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Abstract 

Output only modal analysis is a technique where 
we do not need to measure the input excitations 
and just responses are measured. We only assume 
input excitation to be white noise. It is known as 
operational modal analysis because it deals with 
testing of structure under normal operations. This 
analysis is used in various types of engineering 
branches. It is the study of the dynamic properties 
of systems in the frequency domain. In this paper 
we define Singular value decomposition and its 
need in output only modal analysis. After we 
describe the process of analysis using singular 
value decomposition. We discuss its real-world 
applications and its future scope. 

 

Keyword: - singular value decomposition, 

experimental transfer function, transfer function, 

residual effects. 

1. Introduction 

When the modal density is high, better results can 

be obtained by using the singular value 

decomposition to help separate the modes before 

the modal identification process begins. In a 

typical calculation, the matrix is formed of the 

transfer function data for a single frequency with 

each column representing a different drive point. 

The input is given to the singular value 

decomposition algorithm and left and right 

singular vectors and a diagonal singular value 

matrix are computed. The calculation again 

repeated at each analysis frequency and the 

resulting data is used to identify the modal 

parameters. In the optimal situation, the singular 

value decomposition will completely separate the 

modes from each other, so that a single transfer 

function is produces for each mode with no 

residual effects.   

In practice, the modal transfer functions are never 

completely free from residual effects of nearby 

modes, but the resonance frequencies and 

damping loss factors can be accurately identified 

using simple one-degree-of-freedom models 

nonetheless. As an example, figure 1 shows a plot 

of the singular values as a function of frequency 

for a typical case, because the singular values are 

computed and output in order of descending 

magnitude, a single curve on the plot does not 

track a single mode. For example, just below 55Hz, 

the top two curves switch the modes that they’re 

tracking. However, by using the singular value 

decomposition at one frequency to decompose 

the coefficient matrix at nearby frequencies, it is 

possible to force the singular values to track only a 

single mode.  

 



 

Modal analysis: 
Modal analysis is a process of extracting modal 
parameters (natural frequencies, damping loss 
factors and modal constants) from measured 
vibration data. Since the measured data can be in 
the form of either frequency response functions 
or of impulse responses, there are frequency 
domain modal analysis and time domain modal 
analysis. 

The fundamental of modal analysis using 
measured frequency response function data is 
about curving fitting the data using a predefined 
mathematical model of the measured structure.  
Modern day experimental modal analysis systems 
are composed of  
1) sensors such as transducers (typically 
accelerometers, load cells), or non-contact via a 
Laser vibrometer, or stereophotogrammateric 
cameras.  
2) data acquisition system and an analog-to-digital 
converter front end (to digitize analog 
instrumentation signals). 
3) host PC (personal computer) to view the data 
and analyze it. 
Typical excitation signals can be classed as 
impulse, broadband, swept sine, chirp, and 
possibly others. Each has its own advantages and 
disadvantages. 
The analysis of the signals typically relies on 
Fourier analysis. The resulting transfer function 
will show one or more resonances, whose 
characteristic mass, frequency and damping can 
be estimated from the measurements. 

 
Need of output only Modal analysis: 
For large engineering structures like bridges, dams 
and high-rise buildings, it is difficult to excite them 
artificially and to measure the excitations. 
Random forces act them such as on bridge 
different forces such as vehicle trafficking, wind 
excitation, ocean waves etc. excite the structure 
together so it’s almost impossible to measure all 
these forces simultaneously. If the forces are not 
measured correctly, then modal analysis can’t give 
accurate estimates of the modal parameters. On 
the other hand, when we excite such structure, 
large amplitude force is required to vibrate the 
structure at all points under observation. Such 
force can cause local damages to the structure. 
Natural conditions under which structure operates 
are very difficult to be produced in the laboratory. 
So, output only modal analysis is the best option 
available in these conditions as it depends on the 
responses only and the responses could be 
measured with high accuracy. 
There are several examples where a prior accurate 
modal analysis could have prevented loss of lives 
and property. Some famous ones include: 
 

Tacoma Narrows Bridge Disaster of 1940 

The Tacoma Narrows Bridge was built in the state of 
Washington (USA). On November 7, 1940, at around 11 
a.m., the bridge came down instantaneously. A later 



 

investigation revealed that the cause of the collapse was 
aeroelastic flutter. 

Mexico City Earthquake of 1985 
Another real-life example was the 1985 

earthquake in Mexico City. The energy released 

during this earthquake was equivalent to 1114 

nuclear detonations, and the earthquake was felt 

as far as Los Angeles, which is over 800,000 km 

away. Up to the 1950s, no earthquake codes 

existed. 

Taipei 101 and Burj Khalifa 
A real-life example can be seen in today’s 

skyscrapers like Taipei 101 in Tokyo (Japan) or Burj 

Khalifa in Dubai (UAE). These megastructures use 

tuned mass dampers to absorb the energy and 

dampen the oscillations of the structures. 

