concepts 
of “Hilbert arithmetic” and “Hilbert mathematics’ as the latter is opposed to “Gödel 
mathematics”).  

Section III exemplifies and verifies the new concepts in the case of Fermat’s last theorem 
and its proofs. It is very suitable because of the following fact: being an arithmetical statement 
properly, it is simultaneously a Gödel irresolvable statement in the framework of both Peano 
arithmetic and (ZFC) set theory (i.e. the standard foundations of mathematics in the present). 
This may be demonstrated concisely by means of the interpretation of Fermat’s last theorem in 
terms of Yablo’s scheme and thus, of his paradox. Consequently, the proof of Fermat’s last 
theorem as a corollary from the modularity theorem (Taniyama – Shimura – Weil conjecture 
proved by Weil) involves necessarily “inaccessible cardinals or ordinals”, to which the Gödel 
number of any Gödel irresolvable statement belongs. However, one can admit the existence of 
a certain, direct arithmetical proof (thus, not involving any part of set theory whether explicitly 
or implicitly) being eventually elementary enough in order to have been accessible to Fermat 



himself, as his “lost proof”. That elementary, directly arithmetical proof of Fermat’s last 
theorem is demonstrated. It modifies Fermat’s “infinite descent” to link it to the Peano axiom 
of induction by means of modus tollens. Thus, an infinite stair, both “to and from infinity”, but 
in the rigorous frame of Peano arithmetic, is involved to be proved Fermat’s last theorem by 
induction (once the case for n = 3 has been proved). 

The justification of that, purely arithmetical proof needs the wider framework of Hilbert 
arithmetic. One can show within it that the “infinite stairs” of modus tollens is invariant to 
which of both complementary standard Peano arithmetic is meant, and thus, it is valid to its 
nonstandard interpretation. Then, the “purely arithmetical proof” of Fermat’s last theorem can 
be understood as an arithmetical and logical proof, in fact, therefore involving by the pair of 
propositional logic and a single standard Peano arithmetic, furthermore, the complementary 
counterpart of the latter, implicitly. This means that the explicit reference to (ZFC) set theory 
and thus, to the Gödel irresolvability of Fermat’s last theorem (in other words, to “inaccessible 
cardinals or ordinals”) can be omitted or avoided. Modus tollens being invariant to both 
complementary counterparts of the standard Peano arithmetic, and furthermore, being a 
tautology of propositional logic is a sufficient tool for implementing that idea of arithmetical 
proof, however being at the same time verifiable in the framework of Hilbert arithmetic. 

Summarizing metaphorically, Fermat’s original proof is possible for the innocent or naïve, 
unintentional and unconscious bypass of all “traps” of Gödel’s irresolvability. On the contrary, 
Wiles’s proof is impossible to bypass them for the actual cognition (“eating the apple”) of 
(ZFC) set theory and meaning it by the Taniyama – Shimura – Wail conjecture. Once this has 
been done, the only option is the way out of set theory (and thus, of the pair “Peano arithmetic 
& set theory”) whether explicitly or implicitly to “Hilbert arithmetic” as it is sketched here 
involving “inaccessible” cardinals or ordinals.  

Section IV intends to extend the approach in Section III to other great mathematical puzzles 
of the present, therefore creating the ground of the conjecture that the consistent completeness 
of mathematics is the “problem of many (even all) problems” in the contemporary mathematics. 
The following three theorems are considered: the four-color theorem; Poincaré’s conjecture 
(proved by G. Perelman); the “P vs NP” problem (still one of the seven CMI millennium 
problems). 

The idea of a “human proof” of the four-color theorem is suggested: any defect after 
coloring will reflect onto at least one of two orthogonal axes of the plane. Not to have any defect 
in any of both axes, two colors are enough for each of them, or four colors totally (2 colors x 2 
axes). Further, the two orthogonal axes can be interpreted as the two complementary Peano 
arithmetics (both well-ordered), each of which needs two “digits”, or totally, four digits would 
be sufficient as to the alphabet for any mathematical entity to be recorded unambiguously. As 
far as both mathematical and physical world coincide in the totality (the thesis of the quantum 
neo-Pythagoreanism), four letters would be enough any entity whether mathematical or 
physical to be notated. The alphabet of natural language consists of four letters: thus, the four-
color theorem can be generalized to the four-letter theorem ontologically, however, provable 
rigorously and mathematically by Hilbert arithmetic rather than only a way for the four-color 
theorem to be proved “humanly”. 

Next, a physical interpretation of Poincaré’s conjecture demonstrates how it can be proved 
only arithmetically in the final analysis (therefore, revealing a direct topological meaning of 



both axiom of choice and principle of well-ordering). The unfolding of the 3-sphere is 
topologically equivalent to Minkowski space as follows: 

Its imaginary domain (corresponding to the subluminal and physically observable area of 
special relativity) can be enumerated by one of the two complementary Peano arithmetics. 
Then, its real domain (corresponding to the superluminal and physically unobservable area of 
special relativity) can be enumerated by the Peano arithmetic being the complementary 
counterpart. If one removes the luminal barrier between them, they would mix therefore 
cancelling any well-ordering (for the two well-orderings of the two domains are inconsistent to 
each other) and resulting into the unorderable cyclic structure corresponding to the nonstandard 
interpretation of Peano arithmetic, on the one hand, and to the 3-sphere before unfolding (after 
unfolding it is represent topologically by the Minkowski space itself), one the other hand. 

The coherent state of all 3-spheres is topologically Euclidean space, and thus Poincaré’s 
conjecture can be proved only arithmetically in the above sense. This is due to the direct 
topological meaning of the axiom of choice: it is able to equate a cyclic topological state (such 
as the 3-sphere) and a “coherent” topological state (such as Euclidean space) by the mediation 
of the well-ordering “theorem” (resulting in both domains of Minkowski space). 

There is still one and independent way to be expressed the above consideration. There exists 
an elementary and obvious homeomorphism of Euclidean space to each of both hemispheres of 
the sphere. So, one needs still one, but “nonstandard” homeomorphism being “two-to-one” (and 
thus as if contradictory as far as it seems obviously to be discrete). However, Hilbert arithmetic 
supplies that tool by the two complementary Peano arithmetics mergeable into the single one3 
of the nonstandard interpretation of Peano arithmetic, furthermore purely arithmetically.  

At last, a class of examples demonstrating that “𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃" in th “P vs NP” problem can be 
easily constructed by means of the Kochen and Specker theorem in quantum mechanics. Its 
elements can be visualizes by “Schrödinger’s cat”. Let the problem be: “Either alive or dead is 
the cat?” The problem is irresolvable by any Turing machine for any finite time (and 
particularly, it is not any P time being finite). However, it is NP for a Turing machine is able to 
resolve it if the door of the box is open checking up the state of the cat very fast. Thus, any 
problem analogical to “Schrödinger’s cat” therefore involving Turing machine in a quantum 
superposition of any finite number of possible states would be “non-P, but NP”.  

That class of examples can be represented by Hilbert arithmetic. Of course, any Turing 
machine identifiable within a single standard Peano arithmetic cannot resolve a problem 
referring to Hilbert arithmetic (and thus, to both complementary Peano arithmetics) in general. 
Thus it not a P problem. However, it can examine the solution in a polynomial time if it known 
somehow because the check-up will be accomplished in the nonstandard interpretation of Peano 
arithmetic (or in other words, only logically). Consequently, it is a NP problem simultaneously 
being a non-P problem. 

The final Section V formulates the conclusion and directions for future work: 

                                                            
3 Quantum mechanics, chronologically first, has utilized the same kind of continuous (and even smooth) 
bijection “2:1” (being due to the identification, discussed above, of Hilbert arithmetic and the separable 
complex Hilbert space of quantum mechanics) because of the necessity to describe uniformly the 
quantum entity (commensurable with the Planck constant) and the microscopic apparatus obeying the 
smooth equations of classical physics.   



Information by its generalization as quantum information is able to represent both 
completely and consistently the interrelations of arithmetic and set theory therefore suggesting 
a reliable ground of all mathematics. This implies further the unification of mathematics and 
quantum mechanics (and thus, all physics) as well as a form of neo-Pythagoreanism. However, 
the research here is philosophical rather than mathematical and do not offer complete and 
rigorous proofs, but only generalized consideration necessary to be “seen the forest for the 
trees”. 

Thus, the descriptions in each separate tree (anyway discernible in the present paper as well) 
is the generalizing direction for future work. 

  
II BOTH STANDARD AND NONSTANDARD INTERPRETATIONS OF PEANO 

ARITHMETIC 
There exists a curious “vicious circle“, in which Peano defined the natural numbers by the 

five famous axioms called by his name. He mentioned expressively in his paper (Peano 1889: 
5) that he had utilized the concept of set and well-ordering in the work of Dedekind (1888) 
when the paradoxes in Cantor’s set theory starting e.g. from that of Russell (1902) had not been 
known yet. 

In fact, Peano followed the then “fashion” for all mathematical theories to be underlain by 
set theory. Hilbert’s formalism “however” granted Peano axioms for arithmetic as a finite 
reliable ground for set theory attacked by many paradoxes. And Gödel (1931) demonstrated 
that Peano arithmetic is inconsistent to (ZFC) set theory. 

One can question, thus, retrospectively and rethorically how the “”Peano axioms” had been 
extracted or justified by set theory if they are inconsistent to it.  

Meanwhile, Zermelo (1904; 1908) formulated a special axiom, the axiom of choice to infer 
the well-ordering theorem, and Whitehead and Russel4 (i.e. very soon) demonstrated that the 
axiom of choice (more exactly, its equivalent meant by them) can be deduced from the well-
ordering “theorem”. Therefore, both are equivalent to each other.   

Skolem (1922) reflecting on the theorem proved by him a few years ago, and known now 
as the “Löwenheim - Skolem theorem”, showed that once the axiom of choice was involved, 
all infinite cardinal numbers can be considered as equivalent to each other. Even more, they are 
equivalent to Dedekind finite numbers (being finite as no true subset of them has the same 
cardinal number, a property shared by all infinite sets). This consideration was named Skolem’s 
paradox after then. In fact, it is an argument as if contradicting common sense rather than a real 
paradox in a proper logical sense. 

Summarizing all enumerated results, the Peano natural numbers are equally powerful to 
infinite sets (though in the meaning of Dedekind) by the meditation of the axiom of choice, on 
the one hand. However simultaneously, they are inherently inconsistent to (ZFC) set theory and 
thus, to concept of infinity as Gödel’s incompleteness theorems made obvious, on the other 
hand. 

One can localize the problem eventually in the relation of two concepts: “infinity” and 
“well-ordering”. Their relation is managed in (ZFC) set theory by the axiom of choice. 

                                                            
4 The very beginning of third volume of Principia mathematica, even before the first enumerated 
statement in the volume. The proof is only a few strokes. 



