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Abstract—The training error of Machine Learning (ML) meth-
ods has been extensively used for performance assessment, and its
low values have been used as a main justification for complex
methods such as estimator fusion and ensembles, and hyper
parameter tuning. We present two practical cases where inde-
pendent tests indicate that the low training error is more of a
reflection of over-fitting rather than the generalization ability.
We derive a generic form of the generalization equations that
separates the training error terms of ML methods from their
epistemic terms that correspond to approximation and learnability
properties. It provides a framework to separately account for both
terms to ensure an overall high generalization performance. For
regression estimation tasks, we derive conditions for performance
enhancements achieved by hyper parameter tuning, and fusion
and ensemble methods over their constituent methods. We present
experimental measurements and ML estimates that illustrate the
analytical results for the throughput profile estimation of a data
transport infrastructure.

Index Terms—machine learning, over-fitting, hyper-parameter
tuning, fusion and ensemble, generalization bounds, regression,
throughput profile

I. INTRODUCTION

Sophisticated Machine Learning (ML) methods have been
developed to solve a variety of complex problems typically
by minimizing the training error in various forms such as
cross-validation, regularization, and augmented by information
criteria. In addition to ML methods the employ models with
a large number of parameters, approaches based on hyper-
parameter tuning, ensembles and fusion of similar and disparate
ML building blocks have been shown to dramatically reduce the
training error. These approaches essentially increase the number
of parameters compared to their constituent methods, which
often increases the model space and results in the reduction
of training error due to better fit to training data. Indeed, such
lowering of training error has been a main justification for
selecting the complex methods such as deep neural networks
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and ensemble methods with hyper parameter tuning, which
utilize additional computations compared to their basic versions.

The ML methods with an expanded model space are known
to over-fit the training data, particularly, when using a large
number of parameters on small data sets. Consequently, their
lower training error does not necessarily translate into their
improved generalization which is essential for data not included
in training. Currently, there are very few available methods
that reliably identify over-fitting. Indeed, they often require
carefully collected additional measurements to estimate the
generalization error, which is not practical or viable in several
cases. A complementary approach is to utilize the ML gen-
eralization equations [1]–[3] that utilize additional knowledge
such as smoothness or finite total variation of the underlying
quantities being estimated. The generalization equations capture
the approximation and learnability properties of the underlying
systems that are not usually represented by training data alone.
In addition, they may also exploit the smoothness and algebraic
properties of the parameters [4], for example, using thermal
hydraulic equations of coolant systems [5] and concave-convex
profiles of data transfer networks [6].

In this paper, we develop the approach of utilizing the
generalization equations of hyper parameter turning, and esti-
mator ensemble and fusion methods, for analyzing over-fitting
in regression estimation problems. We present practical cases
where independent tests show that the training error is more
of a reflection of over-fitting than the generalization ability. In
the first case, the throughput regressions of a data transport
networks are estimated, and in the second case a low level
radiation source is detected using regression and classification
methods.

We derive the generalization equations based on training
error of ML methods combined with their approximation and
learnability properties that more accurately capture different
contributions to generalization performance. We consider a
generic form of the generalization equation wherein the ex-
pected error I(f̃) of the estimator f̃ chosen from a class
F based on training sample of size l is below the precision
parameter γ with confidence probability 1 − δ(γ, l), expressed
in the compact form

P
{
I(f̃) < γ

}
> 1− δF (ε, l), (1)

when F satisfies suitable learnability and approximation prop-
erties [3]. This is best type of guarantee that can be given for



finite l when no restrictions are imposed on the probability
distribution of the data, since it is not possible to achieve zero
values for γ or δ. Ideally, f̃ that minimizes the training error
based l-sample would satisfy the above generalization condition,
but it is not possible in general based on training alone. For a
deeper analysis, we establish the following more general version

P
{
I(f̃)− I(f∗) < ε+ ε̂

}
> 1− δF (ε, l), (2)

where ε̂ is the training error of f̃ and f∗ minimizes the expected
error over F . In typical ML scenarios the training error ε̂ is used
as a main criterion for choosing f̃ , and Eq. (2) enables us to
additionally account for the approximation error using I(f∗)
and the learnability using δF (ε, l).