  

Singular value decomposition:  

Singular value decomposition takes a rectangular 
matrix of gene expression data (defined as A, 
where A is a n x p matrix) in which the n rows 
represents the genes, and the p columns 
represents the experimental conditions. The SVD 
theorem states: 
  

Anxp= Unxn Snxp VT
pxp 

  
Where 
UTU = Inxn 
VTV = Ipxp  (i.e. U and V are orthogonal) 
  
Where the columns of U are the left singular 
vectors (gene coefficient vectors); S (the same 
dimensions as A) has singular values and is 
diagonal (mode amplitudes); and VT has rows that 
are the right singular vectors (expression level 
vectors). The SVD represents an expansion of the 

original data in a coordinate system where the 
covariance matrix is diagonal. 
  
Calculating the SVD consists of finding the 
eigenvalues and eigenvectors of AAT and ATA. The 
eigenvectors of ATA make up the columns of V , the 
eigenvectors of AAT  make up the columns of U. 
Also, the singular values in S are square roots of 
eigenvalues from AAT or ATA.  The singular values 
are the diagonal entries of the S matrix and are 
arranged in descending order. The singular values 
are always real numbers. If the matrix A is a real 
matrix, then U and V are also real. 
 

A. Finding the Resonances 

Because it is easy to search a string of numbers for 

a peak, it may not seem like the process of 

identifying modal peaks should be especially 

difficult. However, it is undoubtedly the most 

difficult part of the modal identification process 

because the noise is always present in the transfer 

function measurements, even for carefully 

controlled systems. This is primarily a 

consequence of the uniform frequency-spacing 

required by the FFT algorithms. One way to avoid 

this difficulty is to require the user identify the 

locations of the modes by hand, usually with some 

sort of graphical interface, which is both tedious 

and time consuming. 

In the mode finding algorithm, a number of 

enhancements have been implemented to make 

the process somewhat immune to noise. The first 

important way to reduce noise levels is to pass the 

data through the SVD algorithm. The output from 

the singular value decomposition consists of three 

matrices U, V and S. the U and V matrices are 

unitary (i.e. U U^H = 1, where the superscript H 

indicates a Hermitian transpose), and the S matrix 

contains the singular values on its diagonal and is 

real-valued. The three matrices from a 

decomposition of the original matrix as  

 

 



 

 

 

A plot of the singular values verses frequency for a 

typical example was in figure 1. We note that the 

topmost curve has the lowest noise levels and the 

bottommost curve has the largest, providing some 

confirmation that the singular value 

decomposition helps to reduce noise levels 

(assuming, of course, that we are primarily 

interested in the top few curves). As discussed in 

the previous section, the singular values are 

output in order of decreasing magnitude, so that 

they switch the modes they’re tracking whenever 

two singular values cross. This problem is avoided 

by computing modal transfer functions, which 

force the singular values to track a single mode. 

The model transfer functions are computed by 

using the singular value decomposition at an 

initial frequency to decompose the transfer 

function matrix at nearby frequency as  

 

The overbar on the matrix S indicates that it is no 

longer real-values or diagonal. At the initial 

frequency, the modal transfer function yields S0 

because pre-multiplying by UH0 and post-

multiplying by V0 yields. 

A plot of the modal transfer functions verses 

frequency was given in figure 2. Even after passing 

the data through the SVD algorithms, it is not 

uncommon for the noise levels in the modal 

transfer function data to be too high for a simple 

peak finding algorithm to work reliably. 

 

To further reduce the noise levels in the modal 

transfer function data, it is passed through a 

smoothing filter before searching for peaks in the 

response. The parameter for the smoothing filter 

were chosen such that the peaks in the response 

do not shift significantly during the smoothing 

process. this requires the filter to preserve higher 

order moments, yielding results with minimal 

changes in the height and width of the peaks. A 

more thorough discussion is given in the 

reference. the peaks in the response still can shift 

frequencies and may even shift as the input data 

to the smoothing filter changes. This means that 

the same resonance may possibly be identified 

several times, thus requiring a method for finding 

and eliminating duplicate modes. 

 

Fortunately, it is relatively easy to detect duplicate 

modes using the modal assurance criteria (MAC). 

First, we must rotate the modal transfer functions 

so that the resonance frequency occurs at a 

consistent phase angle. The different phase 

rotations occur because the singular value 

decomposition yields real singular values, such 

that zero phase is always referenced to the 

frequency used to generate the modal transfer 

functions. We sill assume a single degree-of-

freedom representation of the mode such that the 

modal transfer function can be represented as  

As we noted previously, the SVD algorithm 

reduces noise in the largest singular values at the 

expense of the lowest singular values, which is 

desirable because most of the relevant modal 

peaks occur in the few largest singular values. 