One can offer a very simple way of philosophical interpretation of Gödel’s “incompleteness 
paper” (1931): 

The axiom of induction implies for all natural numbers to be finite as it was demonstrated 
already (“1” is finite; if “n” is finite, “n+1” is finite, too; all natural numbers are finite according 
to the axiom of induction). On the other hand, the axiom of infinity in (ZFC) set theory implies 
for the set of all natural numbers to be infinite. Indeed, the one-to-one mapping of the 
construction in the axiom of infinity and the set of all natural numbers is obvious. After the 
axiom is postulated for that construction to represent an infinite set, and it is mapped by some 
bijection into the set of all natural numbers, the latter is infinite as well.  

Thus, any mathematical structure containing substructure isomorphic correspondingly to 
Peano theory and ZFC (set theory) would be either incomplete or inconsistent for an obvious 
reason. Any infinite set cannot be represented only arithmetical since any natural number is 
finite. Furthermore, if the Peano axioms be complemented by any axiom corresponding to the 
axiom of infinity, it would contradict to the axiom of induction. Thus, the modified Peano 
arithmetic by an equivalent of the axiom of infinity would be inconsistent. 

One can localize precisely where Peano arithmetic and (ZFC) set theory contradict to each 
other: the axiom of induction and the axiom of infinity. Both share the same structure. Indeed, 
the construction of infinity by the unary operation “{ … }”: {set}, {{set}}, {{{set}}}, etc., is 
isomorphic to the unary operation “successor” utilized in the axiom of induction. Thus, they 
can be considered as two versions of the same axiom, however stating disjunctively a 
proposition and its negation e.g. as the fifth postulate of Euclid and its counterpart in 
Lobachevski’s geometry. 

Indeed, the axiom of induction implies immediately that all natural numbers are finite, and 
the axiom of infinity states that a structure isomorphic to the set of all natural numbers is 
infinite. Thus, if one, as e.g. the pioneer Gödel, reveal a way for the same mathematical entity 
to be considered as both inductive scheme inherently referring to an unlimited series of natural 
numbers and infinite set simultaneously, the contradiction of the axioms would imply either 
incompleteness or inconsistency of Peano arithmetic and (ZFC) set theory.  

One can visualize the scheme of how those axioms contradict to each other by the idea of 
Gödel’s incompleteness as it is elucidated by himself (1931) by means of the “Liar paradox”. 
The latter utilize the negation (for the “Liar”) to Liar’s statement referring to himself or herself. 
Gödel’s innovation consists only in representing that statement simultaneously in two 
“reference frames”: (ZFC) set theory and Peano arithmetic. The crucial link is the axiom of 
infinity in the former and its negative counterpart in the latter, namely, the axiom of induction:  

Indeed, the negation of a statement referring to a finite set of natural numbers can be related 
to the complement of the same set to the set of all natural numbers. Thus, that complement is 
an infinite set. However, all natural numbers belonging to the complement are finite according 
to the axiom of induction in Peano arithmetic. Thus, the problem whether the complement 
contains finite or infinite numbers id irresolvable if both Peano arithmetic and (ZFC) set theory 
are granted. The some complement contains finite numbers according to the axiom of induction 
and Peano arithmetic, but infinite members according to the axiom of infinity in (ZFC) set 
theory. In other words, Gödel’s innovation consists only in making explicit the implicit 
contradiction of the two axioms. He utilized self-reference as in the Liar paradox. However, it 
is only a sufficient, but not necessary condition: 



Yablo’s paradox demonstrates it convincingly. It does not involves self-reference (at least 
explicitly), but nonetheless generates a certain contradiction. It refers to the necessary condition 
for any paradox having granting both Peano arithmetic and (ZFC) set theory differently:  

It addresses an infinite set of natural numbers as the next ones after a recursive proposition 
having a finite number in the recursive scheme. Indeed, the recursive scheme should contain a 
finite number of members in Peano arithmetic as far as the natural number “k” of any recursive 
member of that series is finite, but the set of the members is infinite in (ZFC) set theory.  

One can build easily an isomorphism between all statements satisfying Yablo’s paradox and 
all Gödel’s irresolvable statements on the shared common essence of the necessary condition 
for the same class (in both cases of propositions) to be considered simultaneously as a class of 
natural numbers and as an infinite set of the same natural numbers.  

The bijection of the two classes can be demonstrated furthermore constructively. One Yablo 
recursive scheme referring to all next members of a certain given one is sufficient. That certain 
given proposition considered in a self-reference proposition implies just one Gödel irresolvable 
statement.   

One can suggest the idea of “semi-completeness” or “semi-consistency” utilizing the main 
idea of Gödel to prove incompleteness/ inconsistency of arithmetic & set theory by the “Liar” 
self-reference. 

In fact, the Liar paradox appears never in the real use of language for the statement “I lie” 
is never used to itself, but to anything different form the statement itself. The self-referential 
use is artificial, intentional and only ad hoc in order to be created the paradox. So, many 
logicians starting from Russell suggested for any self-reference to be forbidden because of the 
implicit vicious circle it implies. 

However, Yablo’s paradox demonstrates that the self-reference is only an option for the 
same proposition to be considered simultaneously in two contexts: Peano arithmetic and (ZFC) 
set theory. However, the paradox is implied not by self-reference, but by unifying both contexts, 
which one may accomplish otherwise than by self-reference, e.g. by Yablo’s scheme.  

Further, one can demonstrate that the artificial technics, by which the “Liar” is constructed, 
can be applied in turn to the “Satz VI” incompleteness: 

“Satz VI” satisfies all conditions in it just as the “Liar” does. Furthermore, on can isolate 
“Satz VI” into a theory consisting of a single theorem just as the “Liar” is isolated and therefore 
forced to self-reference. So, one obtains a kind of paradox, which might be called the “Gödel 
paradox” isomorphic to the “Liar”, or accordingly, the “Gödel - Liar paradox”. 

Two series of recursive schemes appear; the first one: 
(1) I lie … 
(2) I lie that “I lie in the previous statement” …   
(3) I lie that “I lie in the previous statement that “I lie in the previous statement” … 
… 
… 
… 
The second one: 
(1) Arithmetic is either incomplete or inconsistent to set theory. 
(2) If the above statement is true, it is either incomplete or inconsistent. 
(3) If the above statement is true, it is either incomplete, or inconsistent. 



… 
… 
… 
The Liar paradox is avoided formally in both schemes since no statement refers to itself but 

to the closest previous one. 
 So, the Liar lies, considered in any odd level, but the Liar does not lie, considered in any 

even level. The paradox seems to be resolved if one distinguish disjunctively odd from even 
levels. 

The construction of the “levels of lies” can be transferred to the second recursive scheme 
because of the noticed isomorphism. 

Then, the second series can be transformed as follows: 
(1) Arithmetic is either incomplete or inconsistent to set theory. 
(2) Arithmetic is both complete and consistent to set theory. 
(3) Arithmetic is either incomplete or inconsistent to set theory. 
(4) Arithmetic is both complete and consistent to set theory. 
… 
… 
Then, one can introduce the term “Gödel mathematics” to all odd levels, on which the Gödel 

incompleteness theorems are valid, and correspondingly the term “Hilbert mathematics” as to 
all even levels. Furthermore, arithmetic is semi-complete and semi-consistent to set theory, and 
thus to all mathematics if the above disjunctive distinction of “Gödel mathematics” and “Hilbert 
mathematics” is valid. In fact, it is semi-valid, too, and in the same rigorous meaning, but this 
is sufficient for the intention of the paper: 

Indeed, both above schemes satisfies the conditions of Yablo’s paradox. Thus, each of them 
corresponds to exactly one Gödel irresolvable statement. One can grant that the corresponding 
Gödel irresolvable statement is the “Satz VI” itself as to the second series, and consequently 
the scheme is confirmed again and independently: the concept of semi-completeness and semi-
consistency is semi-complete and semi-consistent in turn.  

What follows is a relevant generalization of Peano arithmetic able to embody the idea it to 
be the semi-complete and semi-consistent base of mathematics. 

The concept “nonstandard interpretation” means usually an enumerable model in virtue of 
the Löwenheim – Skolem theorem in any of both directions: this means in the framework of set 
theory. It will be utilized now to Peano arithmetic to generate a model of it within set theory, 
namely the countable set of all natural numbers. The main problem for the new interpretation 
continues to be the contradiction between the axiom of induction and the axiom of infinity as it 
is sketched above. 

One can observe that the well-ordering of all natural numbers is a sufficient, but not 
necessary condition of each of both axioms to be postulated. Furthermore, neither it, nor the 
rest four axiom implies a well-ordering. Actually, all the five are consistent to the well-ordering 
of all natural numbers, but an interpretation not requiring for all the natural numbers to be well-
ordered is admissible because Peano axioms do no imply that well-ordering. It will be 
demonstrated explicitly and then, one can show that it satisfies the condition to be a nonstandard 
interpretation of Peano arithmetic in the above rigorous meaning.  

The only difference from the standard interpretation consist in the “function successor”: 



One substitutes the series ”1, 1 + 1, 1 + 1 + 1, … . , (𝑛𝑛)𝑥𝑥(1), (𝑛𝑛 + 1)𝑥𝑥(1), … " by: 

1, 1 = 1, 1 = 1 = 1, … , (𝑛𝑛)[1 = 1], (𝑛𝑛 + 1)[1 = 1], … 

Obviously, it satisfies the Peano axioms, including the axiom of induction. One is to notice 
that the definitive properties of the relation of equivalency together with the axiom of induction 
imply that interpretation as well. However, the reverse pathway is meant here: the properties of 
the relation of equivalence to be inferred from Peano arithmetic for it is considered as a base of 
mathematics. 

Though both interpretations satisfy the Peano axioms, the former visualizes the well-
ordering “theorem” (or “principle”), and thus, the latter needs the axiom of choice to be equated 
if one can prove that it is equivalent to the set of all natural number as it is intended. 

The difference between the two interpretations consists in the openness of the former unlike 
the cyclic closeness of the latter, which is in virtue of the axiom of induction: ∀𝑛𝑛, 1 = 𝑛𝑛; this 
means that all natural numbers are equal to a unit. The absence of well-ordering allows they to 
be considered as an infinite cycle, which is impossible as to the standard interpretation. Thus, 
the statement that all natural numbers are finite is not inferable for neither “1”, nor any “n” is 
necessarily finite. Thus, the axiom of induction and the axiom of infinity does not contradict as 
to that, called “nonstandard interpretation of Peano arithmetic”. Consequently, it is equivalent 
to the set of all natural members. 

One can obtain the standard interpretation from the nonstandard one by means of the axiom 
of choice once the set of all natural numbers is granted (as to the nonstandard interpretation). 
The axiom of choice “cuts” the infinite cycle into the usual well-ordering of the natural 
numbers. Thus, the axiom of choice implies further the option of “cutting” for any cyclic 
structure, properly a topological ability.  

The triple of axioms, INDUCTION, INFINITY, and CHOICE, turns out to be linked to each 
other by means of the standard and nonstandard interpretations of Peano arithmetic as it is 
described above. 