Complex ML methods typically utilize a large class F
to lower both ε̂ and I(f∗), as a result of minimization of
empirical and expected errors, respectively, over a larger set
of functions. However, these larger classes also increase the
learning parameters that in turn increase δF , which negatively
effects the confidence in generalization. In particular, both hyper
parameter tuning and fusion and ensemble methods increase
F , and do not necessarily achieve better generalization even if
the training error is low. We present explicit cases that clearly
illustrate this phenomenon using experimental measurements
and a generic form δ(ε, l) = Ae−Bε

2l that several ML methods
satisfy. We derive the conditions for a superior performance of
hyper parameter tuning, and fusion and ensemble methods over
their constituent methods for the regression estimation problem.

The organization of this paper is as follows. A generic
decomposition of the generalization equations is derived in
Section II. The two application scenarios are described in
Section III. The generalization equations and measurements for
hyper parameter tuning are described in Section IV. The fusers
and ensembles of ML estimates are described for regression
methods in Section V. Conclusions and future directions are
presented in Section VI.

II. GENERALIZATION EQUATIONS

Under the ML paradigm, a machine “learns” a functional
relationship between two vector random variables [7] using
a random sample (X1, Y1), (X2, Y2), . . . , (Xl, Yl), typically
drawn from an unknown joint distribution PX,Y of feature
vector X and output vector Y . We consider that Xi’s take
bounded real values and Yi takes bounded real values for the
regression problems and Boolean values for the classification
problem. The task is to learn a predictor function f from a
complex class F such that f(X) is a good estimate of Y
overall. A fundamental generalization result establishes that,
under certain conditions, the best estimator f∗ that minimizes
the expected cost

I(f) = E [Q(f(X), Y )] =

∫
Q(f(X), Y )dPX,Y

where Q(.) is a cost function, can be closely approximated
with high probability by an estimate f̃ learned solely from the
sample regardless of the complexity of PX,Y [3]. For regression
problem Q(f(X), Y ) = (f(X) − Y )2 and for classification
problem Q(f(X), Y ) = f(X) ⊕ Y where ⊕ is the exclusive-
OR operation. Vapnik’s generalization theory [2], [3] establishes

that a “suitable” estimator, f̃ , computed by an ML method M ,
ensures

PlX,Y
[
I(f̃)− I(f∗) < ε+ ε̂

]
> 1− δ̂FM

(ε, ε̂, l) (3),

where FM is its function class, ε > 0 is the precision parameter,
0 < 1 − δFM

(.) < 1 is the confidence function, and ε̂ is
the training error associated with computing f̃ . This condition
ensures that “error” of f̃ is within ε + ε̂ of optimal error (of
f∗) with probability 1 − δFM

, irrespective of the underlying
measured, computed or completely unknown data distribution
PlX,Y . Furthermore, under these conditions, the confidence
parameter 1 − δ̂FM

(ε, ε̂, l) approaches 1 as the sample size l
approaches infinity.

The joint distribution PX,Y of data is complex, domain
specific, and is only partially known in most cases. In our
context, it depends on the finer details of the underlying
software and hardware components, which may manifest as
additional random variables. Typically, in ML scenarios, we
only have training error ε̃ which is used as a main criterion
for choosing f̃ . Then, to satisfy the more stringent criterion
in Eq (1) two conditions have to be met: (i) ε̂ = 0, which is
not always possible since it requires a globally optimal learning
algorithm but can be verified in principle, and (ii) I(f∗) = 0,
which requires a suitably dense F but cannot be verified when
the underlying distribution is not known. For simplicity of
presentation, we use the following equivalent form of Eq. (3)

PlX,Y
[
I(f̃)− I(f∗) > ε+ ε̂

]
< δ̂FM

(ε, ε̂, l) , (4)

It constitutes one of the most critical characterization of the
generalization of ML method, namely, distribution-free guaran-
tees on their prediction performance on future data. Over past
decades, generalizations of this formulation have led to finite
sample performance guarantees in a variety of methods and
applications, including neural networks [8], regression trees [9],
Support Vector Machines (SVM) [3], and kernel estimates [10].

We derive a version of Eq (4) in Section II-B that separates
the effects of training error ε̂, and the approximation and
learnability properties of the function class F reflected by
I(f∗) and δ̂FM

, respectively. Specifically, δ̂FM
= δFM

does
not depend on ε̂ as illustrated in examples described next.