Thus, the lowest singular values have relatively 

high noise levels and do not contain relevant 



 

information. To avoid identifying numerous 

extraneous peaks in the lowest singular values, 

the user can choose to apply the peak finding 

algorithm to only a few of the largest singular 

values.  

 

B. Modal Parameter Identification 

The last step in the process is to actually 

determine the resonance frequencies and loss 

factors from the modal data. There are many 

methods for computing the modal parameters 

once the data for a single mode has been isolated.  

As for the circle fit algorithm, a weighting function 

is applied before solving the equation system to 

that the data points near the resonance peak are 

more heavily weighted. Once the resonance 

frequency and damping loss factor have been 

determined, the modal transfer function can be 

synthesized and compared to the input data to 

assess the accuracy of the fit. To try to make the 

predictions more reliable and immune to noise, 

these calculations are performed for different 

average error is used for the predictions. If the 

modal transfer functions are relatively free of 

noise, the fit is typically better using only a few 

points near the peak, otherwise, better results are 

obtained using more data. 

 

C. Testing the Algorithm 

To test the curve-fitting algorithm, a finite 

element model was used to generate simulated 

experimental data with known resonance 

frequencies and damping loss factors. Along with 

our algorithm, several methods for computing 

damping in X-Modal were also tested including 

rational fraction polynomials and the complex 

mode indicator function (CMIF).   

 

D. Step-By-Step Analysis Procedure 

The following steps will yield predictions for the 

resonance frequencies and damping loss factors 

from a set of transfer function data. The optimal 

steps should be performed if mode shapes are to 

be computed as well. 

1. Convert the experimental transfer function 

data to uff(universal file format) for dataset. If 

the data is in vna file format, the MATLAB 

program UFF can be used to perform the 

conversion. 

2. (optional) generate a geometry file 

representing the surface locations where the 

transfer function data was taken. It should be 

in the standard format for input files to the 

boundary element program POWER and 

should be named. 

3. (optional) generate an in.txt file, which 

contains input values for the parameters.  

4. Run the program CONV_EXPERIMENTAL to 

automatically identify the resonance 

frequencies, damping loss factors, and 

(possibly) mode shapes. As mentioned in the 

text, a number of extraneous modes are 

inevitably identified. 

 

NOTE: if program crushes because it finds too 

many modes, the parameter NP file should be 

reduced such that fewer singular values are 

searched for peaks during the automatic 

identification process. 

  

7. Application in Real World  

1.  Structural Engineering:  
Output only modal analysis uses the overall 
mass and stiffness of a structure to find the 
various periods at which it will naturally 
resonate. These periods of vibration are very 
important to note in earthquake engineering, as 
it is imperative that a building's natural 
frequency does not match the frequency of 
expected earthquakes in the region in which the 
building is to be constructed. If a structure's 
natural frequency matches an earthquake's 
frequency, the structure may continue to 
resonate and experience structural damage. 



 

Modal analysis is also important in structures such 
as bridges where the engineer should attempt to 
keep the natural frequencies away from the 
frequencies of people walking on the bridge. This 
may not be possible and for this reason when 
groups of people are to walk along a bridge, for 
example a group of soldiers, the recommendation 
that they break their step to avoid possibly 
significant excitation frequencies. 

Electrodynamics:  
 Rotating machines play a vital role in modern 

economics. Most industrial processes where 

energy is processed are based on rotating 

machinery. Thus, it is increasingly important to 

maintain those machines in the good technical 

state. Main drivers for final users are: 

– avoidance of catastrophically failures, 

– decrease of maintenance costs, 

– increase of availability. 

This need, in turn, create strong demand for 

diagnostic techniques. 

 

Future Scope:  

1. Theoretical works are performed since 
decades, starting from simplified, linear rotor 
models. With advances in rotordynamics 
research new processes were identified and 
described. 

2. The OMA results can be adopted for a wide 
range of significant applications. One of the 
most important applications of OMA is finite 
element (FE) model updating. The accuracy of 
FE model is based on the initial 
assumptions about material 
properties, boundary conditions and geometry 
of the structure.  Choosing the accurate and 
real mentioned assumptions is a big challenge, 
particularly for the structures about which 
there isn’t certain knowledge like historic 
buildings. As a consequent, the 
experimental results should be utilized to 

update, verify or optimize the initial FEM 
model which can present more reliable 
behaviour of the structure. 

8. Conclusion 

Rapid development and the increasing popularity 
of operational modal analysis (Output only modal 
analysis), justify the need for more comprehensive 
review studies. This paper widely reviewed 
theoretical and practical aspects involved in role 
of Singular value decomposition of OMA. In 
output modal analysis there can be many 
techniques to extract modal parameters but SVD 
reduces the redundant modes and help these 
techniques to work efficiently. SVD is a prior step 
to Principal Component analysis and can also be 
used to find pseudoinverses of the matrix.  
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