The standard and nonstandard interpretations (and consequently the triple of axioms) imply 
still one interpretation, which can be called “complementary standard interpretation” necessary 
for reconciling the well-orderings and openness of the standard one with both absence of well-
ordering and cyclic closeness of the nonstandard one. 

The complementary standard interpretation can be considered as a well-ordering in the 
reverse direction once the set of all natural numbers is granted: 

Its first element is greater than any element of the standard interpretation. Then, that first 
element exists necessarily being definable by the ordinal of the set of all natural numbers, 
usually notated as 𝜔𝜔 (the set of all natural numbers is due to the nonstandard interpretation of 
Peano axioms as it is shown above). The function successor is defined as 𝑓𝑓(𝑛𝑛) = 𝑛𝑛 − 1. By 
definition, both standard Peano arithmetics are complementary to each other in the following 
sense: 

If one means a certain “finite n” in any of them, it is uncertainly big (roughly speaking, 
“infinite”) in the other one. Particularly, this imply that any well-ordering of the set of all natural 
numbers can possess a certain finite bijective image just in one of them (roughly speaking, all 



infinite, more exactly transfinite natural numbers in the one are finite in the other, and vice 
versa). 

If one consider both complementary standard arithmetics simultaneously, though each of 
them is well-ordered, they together result into a single one, which cannot be well-ordered for 
the two well-orderings contradict to each other.  

One may visualize this by the relation of ordering " ≤ " and " ≥ "  correspondingly in each 
of the two complementary directions. Both " ≤ " and " ≥ " imply the nonstandard 
interpretation. 

One can explain the Gödel incompleteness/ inconsistency of Peano arithmetic (i.e. its 
standard interpretation) to set theory (i.e. the nonstandard interpretation of Peano arithmetic) 
by the complement of the former to the latter, namely the complementary Peano arithmetic. 

Thus, neither the Gödel incompleteness/ inconsistency nor Yablo’s paradox would be 
possible in the so generalized Peano arithmetic, consisting of two complementary standard 
interpretations and a nonstandard one. The conjecture that it is both complete and consistent to 
set theory, and therefore, a reliable ground of mathematics seems to be almost obvious. 

Indeed, the Gödel proposition states that its number is the Gödel number of a false statement. 
However, that number cannot be finite and thus, a natural number (as far as all natural numbers 
are finite according to the Peano axiom of induction). It belongs to the set of all natural numbers 
(satisfying the alternative ZFC axiom of infinity). The self-reference of the “Liar” statement in 
the precise proof of Gödel is mediated by its unambiguous Gödel number, which cannot be a 
natural number, but belongs to the set of all natural numbers anyway and somehow with no 
contradiction. 

Consequently, it is a finite natural number in the complementary Peano arithmetic, and thus 
resoluble in relation to it. Of course, there are statements irresoluble to it as well, but they are 
resoluble to the former Peano arithmetic. So, any Gödel statement is resoluble in the two 
complimentary arithmetics, which are identical to each other furthermore.    

One may demonstrate more precisely as well that the self-reference of the “Liar” statement 
is impossible because it needs the mediation of a non-finite Gödel number, which turns out to 
be finite in one of both complementary and identical Peano arithmetics. 

The two complimentary Peano arithmetics prevent Yablo’s paradox by the same 
mechanism: 

The statement in Yablo’s scheme, which is necessarily both true and false, cannot be a 
natural number as far as all natural numbers are finite just as in the case of   Gödel’ “Liar” 
statement. As an isomorphic counterpart, it is a natural number in the complementary Peano 
arithmetic. 

So, the mechanism for the paradox to be prevented in both cases is isomorphic, i.e. 
mathematically identical. It relays on securing the “dangerous” complement of the natural 
numbers to the set of all natural numbers correspondingly obeying two axioms contradicting to 
each other. The two complementary Peano arithmetics are that securing therefore excluding 
that complement, in fact.  

The separable complex Hilbert space utilized by quantum mechanics suggests a model of 
that generalized Peano arithmetic including both the nonstandard and two complementary 
standard interpretations after the following considerations: 



1. The separable complex Hilbert space is represented as a series of qubits (defined as usual: 
the normed superposition of two subspaces of it, thus orthogonal to each other), after one has 
meant that any two (successive) “axes” (of its) are two subspaces as well. 

2 Any unit is the class of equivalence of the corresponding qubit (in other words, the class 
of equivalence of all “values” of it). 

3. One means that the separable complex Hilbert equates its two interpretations; both well-
ordered “infinitely dimensional” complex vectors and squarely integrаble functions 
decomposable into a series of elementary functions unambiguously mapped into the 
components of the vectors. Thus, the latter is not orderable because of the commutativity of the 
elementary functions into the sum of any certain squarely integrable function.  

Those two interpretations correspond accordingly to Heisenberg’s matrix mechanics and 
Schrödinger wave mechanics, the unification of which results in the contemporary quantum 
mechanics and its mathematical formalism of the separable complex Hilbert space. 

One can observe as above, that it exemplifies the generalized Peano arithmetic, or in other 
words, the latter underlies the former. That unification of the well-ordered version and non-
ordered “coherent” version is conserved absolutely in the generalized Peano arithmetic and will 
be utilized further to elucidate the philosophical completeness of the totality and the 
mathematical completeness of the generalized Peano arithmetic together and in parallel. One 
can notice that the unification meant above is equivalent to the “theorem” (or “principle”) of 
well-ordering, and thus, to the axiom of choice in set theory. The concept of “external reference 
frame” will be inferred, and a new generalized invariance of internal reference frames as well. 

Once the concept of “Hilbert arithmetic’ as the generalized Peano arithmetic has been 
introduced as above, one can question about its mapping, eventually bijection, onto the “usual” 
separable complex Hilbert space of quantum mechanics. 

One should emphasize that Hilbert arithmetic is a “set-theory arithmetic” building a model 
of Peano arithmetic in the set-theory mathematics, properly by a special vector space. Thus, the 
axiom of infinity (ZFC) or its equivalent is granted. Thus, the complement of all natural 
numbers (finite, according to the axiom of induction) and the set of all natural numbers (infinite, 
according to the axiom of infinity) should be interpreted in a relevant way for the contradiction 
to be resolved consistently: 

Once the axiom of choice for ZFC is granted, all “wave functions” (or “points” of the 
separable complex Hilbert space) can be enumerated necessarily “transfinitely”, i.e. “after” all 
natural numbers of Peano arithmetic, therefore suggesting a relevant consistent interpretation 
of that problematic complement above. 

The one-to-one transformation between the two complimentary Peano arithmetic can be 
represented by the complex bijection consisting of the real part bijection of all natural numbers 
of Peano arithmetic into all wave functions and the reverse bijection as the imaginary part. For 
the idempotency, the reverse one-to-one transformation of the two complimentary Peano 
arithmetics only will exchange the real and imaginary part of that complex bijection. 

Here is still one and equivalent representation of the same mapping: 
One can order-well the elementary functions (i.e. the “axes” of the complex separable 

Hilbert space) of any squarely integrable function of that Hilbert space into a vector of the same. 
That well-ordering is a bijection furthermore for the axiom of choice. Or vice versa: the 
isomorphism of Heisenberg’s matrix mechanics (i.e. the vector interpretation) and 



Schrödinger’s wave (“undulatory”) mechanics (i.e. the function interpretation) implies the 
axiom of choice implicitly (explicitly, the well-ordering “theorem”) 

The same equivalence implies the unambiguous transformation of Hilbert arithmetic into 
that Hilbert space (and thus, vice versa): both are isomorphic to each other. If one defines 
formally “external state” as the corresponding wave function according to its assigned natural 
number as “internal state”, the same isomorphism implies a generalized invariance to the 
exchange of external and internal states: 

The choice of the terms “external and internal states” is forced by a relevant teleological 
intention to be generalized the concept of reference frame (e.g. in special and general relativity) 
to “external reference frame”, and a corresponding generalized invariance of external and 
internal reference frames to be investigated. A well-ordered set as an internal trajectory is 
equated to an external and even unorderable (coherent) set obtained by the axiom of choice. 
The equivalence of the well-ordering “theorem” and the axiom of choice underlies that 
invariance to external and internal frames. Indeed, the axiom of choice acts on any set “outside” 
generating a well-ordering inside it. Thus, it is able to transform a continuous or even smooth 
trajectory inside a physical system in a discrete, ‘quantum” leap outside it. The “viewpoint” to 
the system from any external reference frame is discrete necessarily. Accordingly, the 
“viewpoint” to the system from any internal reference frame is continuous (smooth) necessarily. 

The fundamental postulate of quantum mechanics (formulated by Niels Bohr), according to 
which it studies the system of continuous macroscopic apparatus described by the smooth 
differential laws of classical mechanics and quantum microscopic entities by the readings of 
the former, implies that invariance at least as to quantum mechanics as well as its mathematical 
formalism (the separable complex Hilbert space) to describe it relevantly. It can be called 
“quantum invariance”. 

However, the conception of generalized reference frames and corresponding invariance 
extends it to general relativity as a fundamental and set-theory-arithmetical, mathematical 
approach to the problem of “quantum gravity”. Quantum invariance is isomorphic to the 
invariance to external and internal reference frames implying for the gravity of general relativity 
to be quantum gravity simultaneously in virtue of the same invariance called whether “quantum 
invariance” or “quantum gravity invariance”. 

That invariance is due to the fundamental mathematical axioms or statements and 
representable well in terms of Hilbert arithmetic as above rather than to any physical laws 
confirmable experimentally.   

Meaning “Dedekind finiteness” (i.e. any set that cannot be mapped by any bijection into its 
true subset is “Dedekind finite”) as a set-theory finiteness, and thus, being relevant to the 
approach of Hilbert arithmetic, the wave function as generalized “natural numbers” can be 
interpreted as follows:   

The bijective mappings of the set of all natural numbers (granting ZFC) into the class of all 
natural numbers (granting the Peano axioms) are meant. Thus, the former is actually infinite, 
and the latter is uncertainly finite, or an equivalent of the set of all finite subsets of the former. 
Both sets are countable and thus bijections between them exist. Now, one considers the set of 
all those bijections grouped into classes of equivalence according to the same element of the 
latter set, which is equivalent, in fact, to a natural number. The same natural number (thus finite) 
is considered in the complementary Peano arithmetic where it corresponds to just one certain 



wave function after all of them have been ordered well in virtue of the axiom of choice. As to 
the former, initial Peano arithmetic, the pair of a finite natural number in the complementary 
Peano arithmetic and a certain wave function corresponds unambiguously to just one transfinite 
“natural number” being out of Peano arithmetic consisting only of finite natural numbers. One 
can identify the elements of the triple, namely a finite natural number in the complementary 
Peano arithmetic, a transfinite “natural number” out of the initial Peano arithmetic, and a certain 
wave function. 

The same triple corresponds unambiguously to the triple where the third element is replaced 
by the corresponding element of the nonstandard Peano arithmetic. The equating of the two 
triples in virtue of the identifying of two of their elements implies the interpretations of the 
elements of the set of all nonstandard Peano natural numbers as wave functions and the 
identification of classical information (measured in bits) and quantum information (measured 
in qubits).    