A. Confidence Function Examples

If FM has finite capacity [3], then under bounded error
and for a sufficiently large sample, the condition in Eq (4)
is guaranteed; a more general result ensures this condition
under finite scale-sensitive dimensions [8]. For sigmoid neural
networks, the sample size needed to ensure Eq (4) is linear in
the number of neural network parameters, as opposed to having
the quadratic dependence of previous bounds for unbounded
weights [11]. In particular, the estimate is

δ̂NN = 8

(
32W

ε

)h(d+2)

e−ε
2l/512

for a sigmoid network with h hidden nodes and input dimension
d with weights suitably bounded by W . It is important to note
that several statistical estimates learned by current ML methods
are smooth, including SVM with Gaussian kernels [10] and



radial basis functions [12], and several variables and parameters
in practical applications are bounded which enables us to de-
velop generalization equations. ML methods also employ non-
smooth methods, such as ensemble tree methods [13], regression
trees [9], Haar estimators, and Nadaraya-Watson estimators. In
practice, the parameters are bounded, and the learned functions
have a finite (often small) number of jumps, which leads to their
bounded finite total variation V <∞. In this case, we have

δ̂V = 8h

(
1 +

128V

ε

)
e−ε

2l/2048,

for a suitable function h [8].

B. Generic Form of Generalization Equations

The underlying principle behind the generalization equation
Eq. (4) is based on the uniform convergence of empirical
measures to expectations [3]. Consider a class of real valued
functions G of the form g(X,Y ) whose expectation is

E(g) =

∫
X,Y

g(X,Y )PX,Y ,

where PX,Y is the joint distribution of X and Y .
The empirical mean of g based on a iid sample
(X1, Y1), (X2, Y2), . . . , (Xl, Yl) is given by

Ê(g) =
1

l

l∑
i=1

g(Xi, Yi).

Under certain boundedness conditions, typically satisfied by ML
methods, the uniform convergence property is specified as

PlX,Y
{

sup
g∈G
|E(g)− Ê(g)| > ε/2

}
< δG(ε, l).

Let g∗ and ĝ minimize the expectation and empirical mean,
respectively, such that

E(g∗) = min
g∈G

E(g) and Ê(ĝ) = min
g∈G

Ê(g). Let the

estimator g̃ have empirical error ε̂ such that Ê(g̃) = Ê(ĝ) + ε̂.
Then, with probability 1− δG(ε, l), we have

E(g̃) < Ê(g̃) + ε/2

= Ê(ĝ) + ε/2 + ε̂

< Ê(g∗) + ε/2 + ε̂

< E(g∗) + ε+ ε̂,

which in turn implies
PlX,Y {E(g̃)− E(g∗) < ε+ ε̂} > 1− δG(ε, l).

By using g(X,Y ) = Q(f(X), Y ) we obtain the following
version of Eq (1)

PlX,Y
[
I(f̃)− I(f∗) < ε+ ε̂

]
> 1− δFM

(ε, l) ,

where the right hand side does not depend on ε̂ and only on
FM ’s learnability properties. This confidence bound on I(f̃) is
expressed as

PlX,Y
[
I(f̃) > ε′+ ε̂

]
< δFM

(|ε′ − I(f∗)|, l) , (1)

where ε′ = ε + I(f∗) is a precision parameter. The left
hand side is entirely controlled by the ML method applied to
random data of possibly unknown form, e.g., measurement and
modeling errors of thermal hydraulics and computing loads, and
physics of quantum channels. The right hand slide is entirely
epistemic with two opposing effects: (i) FM needs to be large

to provide better approximation with lower I(f∗) and hence
higher confidence, and (ii) FM needs to be small to provide
better learnability, e.g., lower Vapnik dimension, with higher
confidence. In effect, the larger FM of a complex ML solution
presents a trade-off: better precision due to smaller ε̂ and I(f∗)
versus lower confidence 1− δFM

.
By using γ = I(f∗) + ε+ ε̂, this equation is rewritten as

PlX,Y
[
I(f̂) > γ

]
< δFM

(γ − ε̂− I(f∗), l) .

Thus the effects of both ε̂ and I(f∗), is to shift the δFM
(.) to

right by either quantity. Since it is a decreasing function of γ,
their non-negative values lead to higher values of δFM

(.), and
hence lower confidence. Thus, learning algorithms with higher
empirical error ε̂ and higher approximation error I(f∗) both
result in higher δFM

and hence lower confidence. We use one
of the common form δF (ε, l) = Ae−Bε

2l for our illustrations,
wherein lower values of A and higher values of B, ε and l
all lead to higher confidence probability. In particular, it is
a monotonically decreasing, differentiable function of ε with
DF (ε) = ∂δF

∂ε = −2ABεle−Bε
2l.