One considers the mappings of the set of all natural numbers into the class of all natural 
numbers as above, again. They will be identified as all wave functions ordered well as all in-
between transfinite “natural numbers” between the ordinal of the set of all natural numbers and 
all natural numbers themselves. Any wave function of them (thus, any corresponding transfinite 
“natural number”) corresponds to just one normal distribution5 of natural numbers in virtue of 
the central limit theorem as far as its conditions are satisfied by the meant mapping.   

Explicitly, the construction for a “one-to-one” mapping of the infinite set of all natural 
numbers into the “finite” class of all natural numbers (according to Peano arithmetic) by 
mediation of the Dedekind set-theory finiteness is as follows: 

The Dedekind finiteness of the class of all natural numbers is conserved in virtue of the 
absence of any mapping of the set of all natural numbers into the former class. The mapping is 
fundamentally random. The infinite set is “mapped one-to-one” into a certain finite set, but the 
latter is different after each case (in general) being fundamentally random. 

One can prove that the set of all possible cases of those mappings can be distributed into 
disjunctive subsets, each of which is determined unambiguously by the two parameters of a 
certain normal distribution, thus in turn corresponding to a certain wave function as its 
characteristic function. And vice versa: any wave function corresponds to just one of those 
disjunctive subsets by the mediation of a certain normal distribution of all natural numbers. 

From a mathematical viewpoint (rather than a philosophical one as here), that proof would 
be the central result: 

There exists a bijection of all mappings of the set of all natural numbers into the class of all 
natural numbers (as all possible normal probability distributions after the fundamentally 
random choices of the elements of the set of all natural numbers in virtue of the axiom of choice) 
and all elements of the separable complex Hilbert space (all wave functions). 

The proof is not too difficult, but bulky technically. From a philosophical viewpoint, only 
one point in it is worth to notice: 

The bijection, i.e. the availability of both forward and inverse function needs necessarily the 
two complementary Peano arithmetics. For example, if the one function is proved in the one 
Peano arithmetic, the other function cannot be proved in it, but only in the complementary 

                                                            
5 The wave function is the characteristic function of the corresponding probability distribution. 



Peano arithmetic (and vice versa). Thus, any of the two arithmetics obeys Gödel’s 
incompleteness, but two ones together, as a whole, does not: the generalized Peano arithmetic 
(Hilbert arithmetic) is both complete and consistent. 

The introduction of Hilbert arithmetic involves furthermore the conception of “bosons”, 
“fermions” and “classical particles” even arithmetically. Indeed, any natural number in both 
complementary standard interpretations satisfies the definitive condition of “fermion”: only two 
ones (being due to the well-ordering of both arithmetics) can share the same wave function 
(corresponding to the same state in quantum mechanics). Thus, the Fermi-Dirac statistics is 
valid for any ensemble of them. Further, any natural number in the non-standard interpretation 
satisfies the definitive condition of “boson”: any number of particles can share the same wave 
function (being due to the necessary absence of well-ordering and corresponding of the same 
state of bosons in quantum mechanics). Thus, the Bose – Einstein statistics is valid for any 
ensemble of them. The elements of the two transfinite complements of each of the two 
complementary Peano arithmetics satisfy the definite condition of “classical particle”: the unit 
(as the Planck constant to classical physics) is infinitely small “zero” to any element of them. 
The, any their ensemble satisfies the Maxwell – Boltzmann statistics. 

The observation that a physical quantity such as “spin” origins directly and only from 
arithmetical and set-theoretical considerations referring to the foundations of mathematics 
admits the generalization that the same property is valid to other quantum quantities, even to 
classes of them, e.g. all quantum quantities of mechanical motion and thus, those of 
thermodynamics, etc. 

From a philosophical viewpoint, the following conjecture seems to be admissible: 
A reduction of quantum mechanics (and even physics) to mathematics is possible (implying 

a new kind of reductionism). Many physical properties and laws might originate from 
mathematics directly. A quantum form of Pythagoreanism, resurrecting the ancient one, makes 
sense to be discussed. The further consideration of that hypothesis will be postponed for a future 
paper. 

Hilbert arithmetic as it is defined rigorously above allows for both classical and quantum 
information to be defined uniformly. Thus, the relation between them is articulated and 
becomes obvious: 

Classical information is defined in Peano arithmetic, and quantum information is defined in 
Hilbert arithmetic, which generalizes the former.     

For example, classical information is measured in units of “bits”, and quantum information 
is measured in units of qubits. A bit is defined as one elementary choice between two equally 
probable alternatives. Thus, any choice in the framework of Peano arithmetic would correspond 
to a certain value of classical information measured in bits. 

A qubit is defined as a choice between all elements of an actually infinite set, which is 
equivalent to its standard definition as the normed superposition of (orthogonal) subspaces of 
the separable complex Hilbert space, Thus, any choice in the framework of (ZFC) set theory 
would correspond to a certain value of quantum information measured in qubits, i.e. to a certain 
wave function. 

As for as the concept of Hilbert arithmetic is created to regulate (and particularly, to make 
consistent to each other) Peаno arithmetic and (ZFC) set theory in a single mathematical 
structure, it relates the two kinds of information: classical and quantum. 



Particularly, Hilbert arithmetic subordinates them cyclically as follows: 
A “global” structure of classical information implemented in the complementary Peano 

arithmetics, in which any enumerated bit (particularly, a cell in a Turing machine) is the choice 
between the natural numbers of the same name (number) in both complementary arithmetics. 
The local structure of any of those bit is the complementary pair of the qubits in the two dual 
and complementary separable complex Hilbert spaces. 

The cyclicality consists in the fact that the global structure of two complementary Peano 
arithmetics represents a single pair of two complementary qubits. In other words, the global 
structure as if it is contained in each given exemplification of local structure (within a qubit), 
but differently represented in each of them as a value of its.  

For example, one can interpreted the Schrödinger equation, fundamental for quantum 
mechanics, as relating the global structure of Hilbert arithmetic (the left part of the equation) 
and the local structure of it (the right part) in a certain way valid for our universe. Thus, all 
possible universes can be described by the class of all possible ways for the global and local 
structure to be equated to each other (or roughly speaking, as the class of all possible 
“Schrödinger equations”).   

The operation “addition” and “multiplication” are defined standardly in both Peano 
arithmetics. However, this is due to the well-ordering, which is not available in the nonstandard 
interpretation. So, the following question arises: how should those operations be defined if the 
fundamental operation of successor is determined as “= successor”? 

One can show, that they are equivalent correspondingly to the Boolean operations 
“disjunction” and “conjunction”, and the unary operation “negation” can be defined as well. 
The negation of any nonstandard Peano “number” is its unambiguous “mirror” counterpart at 
the “other end”. More precisely, that “mirror’ counterpart can be defined by the same natural 
number in the complementary standard Peano arithmetic as the counterpart of the last one in 
the nonstandard Peano arithmetic consisting of the elements of both complementary standard 
Peano arithmetics. 

A seeming contradiction between Hilbert arithmetic and intuitionist arithmetic appears: 
The “excluded middle” is provable (if one defines “negation’ as here) in Hilbert arithmetic 

including to actual infinity. Furthermore, it is complete and consistent to set theory. On the 
contrary, intuitionist arithmetic postulates that the “excluded third” is not valid as to infinity 
(interpretable in (ZFC) set theory as “actual infinity”) being complete and consistent to set 
theory as the former. 

The contradiction is seeming only since “infinity” defined in an intuitionist way admits to 
be identified in both arithmetic and set theory. What is the complementary “finite” Peano 
arithmetic as a sub-arithmetic in Hilbert arithmetic corresponds to the implicit area of the 
middle between the two forms of infinity admissible in intuitionist mathematics: arithmetical 
and set theoretical. That implicit domain of the “infinite middle” is explicit in Hilbert arithmetic 
as the complementary Peano arithmetic. 

So, the algebraic structure of the nonstandard Peano arithmetic is isomorphic to Boolean 
algebra and thus can be interpreted as propositional logic, which in turn is considered as the 
“zero-order logic”. Thus the standard Peano arithmetic as a first-order logic (because the 
propositional zero-order logic is identified here as the nonstandard interpretation of Peano 
arithmetic) implies both complementary counterpart of it and Hilbert arithmetic, further. That 



relation of Peano arithmetic and Hilbert arithmetic can be rather useful practically as it will be 
illustrated a little bellow by means of a thoroughly arithmetical proof of Fermat’s last theorem. 

The relation of both Gödel papers about logical completeness (1930) versus arithmetical 
incompleteness (1931) to (ZFC) set theory can be explained easily in the framework of Hilbert 
arithmetic. As to the arithmetical inconsistency of eventual completeness to set theory, its 
validity is restricted in general (only to the half levels of a hierarchy, e.g. odd ones), and 
particularly, invalid to Hilbert arithmetic (referring to the even levels in the same scheme).  

One can demonstrate very easily that the generalized Peano arithmetic (also being called 
Hilbert arithmetic here) is equivalent to the separable complex Hilbert space of quantum 
mechanics as follows: 

If one considers both transfinite complements of both complementary standard Peano 
arithmeticс as separately as unified as a single nonstandard Peano arithmetic, they constitute as 
Hilbert arithmetic, too, complementary in turn to the initial Hilbert arithmetic generated it, as a 
separable complex Hilbert space identical to that utilized of quantum mechanics. The same 
observation implies that Hilbert arithmetic is isomorphic to the separable complex Hilbert 
space, or as a metaphorical philosophical conclusion: 

Hilbert arithmetic is the real arithmetic of nature: particularly, all physical entities, processes 
or quantities can be understood and reduced to arithmetical if the natural arithmetic is 
generalized as Hilbert one. A new form of both scientific and philosophical, furthermore, very 
heuristic reductionism appears: the reductionism form quantum mechanics (and thus physics 
thoroughly) to arithmetic.  

Its fruitfulness can be exemplified by the following consideration. The separable complex 
Hilbert space (or at least, its “bosonic subspace”) turns out to be equivalent to the nonstandard 
interpretation of Peano arithmetic and thus, to propositional logic. As the latter is both complete 
and consistent to set theory and therefore, to all mathematics in the sense of Gödel’s 
“completeness paper” (1930), the separable complex Hilbert space is both complete and 
consistent in the same sense. As a direct corollary, one can deduce the completeness of quantum 
mechanics (Kochen – Specker’s theorem) as equivalent to the completeness of logic to set 
theory (Gödel 1930) after utilizing Hilbert arithmetic as equivalent to the separable complex 
Hilbert space. 

Hilbert arithmetic as well as the concept of information (by which mathematics and physics 
can be merged) can be inferred philosophically from the totality, a unique entity possessing an 
unusual definitive property, “to be all”, and thus, to contain its “externality” “within” itself. 

A course of thought, invented by Kant and applied by him to philosophy, can be utilized 
analogically to the foundations of both mathematics and physics where they as merge into each 
other as merge into philosophy. This is Kant’s transcendentalism, which can specified 
particularly as “physical and mathematical transcendentalism”. In fact, it was reduced to an 
elementary scheme, similar to a logical one involving the “contradiction” as a fundamental 
base, however forbidden by classical logic by the restriction known both as the “law of 
contradiction” and as the “law of non-contradiction”. This is Hegel’s famous idea of “dialectic 
logic”, a philosophical logic applicable to the philosophical “totality” (unlike classical logic). 
The impossibility to be utilized consistently both classical logic and “dialectic logic” caused 
furthermore the rejection of the philosophical “totality” as implying inconsistency to science 
and empirical experience. 



It resulted in the “schism” of philosophy and science, not less fundamental that one between 
religion and science. As the latter is due to the inconsistency of the fundamental religious 
concept of “God” to science as the former is due to the analogical inconsistency of the 
fundamental philosophical concept of the “totality’ to science (visible by the direct 
contradiction of classical logic and “dialectic logic”). 

Anyway, the “totality” will be used here in relation to science and its physical and 
mathematical foundations rather than to philosophy, and therefore that the initial scheme of 
“dialectic logic” can be modified into the concept of information, thus, made secure and 
consistent to classical logic. 

One can notice that Hegel’s “triad” (thesis – antithesis – synthesis) is isomorphic to the 
concept of an elementary choice (i.e. to a bit of information) between two equally probable 
alternatives, however “upside down” (i.e. in the opposite direction). Indeed, the concept of 
information as well as the underlying one of choice (such as that in the axiom of choice) are 
usual scientific ideas consistent to classical logic. 

So, one need interpret those “opposite directions” as to the totality in both cases to elucidate 
why the one is secure, but the other, opposite one generates contradictions at least to classical 
logic:  

The concepts of choice and information remain within the totality6, but the idea of ‘dialectic 
logic” (being directed oppositely) goes out of the totality (into its ‘antithesis’) therefore 
generating a contradiction to the definition of the totality7. Two strategies to the totality (for it 
to be consistent) appear then: 

(1) The definitive property of the totality to be postulate therefore prohibiting any way out 
from it. 

(2) Physical and mathematical transcendentalism to deduce a relevant kind of transcendental 
invariance, according to which the totality (by itself or by its definition) generates an invariance 
of the domain within it ant that out of it. Then, the totality would be any entity, to which that 
“transcendental invariance” takes place. 

The former is able to find certain ways to be avoided the paradoxes in the foundations of 
mathematics. Its obvious disadvantage is that it is ad hoc and accordingly, it cannot be proved 
in turn or justified otherwise than “empirically”.  

Physical and mathematical transcendental invariance can be visualized loosely and more 
freely by the CPT invariance in quantum mechanics if the charge “C” is interpreted as referring 
(or “name”) to the one of the two domains: either “within the totality”; or “out of the totality. 
Furthermore, the space “P” is interpreted correspondingly as the space within it or alternatively, 
the space out of it, and the time “T”, as either the normal, “forward” course of time or the 

                                                            
6 The usual “ad hoc” approach for set theory to be consistent demonstrates the same idea however 
postulated rather than proved as here on the base of formal transcendentalism Any set is necessary to 
be an implicit subset of some other set: thus, any set is necessary in the framework of the set of all 
sets, which is postulated to be that set, to which the class of all sets which do not belong to themselves 
does not make sense and there is not any relation between the former and the latter. The same property 
only postulated in set theory ad hoc to be avoided the irresolvable contradiction is well-founded in the 
formal definition of the totality after transcendentalism,   
7 This is visible formally e.g. in Russell’s paradox, where the ‘totality’ is exemplified by the “set of all 
sets”. Then, its “antithesis” of the “set of all sets which belong to themselves”, namely the “set of sets 
which do not belong to themselves” is what generates the irresolvable contradiction of the paradox. 



opposite, “backward” direction of it. Then, the CPT invariance itself can be interpreted as a 
physical transcendental invariance: if one changes simultaneously the name of the domain, “C”, 
the space of the domain, “P”, and the direction of time, “T”, to the opposite ones, noting will 
change, in fact. 

One can demonstrates that Hilbert arithmetic possesses the same kind of invariance, which 
can be called initially “mathematical transcendental invariance” (in order to be able to be proved 
its identity with the “physical” one into an intended “physical and mathematical” one): 

Indeed, if one changes the standard Peano arithmetic into its complementary counterpart, 
the space of the finite domain of natural numbers into that of the “infinite” (or “transfinite”) 
one, and the direction of the function successor from “+1” to “−1”, nothing will change, 
analogically. The nonstandard interpretation of Peano arithmetic represent both complementary 
Peano arithmetics therefore cancelling necessarily the well-ordering of each of them and 
identifying both with the usual standard, or “naïve” Peano arithmetic under the additional 
condition of whether any relevant well-ordering is available or not. 

So, three particular symmetries or invariances, analogical and even isomorphic to those “C”, 
“P”, and “T” in the physical case above can be observed again. Even more, the equivalence of 
Hilbert arithmetic to the separable complex Hilbert space (also explicated above) implies that 
the three symmetries or invariances are the same rather than only similar or isomorphic. Thus, 
the two separate kinds, accordingly “physical transcendental invariance” and mathematical 
transcendental invariance” can be unified rigorously into “physical and mathematical 
transcendental invariance”, or merely “transcendental invariance”, because mathematical, 
physical and philosophical transcendental invariance are unified into it rather than only physical 
and mathematical ones. In other words, as physical transcendental invariance as mathematical 
transcendental invariance as well as philosophical transcendental invariance are only different 
interpretations (or exemplifications) of that most fundamental transcendental invariance. And 
vice versa, the existence of that most fundamental transcendental invariance implies the 
unification of the three ones. 

Particularly, the paradoxes in the foundations of mathematics can be explained by partial 
symmetries and invariances, which are not valid in general and thus they are able to produce 
contradictions. The postulated prohibition of any way out of the totality, as in (1), excludes the 
antinomies practically, however without any proof that no antinomies are possible in principle. 
On the contrary, transcendental invariance as in (2) guarantees the consistent completeness of 
mathematics as necessary.  
    

III. AN ILLUSTRATION BY FERMAT’S LAST THEOREM AND ITS PROOFS 
Fermat’s last theorem and its proof supply a wonderful visualization about the relations and 

accessibility of the actual infinity of set theory from the inductive finiteness of arithmetic. 
Fermat’s last theorem is proved by Andrew Wiles (1995) as a corollary from the modularity 

theorem (known as the “Tanyiama – Shimura – Weil conjecture” before that) and therefore 
involving at least set theory (or even a relevant generalization of it). Some authors admit that 
inaccessible cardinals are useful implicitly in the proof of the modularity theorem. Other authors 
refuse this.  

If one does not impose the condition for the inaccessible cardinals to be uncountable, 
therefore admitting enumerable inaccessible cardinals commensurable with the cardinal of the 



set of all natural numbers, their necessity availability in any proof of Fermat’s last theorem, 
which involves furthermore (at least) set theory as that of Andrew Wiles can be demonstrated 
rather simply: 

If one proves that Fermat’s last theorem is a Gödel irresolvable statement, this would be 
equivalent to the statement in the previous paragraph. 

Indeed, let Wiles’s proof be granted as correct and thus, Fermat’s last theorem proved as a 
corollary from the modularity theorem. As far as the modularity theorem (unlike Fermat’s last 
theorem) needs set theory to be formulated as well as the Peano arithmetic itself, the Gödel 
irresolvable statements make sense to that proof. 

 Further, one can prove that Fermat’s last theorem is a Gödel irresolvable statement by the 
mediation of Yablo’s paradox demonstrating that any proof of Fermat’s last theorem, which 
has involved set theory as necessary for the proof implies for it to be an exemplification of 
Yablo’s scheme and thus, a Gödel irresolvable statement, i.e. unprovable in the framework of 
(ZFC) set theory & (Peano) arithmetic. 

The same observation would not reject the following two options: (1) Fermat’s last theorem 
is provable in (ZFC) set theory & Hilbert arithmetic (as Hilbert arithmetic is a crucial 
generalization of Peano arithmetic) (2) Fermat’s last theorem is provable in Hilbert arithmetic, 
which, however, is equivalent to Peano arithmetic as a first order logic on the following reason: 

The nonstandard interpretation of Peano arithmetic can be identified as propositional logic 
for their isomorphism. Then, the usual standard interpretation of Peano arithmetic & 
propositional logic as the nonstandard interpretation of Peano arithmetic are equivalent to Peano 
arithmetic as a first-order logic, on the one hand, and to the complementary standard 
interpretation of Peano arithmetic, and thus to Hlibert arithmetic (as the triple of the two 
complimentary Peano arithmetic and the nonstandard interpretation of Peano arithmetic), on 
the other hand. 

As to Wiles’s proof, it should generalize (ZFC) set theory or (Peano) arithmetic. The 
investigation of what exactly is generalized to be reached a correct proof of the modularity 
theorem (as far as it in turn implies Fermat’s last theorem) is far out of the framework and 
intention of the present work. Its purpose will be restricted to the explicit demonstration of its 
proof in Hilbert arithmetic. 

Statement: Fermat’s last theorem is a Gödel irresolvable statement (under conditions, under 
which the later makes sense). 

Fermat’s last theorem is proved as a corollary from the modularity theorem (Wiles 1995). 
Thus, (a part of) set theory is necessary for the proof (besides Peano arithmetic for the Fermat 
theorem itself), and thus, the statement (A) that “Fermat’s last theorem is a Gödel irresolvable 
statement” make sense (it is either false or true). 

One can prove that “A” is true as follows. One notates by “𝐹𝐹𝐹𝐹𝐹𝐹(> 𝑛𝑛)” the statement that 
Fermat’s last theorem is true for any (each) natural number greater than “𝑛𝑛”, and “𝑌𝑌𝑃𝑃(𝑛𝑛)” 
means   “𝐹𝐹𝐹𝐹𝐹𝐹(> 𝑛𝑛)”. Then, “𝑌𝑌𝑃𝑃(𝑛𝑛)” is a true statement “∀𝑛𝑛 > 1” (and “𝑛𝑛” is a natural number) 
in virtue of Wiles’s proof of Fermat’s last theorem. 

Furthermore, the series by “n” of “𝑌𝑌𝑃𝑃(𝑛𝑛),∀𝑛𝑛 > 1” constitutes the scheme of Yablo’s 
paradox, and thus, implies it: Wiles’s proof of Fermat’s last theorem implies Yablo’s paradox, 
and the latter in turn implies for Fermat’s last theorem to be a Gödel irresolvable statement as 
it has been demonstrated above. 



Statement is proved.  
A corollary from the Statement: if Wiles’s proof is correct, it generalizes necessarily Peano 

arithmetic or (ZFC) set theory (in order to be able to avoid Yablo’s paradox). 
There is another way out for Yablo’s paradox to be sidestepped as to Fermat’s last theorem: 

involving set theory as a necessary condition of the proof to be prevented, for example, by an 
only arithmetical proof of Fermat’s last theorem (Penchev 2020a). 