C. Regression Problem

In a generic regression estimation problem the feature vector
X ∈ <d and the output vector Y ∈ <, the expected error of a
regression function f is

I(f) =

∫
(f(X)− Y )

2
dPX,Y .

The expected best regression estimator f∗ minimizes I(.) over
F , i.e., I(f∗) = min

f∈F
I(f). The empirical error Î(f) based on

training data (Xi, Yi), i = 1, 2, . . . , l, is defined as

Î(f) =
1

l

l∑
i=1

(f(Xi)− Yi)2

It is an approximation of I(f) computed based on the training
data. The empirical best regression estimator f̂ minimizes Î(.)
over F , i.e., Î(f̃) = min

f∈F
Î(f). For the learned regression

estimator f̃ , we have Î(f̃) = Î(f̂) + ε̂.

III. TWO APPLICATION SCENARIOS

We consider two different applications scenarios, namely, the
throughput estimation of data transport network infrastructures
formulated as a regression estimation problem, and the detection
of low level radiation sources formulated as a classification
problem. In both cases, measurements from structured exper-
iments provide: (i) training data to estimate the underlying
regression or classification function, and (ii) test data from
additional independent experiments that enable the estimation
of test error that more accurately reflects the generalization
property than the training error.

A. Throughput Estimation of Data Transport Infrastructure

A data transport complex consists of special servers called
Data Transfer Nodes (DTN) that are optimized for high perfor-
mance network, IO and file operations. They are connected over
wide-area networks. Network throughput measurements have
been utilized to identify and isolate performance bottlenecks
and provide ways to optimize the Transmission Control Protocol



Fig. 1: Training and testing throughput measurements.

(a) trained profiles

(b) predicted profiles

(c) train and test errors

Fig. 2: Training and testing profiles and errors of EOT, GPR,
SVM and TREE methods.

(TCP) parameters. The transport performance is characterized
by the throughput profile as a function of connection Round
Trip Time (RTT) τ . The throughput profiles can be analytically
derived and also estimated using ML methods from measure-
ments [6] for infrastructures with different RTT values between

DTNs. For an infrastructure with 11 RTTs in 0-366ms range,
and 17 RTTs in 0-376ms range, the throughput measurements
are shown in Fig. 1, which have a smooth overall profile. We
utilize the former to train different ML regression estimators,
and use the latter to compare their predictions and compute the
test error.

We consider two non-smooth estimators, Ensemble of Trees
(EOT) and regression trees (TREE), and two smooth estimators,
SVM and Gaussian Process Regression (GPR). Additionally, we
consider their hyper-parameter tuning and selection versions
Auto Tuning and Selection (AUTO), and two fusers using
EOT and SVM methods that combine the outputs of individual
regression estimators.

Among the four regression estimators, both non-smooth EOT
and TREE estimators achieve low training error but their test
error is higher than either smooth method as shown in Fig. 2(c).
All four estimators are nearly identical for the training data
(Fig. 2(a)) but both non-smooth estimators are not accurate
at higher RTT values (Fig. 2(b)). The predicted throughput
values show that both non-smooth estimators do not capture
the smoothness required for accurate generalization, as shown
in Figs. 3(a) and (d). On the contrary, both smooth estimators
capture the continuous trend with respect to RTT as shown in
Figs. 3(b)-(c), which results in lower test error that reflects their
generalization property. Interestingly, SVM with the highest
training error achieves nearly the lowest test error, primarily
due it is smooth regression function.

B. Detection of Low-level Radiation Sources

Signatures of low-level radiation sources arise in nuclear
safeguards, non-proliferation and security tasks, and are studied
using spectral measurements from gamma-ray detectors located
at different distances from the source. We utilize data sets
collected using detectors deployed over a 6 x 6 meters area
in a formation of two concentric circles and one spiral, with
the source located at the center (described in detail in [14]).
The activity levels in spectral regions associated with possible
235U signatures are estimated as counts at 1 second intervals,
and are used as features to train different ML classifiers us-
ing the background and source measurements collected over
multiple experimental runs. Two different methods are used for
the source detection task. First, the distance to the source is
estimated using a regression function which is thresholded to
generate the Boolean detection decision. The taining and testing
errors using EOT, GPR and AUTO ML methods are shown
in Figs. 4(a) and (b), respectively, as a function of increasing
detector distance from the source. The AUTO method achieved
significantly lower training error for 7 farthest detectors from
the source but its test error no lower than others.