The cited only arithmetical proof will be reinterpreted here in terms of Hilbert arithmetic. 
Hilbert arithmetic generalizes Peano arithmetic, and furthermore, it is consistent to set theory, 
however, without involving set theory in Hilbert arithmetic to be necessary.  

That reinterpretation need explain only the meaning and sense of the proof in terms of the 
complimentary standard Peano arithmetic after the only arithmetical proof of Fermat’s last 
theorem has utilized already the Peano arithmetic as a first-order logic. That sense consists in 
the explanation of how the complimentary standard Peano arithmetic (and thus, Hilbert 
arithmetic by means of it) is able to avoid Yablo’s paradox for Fermat’s last theorem (i.e. how 
the latter not to be a Gödel irresolvable statement): 

One can reinterpret the “semi-validity” of Gödel’s incompleteness (as it has been introduced 
and explained above) in terms of Hilbert arithmetic. The two complementary standard Peano 
arithmetics can be considered both as identical to each other (in virtue of “transcendental 
invariance” as above) as complimentary. Gödel’s incompleteness is valid only in the latter case, 
and thus, only in the half of cases: just “semi-validity”. If one uses the “CPT” metaphor or 
visualization of that transcendental invariance, the latter case of Gödel’s incompleteness is 
featured by the partial, only “CP” invariance, but the “T” component is not available: the 
direction of the function successor is not changed to the opposite one, “−1”, but remains the 
same “+1”, therefore constituting or transforming the complementary standard Peano 
arithmetic into the transfinite complementation to the first, “forward” standard Peano 
arithmetic. The Gödel numbers of all Gödel irresolvable statements belong to it, and thus, they 
can exist only under the condition of that “partial invariance”. 

Next, if one suggests a proof of Fermat’s last theorem which would be invariant to the 
change of the direction of the function successor (i.e. between “+1” and “−1”), it would be 
valid as after the “naïve” identification of both complimentary Peano arithmetics to the usual 
standard interpretation of Peano arithmetic as in the case of Gödel’s incompleteness meaning a 
transfinite forward continuation of the “naïve” Peano arithmetic. 

In other words, that proof can be continued forward in the domain of transfinite induction 
in virtue of its validity in the domain of the “finite” induction meant by the axiom of induction, 
or in virtue of the invariance of the proof to the change of the direction of the function successor. 

Therefore, the utilized “modified Fermat descent” for the only arithmetical (or “naïve”) 
proof of Fermat’s last theorem satisfies that condition to be invariant to the change of the 
direction of the function successor. This is due to involving modus tollens being equivalently 
valid in both opposite directions of the function successor. 

Thus, the “naïve”, only arithmetical proof of Fermat’s last theorem implies the proof in 
Hilbert arithmetic, and further, the option of Wiles’s proof to be valid after a necessary relevant 
generalization of the pair of Peano arithmetic and (ZFC) set theory (once the pair is necessary 
for the modularity theorem to be formulated). 



If one considers Peano arithmetic as a first-order logic from the viewpoint of Hilbert 
arithmetic, the former is incomplete “to itself” for it implies Hilbert arithmetic and thus, the 
complimentary counterpart. One may say that Peano arithmetic as a first order logic is not 
incomplete to set theory, but to itself. Hilbert arithmetic, therefore, is that generalization of 
Peano arithmetic which is not incomplete to itself. Furthermore, Hilbert arithmetic possesses 
the extraordinary property Hilbert arithmetic as a first-order logic and Hilbert arithmetic “by 
itself” to be isomorphic to each other because Hilbert arithmetic contains a structure, namely 
the nonstandard interpretation of Peano arithmetic, which is isomorphic to propositional logic 
for both share the structure of Boolean algebra as isomorphic to each other. 

Furthermore, Hilbert arithmetic is not only complete, but also consistent to set theory. This 
is due to the fact that Gödel’s either incompleteness or inconsistency of Peano arithmetic to set 
theory is suspended as to Hilbert arithmetic. Thus, its completeness does not implies 
inconsistency for the validity of Gödel’s incompleteness (and thus, inconsistency) is restricted 
to its semi-validity to Peano arithmetic (and thus, invalidity to Hilbert arithmetic). 

Particularly, Peano arithmetic as a first order logic from the viewpoint of Hilbert arithmetic 
is only incomplete, but not inconsistent to set theory once it has been completed. The only 
arithmetical proof of Fermat’s last theorem is able to demonstrate that, in virtue of which it is 
valid in both Peano arithmetic and Hilbert arithmetic, and even the former validity implies the 
latter validity for the utilization of the (modified) Fermat descent being symmetrical to both 
directions of function successor by means of involving modus tollens.  

However, Hilbert arithmetic by means of the nonstandard interpretation Peano arithmetic 
even implies set theory rather than only being consistent to it. Thus, “transcendental doubling” 
or transcendental invariance, and thus the concept of information itself are implied by Hilbert 
arithmetic: it is the relevant way for Hilbert’s program, i.e. the total and complete 
arithmetization of mathematics, however after one has managed to interpret Peano arithmetic 
as equivalent to Hilbert arithmetic in virtue of the nonstandard interpretation of the former. The 
crucial philosophical obstacle for Hilbert’s program is the necessity to be radicalized to a form 
of neo-Pythagoreanism, by which the total world is to be considered as mathematical, 
particularly implying the philosophical concept of totality and transcendentalism relevant to it.  

The identification of Hilbert arithmetic and the separable complex Hilbert space (as above) 
implies the following: 

Quantum information and classical information are complimentary to each other (for 
example, as the naïve ideas of finiteness and infinity are). Nonetheless, their change in time 
(respectively, their corresponding quantities of time derivatives) can be equated to each other. 
This due to the identity of well-ordering or to that of the function successor even where it is 
defined oppositely. That identity underlies the Schrödinger equation: its essence is to equate 
classical information (in its “left side”) and quantum information (in its “right side”).   

From the equivalent viewpoint of the foundations of mathematics, the same essence is the 
equivalence of well-ordering (i.e. the principle or “theorem” of well-ordering applied to a 
continuous or smooth trajectory within a mechanical system, respectively for the classical 
description of the macroscopic “apparatus” in quantum mechanics) and the “free will” or 
fundamentally random choice (i.e. the axiom of choice applied to the discrete out of a 
mechanical system, respectively for the quantum description of the microscopic entity of 
quantum mechanics).  



The same equivalence or equating (being informational in essence and thus referring to the 
foundations of mathematics by the foundations of physics) is represented in general relativity 
as a certain curving therefore equating two different (in general) distances: the straight distance 
without gravity (corresponding to the mathematical “choice” between discrete alternatives) and 
the curved distance with gravity (corresponding to the mathematical ‘well-ordering” of a 
continuous or smooth trajectory).  

In other words, general relativity describes the same as quantum mechanics only in a 
different, but equivalent way. The reason not to be seen that physical equivalence or 
mathematical isomorphism is the initial “blinding” of our age: the fundamental difference 
between “model” and “reality” (particularly, between mathematical “model” and physical 
“reality”) therefore excluding their unifying informational “reference frame” within which, 
properly and particularly, the unification of general relativity and quantum information can be 
noticed and described. It implies a few much more radical and fundamental unifications such 
as that of mathematics and physics or that of model and reality at all. 

 
IV STILL A FEW ILLUSTRATIONS BY POSSIBLE PROOFS OF IMPORTANT 

THEOREMS 
The thesis, which is intended to be illustrated, is the following: 
The consistent completeness of the foundations of mathematics (and thus, that of 

mathematics at all, furthermore unified with quantum mechanics, and by with, with physics at 
all) is the core of many great puzzles and problems in the contemporary mathematics. Its 
resolution allows for them to be resolved also. 

Besides Fermat’s last theorem and the only arithmetical proof of, ones of the great enigmas 
of mathematics in Modernity, discussed already in the previous section, still a few ones will be 
unraveled in a link to “Hilbert arithmetic” and that consistent completeness implied.  

Those are: four color theorem proved “humanly” (i.e. rather than an enumerating a huge 
number of cases, and thus, accomplishable actually only by computers: the humans can check 
only their software programs to be correct); a generalization of the four-color theorem based on 
its “human” proof, namely, the “four letter theorem”; Poincare’s conjecture (proved by G. 
Perelman), its physical interpretation and purely arithmetical proof; a class of examples 
demonstrating that “𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃" in the “P vs NP” problem. 

The beginning is the four-color theorem: it states that any two-dimensional map consisting 
of many areas can be colored by means of only four different colors so that no neighboring (i.e. 
sharing a common boundary consisting of more than one point) have the same color. 

Let one admit that there exists a color defect in the map so that some two neighboring areas 
are colored equally (i.e. by the same color). That defect implies that the one one-dimensional 
projection or the other one of the two-dimensional map contains a one-dimensional defect 
(possibly both as well).  

That one-dimensional defect is defined analogically: two neighboring one-dimensional 
areas (i.e. sharing only a single point as their boundary) are colored equally. Modus tollens 
implies that if no one-dimensional defect exists in any of both projections, no two-dimensional 
defect exists in the map. If no defect exists in any pair of two one-dimensional projections, no 
defects exist in the map at all. The obvious sufficient condition for no one-dimensional defect 
in any projection are two colors for it. 



Two different projections of the same direction (e.g. either horizontally or vertically) cannot 
share any point. So two colors are sufficient (and necessary) for no one-dimensional defect in 
each of them. Two different projections of different directions (i.e. both horizontally and 
vertically) share necessarily a common point because any vertical projection crosses any 
horizontal projection in just one point. Though, all horizontal projections, on the one hand, and 
all vertical projections, on the other hand, need only two colors sufficient to be colored without 
any defect, both groups of projections need totally four colors for no-defect coloring because 
projections belonging to the two different group can share a common point (for any pair 
consisting of a vertical and a horizontal projection).  

In other words, all vertical projections need two colors, but all horizontal projections need 
two different colors (to be avoided any defect in the case of crossing), thus, four colors are 
sufficient totally. Then, no two-dimensional defect can exist in the map if no one-dimensional 
project exists in any projection both vertical and horizontal. Four colors are sufficient for the 
latter, and thus, for the former. 

The four-color theorem is proved “humanly”.  
Two notices to the proof are necessary furthermore: 
1. The term “projection” used above might be misleading. It does not mean that all the map 

to be projected on a single straight line. It means that all two-dimensional map is decomposed 
into two groups (or by two alternative ways) of one dimensional “sub-maps” parallel to each 
other and thus not sharing any common point. The one group is defined to consist of all the 
“vertical projections”, and the other one, of all the “horizontal projections’. The term 
“projection” means an element of those two groups (classes). 

2. One has to pay a special attention to the case of no two-dimensional defect though two 
areas sharing just one single point are colored equally. Then, the absence of two-dimensional 
defect would imply the availability of one-dimensional defect for any projections defined as 
follows: 

Two neighboring one-dimensional areas of that kind of (”defective”) projections share that 
one single point at issue. The one neighboring one-dimensional area belongs to the one of the 
two-dimensional areas at issue, and the other one-dimensional one, accordingly, to the other 
two-dimensional one.  

That consideration is to be interpreted as follows. The exhibited proof refers to a stronger 
case, which includes the usual weaker formulation of the four-color theorem admitting the case 
where two neighboring areas are colored equally if they share only a single point as their 
boundary. So, the proof is valid for the weaker case.  

In fact, that weaker case makes sense only under a topological interpretation as what the 
four-color theorem is considered usually. However, the theorem will be generalized to the 
“four-letter theorem” therefore not being interpreted topologically, and that weaker case does 
not make sense after the new generalized interpretation (being properly in the framework of the 
foundation of mathematics: arithmetic & set theory): 

 How many letters does the “alphabet of nature” need?  
The “alphabet of nature” is meant as a finite tuple of symbols allowing for any existing or 

non-existing entity to be notated unambiguously by their combination. If those entities are the 
areas of a map, the four-letter theorem is the solution after reducing. Thus, the four-letter 



theorem refers to the corresponding conjecture as a generalization, stating that four letters (as 
four colors for a map) are sufficient for that alphabet. 

The proof of the generalization is based on the exhibited “human” proof of the four-color 
theorem after corresponding reinterpretation (first of all, the reinterpretation in terms of Hilbert 
arithmetic of those two groups of either horizontal or vertical projections): 

They are interpreted correspondingly as the two complimentary Peano arithmetics as 
follows: 

 Each of them needs the tuple (alphabet) of at least two symbols (as the notation system is 
positional or not) for any natural to be notated unambiguously. The two alphabets are 
necessarily different as the well-orderings of the two arithmetics are different (properly, 
directed oppositely). If one consider the same element as belonging to each of them, it has to 
be notated differently in each of them for their well-orderings are inconsistent to each other 
(e.g. “(𝐴𝐴 < 𝐵𝐵)&(𝐶𝐶 < 𝐷𝐷)", where “B” & “C” (accordingly, “A” & “D”) are the different 
notations in the two arithmetics. If the notations were not different, a contradiction would 
appear. 

So, four letters are sufficient for both alphabets totally, or in other words, for the total 
alphabet. Further, the two complimentary arithmetics are interpreted equivalently as 
subarithmetics of Hilbert arithmetic representing it exhaustively. Since Hilbert arithmetic is 
equivalent to the separable complex Hilbert space (as this is demonstrated above), the tuple of 
four symbols is sufficient to designate unambiguously any wave function (i.e. any element of 
the separable complex Hilbert space), and further, any entity for a wave function corresponds 
to any entity: the four-letter theorem is proved.  

Poincaré’s conjecture can suggest another visualization and exemplification of the idea that 
the consistent completeness of mathematics reflects on the deepest and most difficult problems 
of the contemporary mathematics: indeed, it is the only one from the CMI Millennium Prize 
problems, the solution of which is recognized officially. Gregory Perelman’s proof will not be 
used here. It corresponds the present one by the utilization of the quantity of information. 
However, the links are too hidden and sophisticated mathematically so that their revelation 
remains far out of the scope and objectivity of the present paper. 

The proof here will be based on Hilbert arithmetic, however its identification as the 
separable complex Hilbert space will be omitted intentionally. Instead of that, Poincare’s 
conjecture will be proved by two independent ways (properly, granted as independent here): 
(1) by Hilbert arithmetic; and (2) by the separable complex Hilbert space (interpreted as 
equivalent to Minkowski space, and thus by it, to our usual three-dimensional Euclidean space 
of empirical experience). 

Consequently the identity of   Poincaré’s conjecture proved by those two ways utilized as 
independent of each other will supply still one, i.e. independent proof of identity of Hilbert 
arithmetic and the separable complex Hilbert space of quantum mechanics: 

The proof in the way (1) of Hilbert arithmetic is the following:  
Poincaré’s conjecture states the homeomorphic transformation of an infinite three-

dimensional vector structure, namely Euclidean space, and a finite four-dimensional vector 
structure such as a unit 3-sphere. So, the problem can be generalized philosophically and 
mathematically that “infinity” is equivalent to a new dimension, at least topologically. If one 



proves that last statement, the proof of Poincaré’s conjecture would be a direct corollary from 
it as to the particular case at issue. 

That generalization can be rearticulated as follows. There exists a homeomorphism able to 
transform a discrete topology corresponding to a new dimension (the forth one in the case of a 
unit 3-sphere) into a continuous “infinite” topology corresponding to the absence of any new 
dimension (i.e. the conservation of the three “infinite” dimensions of Euclidean space in the 
case in question). At first glance, that homeomorphism seems to be absurd, a “mistake in 
definition” for the direct contradiction of the continuous and the discrete, in virtue of which any 
homeomorphism between them is ostensibly impossible. 

In fact, the discrete and continuous ate not inconsistent as contradictory to each other in 
topology: the discrete can be consider as a particular case of the continuous after adding a closed 
topology to an open one therefore transforming it into “clopen” and thus, into a discrete one. In 
other words, the extraordinary consistency of continuity and discreteness in topology is due to 
the not less extraordinary, but well-known consistency of open and closed topology, even 
available simultaneously in discrete topology. Thus, a homeomorphism of the open continuous 
topology into both open and closed discrete topology turns out to be admissibly possible under 
a certain condition: infinity, which is topologically “open” to be substituted by finiteness, which 
is topologically “closed” by means of a new additional dimension, therefore by implicit 
reference to discrete topology (implied by the discontinuity of the new dimension). 

Even more, the topological consideration as to that homeomorphism can be avoided at all 
by its definition only in set theory & arithmetic by the mediation of Hilbert arithmetic 
(fundamentally involved to make consistent the actual infinity of set theory and the finiteness 
of arithmetic, to each other).  

Indeed, Poincaré’s conjecture defined properly topologically can be generalized in terms of 
set theory, if the homeomorphism be substituted by a corresponding identity (i.e. an identical 
transformation) as far as any identity is a homeomorphism (the reverse statement is false 
obviously). So, one intends to reveal the deep origin of Poincaré’s conjecture as set-theoretical 
rather than only topological. It exemplifies and illustrates that essence of a special kind of 
identity: 

That extraordinary identity will be built by means of the identity of the two complimentary 
standard interpretations of Peano arithmetic, both embedded in Hilbert arithmetic. 

Indeed, any two or more interpretations are identical to each other by definition for sharing 
a certain underlying mathematical structure. As to Hilbert arithmetic, that identity of standard 
and nonstandard interpretation equates a single element of the nonstandard interpretation to two 
complementary elements of the standard interpretation, a property inherited by Hilbert space, 
particularly, by the separable complex Hilbert space of quantum mechanics. 

Thus, that identity of the standard and nonstandard interpretation defines and can be 
considered in relation to the concept and quantity of information, and even, to its unit: a bit of 
information. 

Further, that set-theoretical identity implies Poincaré’s conjecture in virtue of the identity 
of the identity itself. However, this identity cannot bed defined only in the framework of set 
theory for it needs Peano arithmetic (at least implicitly) to be able to be distinguished the 
standard and nonstandard interpretation from each other. That identity can be defined not worse 
as the identity of the same element as being enumerated (therefore involving Peano arithmetic) 



and as not being enumerated (therefore no needing Peano arithmetic). In other words, that 
identity states that the counting of entities is only “external” or accidental to the essence of each 
of them. That property is postulated as underlying Hilbert arithmetic and seems to be implied 
or even maybe equivalent to the equivalence of the axiom of choice and the well-ordering 
“theorem”: both choice and counting do not change the essence and identity of what has been 
chosen or enumerated. 

In fact, the above continuous logical pathway from Poincaré’s conjecture to the identity of 
both enumerated and non-enumerated, on the one hand, and both chosen and unchosen, on the 
other hand, is the searched only arithmetical and set-theoretical proof of it.  

Nonetheless, the “only arithmetical proof” can be visualized once again directly and 
independently in properly topological terms:    

There exists an obvious homeomorphism of Euclidean space to any open topological 
subspace homeomorphic to the space of the “unfolding” of the unit 3-sphere as well as another, 
second and absolutely independent homeomorphism of the same Euclidean space to the 
complement of the “unfolding” to the same unit 3-sphere. So, if there exists a homeomorphism 
able to unify those two homeomorphisms (discrete to each other), it would suggests s proof of 
Poincaré’s conjecture: well, the identity of the nonstandard interpretation of Peano arithmetic 
into the nonstandard one(s) supplies the necessary homeomorphism, and thus the proof (called 
here “only arithmetical“ as restricted rigorously to the framework of Hilbert arithmetic). 

The only arithmetical proof is referred immediately to “mathematical and physical 
transcendentalism” as follows. One can defined “transcendental identity” as a property 
definitive to the totality in both philosophical and mathematical meaning: 

The totality (by itself) generates an equivalent doubling of both “externality’ and 
“internality” of it within it. Hilbert arithmetic (as well as quantum mechanics by means of the 
separable complex Hilbert space equivalent to the former) embodies that definitive property of 
the totality as to mathematics and “mathematical transcendentalism” (thus, to physics and 
“physical transcendentalism’ as well). Then, Poincaré’s conjecture is still one immediate 
corollary form that “transcendental identity” by the mediation of Hilbert arithmetic.    

And now, the proof in the way (2) by the separable complex Hilbert space (interpreted as 
equivalent to Minkowski space, and thus by it, to our usual three-dimensional space of empirical 
experience): 

The separable complex Hilbert space is homeomorphic to Minkowski space under the 
condition that the choice meant in the axiom of choice is a homeomorphism. 

Indeed, each of the two dual Hilbert spaces is homeomorphic either to the real domain or to 
the imaginary domain of Minkowski space. Each “qubit ball” of Hilbert space is homeomorphic 
to a ball in Minkowski space at a certain time. 

However, the balls of Hilbert space are discrete to each other, unlike those of Minkowski 
space, which are continuous to each other. Furthermore, the two dual Hilbert spaces are also 
discrete to each other again unlike the two domains of Minkowski space smoothly (and thus, 
continuously) touching each other and therefore sharing the light cone. 

That double “however” can be overcome just under the single condition for choice to be a 
homeomorphism. The condition will be proved bellow without referring to the eventual 
homeomorphism of the separable complex Hilbert space of quantum mechanics and Minkowski 



space (of special relativity). Anyway that homeomorphism will be granted here only for the 
simplification of the exhibition.  

In turn, Minkowski space is homeomorphic to a unit 3-sphere for any three-dimensional 
(i.e. usual) ball belonging to the former is homeomorphic to any three-dimensional ball 
belonging to the latter. The (four-dimensional) 3-sphere consists of two equal “glued 
unfoldings”, the one of which corresponds to the one domain of Minkowski space, and the other 
one, to the other Minkowski one (whether the imaginary or the real one). 