In the second method, eight classifiers that represent di-
verse designs, and six fusers that combine their outputs are
considered. The classifiers are: AUTO, Classification Trees
(CTREE), Error Correcting Output Codes (ECOC), Ensemble
of Trees (EOT), k Nearest Neighbors (KNN), Naive Bayes
(NB), Neural Network (NN), and Support Vector Machine
(SVM). These classifiers are described in [14], and AUTO uses



(a) EOT

(b) GPR

(c) SVM

(d) TREE

Fig. 3: Training and testing of throughput values using non-
smooth EOT and TREE regressions and smooth GPR and SVM
regressions.

the hyper-parameter searching of individual methods, CTREE,
EOT, KNN, NB, and SVM, and chooses one among them based
on training data. These classifiers represent the diversity of
design, namely smooth and non-smooth, statistical, structural,
and hyper parameter tuning and classifier selection methods [7],
[15], [16]. The classifiers are fused in three different ways:

(i) all eight classifiers are fused using EOT and SVM fusers,
denoted by EF and SF, respectively; (ii) the hyper-parameter
and selection classifier AUTO and two non-smooth classifiers
CT and EOT are fused using EOT and SVM methods, denoted
by ACEEF and ACESF, respectively; and (iii) the classifiers
AUTO, KNN, NN are fused using EOT and SVM methods,
denoted by AKNEF and AKNSF, respectively. The results show
significant over-fitting by all fusers as they achieve low training
error as shown in Fig. 4(c) but much higher test error as shown
in Fig. 4(d).

IV. HYPER PARAMETER TUNING

The hyper parameter tuning corresponds to expanding the
space of estimators F to FH by including more (hyper)
parameters. Thus, the training error is minimized by f̃H chosen
from a larger class FH . Since F ⊆ FH , we have

(i) I(f∗H) ≤ I(f∗), where I(f∗H) = min
f∈FH

I(f),

(ii) Î(f̂H) ≤ Î(f̂), where Î(f̂H) = min
f∈FH

Î(f), and

(iii) δFH
(γ, l) ≥ δF (γ, l).

Here, f∗H and f̂H are the expected best and empirical best hyper-
parameter tuned estimators, respectively. For the computed
estimates f̃ ∈ F and f̃H ∈ FH , we have

Î(f̃) = Î(f̂) + ε̂ and Î(f̃H) = Î(f̂H) + ε̂H .

Since the hyper parameter tuning reduces the training error, we
typically have ε̂H ≤ ε̂. Then, the condition for higher confidence
for f̃H compared to f̃ for the same precision γ is given by

δFH
(γ − ε̂H − I(f∗H), l) ≤ δF (γ − ε̂− I(f∗), l) (5).

Since both δF (ε, l) and δFH
(ε, l) are increasing functions of

precision parameter, a necessary condition is
γ − ε̂H − I(f∗H) ≥ γ − ε̂− I(f∗)

or equivalently ε̂H + I(f∗H) ≤ ε̂+ I(f∗), which is typically sat-
isfied. However, this does not guarantee a superior performance
of hyper-parameter tuned estimate. We illustrate a sufficiency
condition using the derivatives of the confidence functions.
Using Taylor expansion we have δ(γ − α, l) ≈ δ(γ) + Dδα,
where Dδ is the negative of derivative. Then, the condition for
the superior performance in Eq. (5) is expressed as

δFH
(γ)− δF (γ) ≤ Dδ[ε̂+ I(f∗)]−DδH [ε̂H + I(f∗H)]

which means that the difference in confidence values at γ must
be overcome by the sum of deductions in ε̂ and I(f∗) appro-
priately scaled by the derivatives. Under condition Dδ ≥ DδH ,
it simplifies to the sufficiency condition

1

Dδ
[δFH

(γ)− δF (γ)] ≤ [ε̂− ε̂H ] + [I(f∗))− I(f∗H)],

which shows that the reduction in training error and ap-
proximation error have an additive effect in improving the
generalization error. This condition is true for example when
δF (γ, l) = Ae−Bγ