Each of the two Minkowski domains is well-ordered by the pseudo-axis interpreted as the 
quantity of time in special relativity; however, the two corresponding well-orderings are 
opposite (and thus inconsistent) to each other. That inconsistency does not reflect to Minkowski 
space for the two domains are disjunctive to each other sharing the light cone as identical in 
both. 

If one “mixes” the two domains (therefore removing the two opposite well-orderings 
inconsistent to each other and thus, the fourth pseudo-axis of time) the result will be a usual, 
three-dimensional Euclidean space. The result “after mixing” is expected as far as Minkowski 
space should be an equivalent model of Euclidean space as to special relativity. 

However, one has to prove that the mixing is a homeomorphism in the rigorous 
mathematical meaning. Furthermore, it is equivalent to the proof that the choice meant in the 
axiom of choice is a homeomorphism (already granted in the conjecture that the separable 
complex Hilbert space is topologically equivalent to Minkowski space). 

Indeed, the two domains of Minkowski space are well-ordered as to its homeomorphism to 
the unit 3-sphere, but they are “mixed coherently” in Euclidean space. The well-ordering 
“theorem” is applied in the former case, and the axiom of choice as to the latter case. As far as 
the well-ordering “theorem” and the axiom of choice are equivalent to each other, and both act 
onto the same Minkowski space, the two results, correspondingly the unit 3-sphere and 
Euclidean sphere are identical to each other, and thus, homeomorphic. 

Poincaré’s conjecture is proved.  
The homeomorphism of the separable complex Hilbert space and Minkowski space is 

proved independently. Being due to both, the identity of Hilbert arithmetic and the separable 
complex Hilbert space is proved once again and independently.  

A comment to the utilization of “coherent mixing” is possible. The equivalence of the well-
ordered state to the coherent state, which is implied by the equivalence of the well-ordering 
“theorem” and the axiom of choice, is well-known after the problem of the epistemological 
relevance of the fundamentally random quantum measurement. Indeed, the quantum 
measurement equates epistemologically a fundamentally unorderable coherent state to a well 
ordered series of single quantum measurements: if our quantum cognition is relevant, they must 
be identical.  

The publication (Penchev 2020) demonstrates a wide class of examples that "𝑃𝑃 ≠ 𝑁𝑁𝑃𝑃" in 
“P vs NP” problem (one of the seven CMI millennium prize problems). That class can be 
represented by the well-known “cat of Schrödinger”: no Turing machine might guess for any 
finite time (and thus, for any polynomial time) whether the cat would be alive or dead once the 
door of the box would be been open. However, once the door is open, a Turing machine can 
resolve the problem whether the cat is alive or dead for a polynomial time. Any generalization 



of the quantum superposition of any natural number of quantum states belongs to the class of 
the “non-P, but NP” problems. 

The proof involves the Kochen – Specker (1968) theorem about the absence of hidden 
variables in quantum mechanics: if a Turing machine might guess whether the cat is alive or 
dead in advance, those hidden variables would exist. At the same time, if a result is given (i.e. 
the door of the box is open), it can be checked for a polynomial time (and this is elementary to 
be shown after the rigorous formulation of the CMI problem). 

Still a few conjectures are suggested as verifiable, but without rigorous proofs in the same 
publication: 

1. Any “non-P, but NP” problem belongs to that class of examples. 
2. A “P” algorithm of Turing machine exists necessarily for any problem resolvable for any 

finite time by a Turing machine 
3. The proof of the above statement “2” is non-constructive necessarily. 
The probable verifiability of those conjectures involves the concept of set-theoretical (i.e. 

non-arithmetical), or “Dedekind” finiteness consistent to the axiom of infinity rather than to the 
axiom of induction in Peano arithmetic.  The same concept in the present publication is utilized 
in the first proof of the identity of Hilbert arithmetic and the separable complex Hilbert space. 
That identity will be used now to be reinterpreted the class of the “non-P, but NP” problems as 
well as for suggesting of a loose proof (or additional reasonable arguments) of the three 
statements based on Hilbert arithmetic in the more intuitive, philosophical and mathematical 
intention of the present publication: 

The interpretation of the “P vs NP” problem in Hilbert arithmetic is the following: 
Any natural number in the standard Peano arithmetic (being finite necessarily) can be 

reached in a certain polynomial time by a certain Turing machine. However, no transfinite 
number can be reached by the same Turing machine in any finite time (and thus, in any 
polynomial time). Any certain transfinite number in a standard Peano arithmetic is a natural 
number in the complementary standard Peano arithmetic as it is proved above. Thus, a 
“complementary” Turing machine (which means that it processes in the complementary 
standard Peano arithmetic) will reach that natural number (corresponding to a certain transfinite 
number in the initial standard Peano arithmetic and thus, to the former Turing machine needing 
infinite time for processing) for a certain polynomial time. 

One need demonstrate that that the pair of a certain transfinite number in the initial standard 
Peano arithmetic and a certain natural number in its complementary counterpart is equivalent 
to a “non-P, but NP” example: it is a “non-P” example as to any Turing machine associated to 
the former Peano arithmetic, and a “NP” example as to any Turing machine associated to the 
latter Peano arithmetic. The properties of Hilbert arithmetic imply that the mapping of the set 
of all “non-P, but NP” examples and the set of all pairs defined above is one-to-one necessarily. 
Thus, Statement 1 is proved. 

The metaphor of “Schrödinger’s cat” about how one should interpret the difference between 
the “P”/ “non-P” viewpoint, on the one hand, and the “NP”/“non-NP” viewpoint, on the other 
hand is rather instructive: 

The transfinite “non-P” state and its finite counterpart, “NP” state correspond to “opening 
the door of the box”, in which Schrödinger’s cat is situated, and thus, to a certain quantum 
measurement, therefore being fundamentally random: 



After any measurement (“opening the door”), a different natural number as a “NP” state 
would be observed implying a generalizing probability density distribution (and a certain wave 
function as its characteristic function) linked one-to-one to a certain transfinite number. Thus, 
the set of all transfinite numbers can be mapped unambiguously into the wave functions of the 
separable complex Hilbert space. 

Consequently, the “P vs NP” problem is able to visualize the duality of mathematical/ 
physical (meant philosophically in the “quantum neo-Pythagoreanism”) once again. 

As to the second conjecture above, any finite time for a certain problem to be resolved by 
any Turing machine implies either (1) a certain maximal number, “b”, to be reached in the 
processing of the problem (for any step in the processing needs a certain nonzero time) or (2) 
at least a step in the processing to be accomplished for zero time (loosely speaking, by a 
quantum leap). 

The alternative (1) implies a polynomial time, 𝑡𝑡 = 𝑓𝑓(𝑎𝑎𝑚𝑚), for a relevant algorithm such that 
for the latter to exist the exponent “m”: ∀𝑏𝑏,∃𝑚𝑚,𝑎𝑎: 𝑏𝑏 < 𝑎𝑎𝑚𝑚 where 𝑎𝑎, 𝑏𝑏,𝑚𝑚 are natural numbers, 
but the third conjecture states for the algorithm at issue only to exist and thus, it implies the 
absence of any common constructive method for the algorithm to be written explicitly.  

The alternative (2) implies for the processing machine not to be a Turing machine. 
The third conjecture is a corollary from Gödel’s incompleteness of Peano arithmetic to set 

theory. The meant general constructive method for the algorithm to be written explicitly is 
equivalent to an arithmetical proof of the completeness of Peano arithmetic, and thus, that 
general method is necessary not to exist. 

Indeed, the proof of those second and third statements seems to be almost obvious in Hilbert 
arithmetic. There exists a relevant polynomial time for any natural number, but the proof of the 
general constructive method to be described explicitly the relevant algorithm has to be greater 
than any natural number, and thus, a transfinite number, which is equivalent for the 
corresponding proof to be nonconstructive.      

 
III CONCLUSIONS & FUTURE WORK 
The concept of information as the quantity of elementary choices is able to reconcile 

arithmetic and set theory in the foundations of mathematics. The consistent completeness of 
mathematics turns out to be possible and provable within the framework of mathematics. 

A nonstandard interpretation of Peano arithmetic is involved: the function of successor is 
interpreted as “equal to the next” rather than “+1” as in the standard interpretation. The term 
of “nonstandard interpretation” refers usually to countable or finite models of arbitrary 
mathematical structures. The direction of its use here is opposite: it means actually infinite (i.e. 
set-theoretical) models of Peano arithmetic. Furthermore, it implies a complementary 
counterpart of the standard Peano arithmetic (for example, the function successor in the latter 
can be interpreted as “− 1” starting of the least ordinal of actual infinity). 

The nonstandard and both complementary standard interpretations of Peano arithmetics can 
be generalized as Hilbert arithmetic, furthermore, being consistent to set theory (unlike the 
standard Peano arithmetic after Gödel’s incompleteness, 1931). The complementary standard 
Peano arithmetic is equivalent to the arithmetic of transfinite numbers being well-ordered 
reversely. A certain wave function (i.e. an element of the separable complex Hilbert space of 



quantum mechanics) is assigned unambiguously to any transfinite number by the mediation of 
the Dedekind (i.e. set-theoretically rather than arithmetically defined) finiteness.  

The isomorphism of Hilbert arithmetic and the separable complex Hilbert space can be 
proved. It implies the complementarity of physics (underlain by the separable complex Hilbert 
space of quantum mechanics) and mathematics (underlain by Hilbert arithmetic), and thus 
philosophically, a form of Pythagoreanism called “quantum neo-Pythagoreanism”. 

The consistent completeness of mathematics is considered as a powerful tool for resolving 
a few of the most difficult contemporary mathematical problems: an only arithmetical proof of 
Fermat’s last theorem; a “human” proof of the four-color theorem, and its generalization as the 
four-letter theorem on the same base of  the “human” proof; an only arithmetical (in the 
framework of Hilbert arithmetic) of Poincaré’s conjecture and another proof of it, physically 
interpretable; the “P vs NP” problem. 

The following, rather philosophical conjecture is formulated by means of those examples of 
very difficult mathematical problems: 

The consistent completeness of mathematics is the problem of all problems in the 
contemporary mathematics: thus, its solution by Hilbert arithmetic can serve as a “key” for 
many unresolved mathematical problems. 

The hypothesis of “physical and mathematical transcendentalism” as a generalization and 
rigorously formulated counterpart of Kant’s philosophical transcendentalism and Hegel’s 
dialectic doctrine is suggested. It can be postulated as a definitive property of the totality 
(philosophically) or that of the universe (physically), or that of the consistent completeness 
(mathematically).  

The paper is philosophical rather than narrowly mathematical or physical: it is directed to 
“see the forest for the trees”: many proofs are outlined, but their details are omitted as 
unessential to the general idea of the “forest”. 

On the contrary, the future work suggests to be described the “trees” in detail, namely 
complete rigorous mathematical proof for each fundamental problem considered in the general 
philosophical context in the present paper.        
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