2l and δFH
(γ, l) = AHe

−Bγ2l, AH ≥ A.
The results of hyper-parameter tuning for EOT, GPR, SVM

and TREE are summarized in Fig. 5; the differences between
the estimates of EOT and SVM and their hyper-parameter tuned
versions are shown in (a) and (b), respectively. The difference
between physical measurements and estimates of tuned EOT
and SVM are shown in Fig. 5(c), where the latter are much



(a) regressors: train (b) regressors: test

(c) classifier fusers: train (d) classifier fusers: test

Fig. 4: Training and test detector errors of regression method, and classifiers and fusers for radiation source detection.

smaller. The SVM method has higher reduction in the training
error as a result of hyper-parameter tuning, and the lowest test
error, as shown in Figs. 5(b)-(d). On the other hand, the hyper-
parameter tuning of EOT did not reduce the training error, and
resulted in higher test error, as shown in Figs. 5(a),(c)-(d). These
results illustrate the above necessary conditions on reductions in
training and approximation errors for improved generalization.

V. FUSION AND ENSEMBLE OF REGRESSIONS

We consider the fusion and ensembles of ML regression
estimators wherein the former typically refers to using different
methods and latter uses similar methods. To simplify the pre-
sentation in this section we use the term fuser to refer to both.
We study two basic approaches:

(i) A selection fuser chooses one of its constituent estimators
possibly by using hyper-parameter tuning. For throughput
estimation application, we consider three ML estimates:
AUTO using EOT, GPR, SVM and TREE as constituent
estimators; its smooth version using GPR and SVM; and
its non-smooth version using EOT and TREE.

(b) A combination fuser combines the outputs of constituent
estimators using another ML estimator. For the application,
we consider non-smooth EOT fuser and smooth SVM
fuser, both using EOT and SVM as constituent estimators.

The training and test errors of three selection fusers, AUTO
and its smooth and non-smooth versions, and two combination
fusers, EOT and SVM, are shown in Fig. 7; for comparison,
errors of constituent estimators are also shown. Among the
fusers, the test error of SVM fuser (S-F) and smooth version of
AUTO (A-S) are lower than their training errors, as is the case

with smooth SVM and GPR estimates. The AUTO selection
fuser (AUT) using both smooth and non-smooth constituent esti-
mators has the highest test error. The differences between AUTO
non-smooth (A-N) and smooth (A-S) versions are evident in the
respective smooth and non-smooth estimates shown in Figs. 6(a)
and (b), respectively. For combination fusers, the estimate of
EOT fuser (F-E) is less smooth compared to SVM fuser (F-S),
shown in Figs. 6(c) and (d) respectively, even though both use
the same constituent EOT and SVM estimators.

We consider the fuser class FF used in fusing the estimators
fA ∈ FA, A ∈ AI . Let fF denote the regression function of
a selection or combination fuser obtained by composing fA’s
using a fuser function from FF . The error reduction ∆F of the
fused estimate fF over the best individual classifier is

∆F = min
A∈AI

I(fA)− I(fF ).

A fuser class FF satisfies the isolation property if it contains a
function that simply transfers each of its input to output [17],
and this property ensures ∆F ≥ 0. This condition is satisfied
by the selection fusers and not necessarily so by combination
fusers. The best expected error reduction is given by

∆∗F = min
A∈AI

I(f∗A)− I(f∗F ).

and its estimate based on a sample is given by
∆̃F = min

A∈AI

Î(f̃A)− Î(f̃F ).

Consider that there exists δFA
(ε− ε̂A, l) such that based on i.i.d.

l-sample, we have

PlX,Y
[
I(f̃A)− I(f∗A) > ε

]
< δFA

(ε− ε̂A, l) . (2)

for individual estimators A ∈ AI , NAI
= |AI | such that δA(ε−



(a) EOT fit difference

(b) SVM fit difference

(c) Physical errors of EOT and SVM

(d) error reduction due to hyper

Fig. 5: Hyper parameter tuning of regression estimators.

ε̂A, l)→ 0 as l→∞, and similarly for fuser F we have

PlX,Y
[
I(f̃F )− I(f∗F ) > ε

]
< δFF

(ε− ε̂F , l) . (3)

The estimate ∆̃F is shown to be within ε of the optimal ∆∗F
with a probability that improves with l independent of PY,X [6].
In particular, the probability that the closeness between ∆̃F and
∆∗F is within ε is bounded as

PlX,Y
[
|∆̃F −∆∗F | < ε

]
> 1− δFF

(ε/2− ε̂F , l)−
∑
A∈AI

δFA
(ε/(2NAI

)− ε̂A, l) .

(a) AUTO non-smooth A-N

(b) AUTO smooth A-S

(c) EOT fuser F-E

(d) SVM fuser F-S

Fig. 6: Training and testing profiles and error of AUTO fusers of
smooth and non-smooth estimates, and EOT and SVM fusers.

Then, the generalization equation for fused estimate f̃F is [17]

PlX,Y
[
I(f̃F )− min

A∈AI

I(f∗A) < ε−∆∗F

]
> δFF

(ε/2− ε̂F , l) +
∑
A∈AI

δFA
(ε/(2NAI

)− ε̂A, l) ,

for fuser F . In comparison with the generalization equation
of a constituent estimator, the left hand side of this equation



indicates an improved precision due to its reduction by ∆∗F
which is non-negative under the isolation property, in particular,
for selection fusers. But, the right hand side represents decrease
in confidence, which becomes larger with more constituent
estimators, as illustrated for AUTO with four estimators (AUT)
in Fig. 7. Then, the generalization equation for fused estimate
f̃F is given by

PlX,Y
[
I(f̃F ) > γ

]
< δFF

[(γ + ∆∗F − I∗]/2− ε̂F , l)

+
∑
A∈AI

δFA

(
γ + ∆∗F − I∗

2NAI

− ε̂A, l
)
,

where I∗ = min
A∈AI

I(f∗A). For a fixed precision parameter γ,

higher confidence is achieved by lower values of the first
operator ε of δF (ε, l) and less of such terms. Thus, the larger
training error of fuser ε̂F and constituent estimators ε̂A increase
the right hand side, there by reducing the confidence; thus,
fusers with lower training error provide better generalization.
In terms of the epistemic parameters, larger error reduction
due to fusers ∆∗F leads to improved confidence but the larger
minimum error I∗ = min

A∈AI

I(f∗A) and the number of constituent

estimators NAI
both have the opposite effect. By comparing

with the generalization equation of a constituent estimate f̃C
given by

PlX,Y
[
I(f̃C) > γ

]
< δFC

(γ − I(f∗C)− ε̂c, l) ,
we obtain the condition for superior confidence in fuser’s
generalization given by[

δFF
(γ/2) +

∑
A∈AI

δFA
(γ/2NAI

)

]
− δFC

(γ)

< DC ε̂C −

[
DF ε̂F +

∑
A∈AI

DAε̂A

]
+DCI(f∗C)− I∗(DF + D̄A)/2 + ∆∗F (DF + D̄A)/2,

where D̄A = 1
NAI

∑
A∈AI

DA. In essence, the positive effects

of ε̂F and ∆∗F (lower and higher, respectively) must be large
enough to offset the negative effects due to the increased number
of terms and their effects on the right hand side. When the fuser
utilizes hyper-parameter tuning of constituents, ε̂A’s on the right
hand side need to be replaced by their corresponding versions
described in previous section, which in turn requires suitably
smaller ε̂F and larger ∆∗F to outperform the constituents.

VI. CONCLUSIONS

We presented two practical applications where independent
tests illustrated over-fitting by ML methods, wherein a low
training error in some cases is a misleading indicator of their
generalization ability. We presented a generic decomposition
of the generalization equations that separates the training error
terms from the structural approximation and learnability terms,
thereby providing a mechanism to account for both in analyzing
and ensuring the generalization performance. We discussed con-
ditions for superior performance of hyper parameter tuning and
fusion methods over their constituents for regression estimation,

Fig. 7: Errors of AUTO, AUTO for smooth (A-S) and non
smooth (A-N), and EOT (F-E) and SVM fusers (F-S).
and illustrated them using experimental results for throughput
profile estimation of a data transport infrastructure.

Future directions include expanding the scope to include
the classification problems, and application areas that rely on
algebraic properties such as Hilbert spaces for quantum channel
tomography, non-smooth settings of compute-throughput pro-
files of cyber infrastructures, and probabilistic settings such as
detection and estimation based on gamma spectra.
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