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Abstract—Synthetic patient populations and their electronic 
healthcare records (EHR) have been recognised to be valuable 
in many secondary uses including pandemic modelling while 
avoiding access to real health records, which breaches patient 
privacy. The problem of generating realistic synthetic EHR has 
remained an elusive challenge partly due to its knowledge-
intensive and computationally expensive nature. Central to this 
challenge is the problem of generating the realistic health 
condition timelines (RS-HCT) for synthetic patients spanning 
from cradle to current age or to grave. This position paper is part 
of ongoing work, addresses this problem and presents an 
innovative approach to, and an algorithm for, generating the 
RS-HCT over the lifetimes of synthetic individuals within a 
given population without using real patient data. Statistics on 
disease burdens as well as clinical vocabulary, clinical expertise 
and population demographics across age groups are taken into 
consideration. This work is significant in that achieving the RS-
HCT results in a skeletal realistic synthetic electronic healthcare 
record (RS-EHR)  that would then be developed into a full RS-
EHR using inexpensive methods that do not require access to 
the actual EHR for real patients. 

Keywords— synthetic data generation, synthetic health 
records, electronic health records 

I. INTRODUCTION 
Adoption of the electronic healthcare record (EHR) is 

now an essential part of patient care used in all healthcare 
settings. EHR are used by clinicians as a timeline, 
encompassing the flow of an individual’s health and disease 
state from birth to current age. In 2014 Realistic Synthetic 

Electronic Health Records (RS-EHR) were proposed as a 
privacy preserving tool for enabling secondary health and 
health systems research without risk of needlessly exposing 
personal details of real patients [1-3].  Since then, a large 
number of works have proposed solutions for the synthetic 
health record problem, and several large projects have 
resulted. While the majority of RS-EHR synthetic data 
generation (SDG) solutions provide data relevant to a specific 
disease or intervention [4-7], many have lacked the 
chronological history to match a complete EHR. To address 
this, we propose the realistic synthetic health condition 
timeline (RS-HCT). The RS-HCT we propose would have two 
primary uses. First, as skeletal RS-EHR, which is the primary 
motivation for this paper; and second, in support of diagnostic, 
treatment and prognostic clinical decision-making. While RS-
HCT could be mined or learned from real EHR, due to the 
need to preserve patient privacy any access to the real EHR 
should be limited to primary clinical uses. Hence, there is the 
need to develop approaches to generate RS-HCT without 
access to the real EHR. This position paper reports only the 
early part of ongoing work undertaken to develop privacy-
preserving RS-HCT using publicly available aggregated 
health information for a representative population to which 
our synthetic person will ‘belong’. 

The RS-HCT must incorporate all health conditions 
common to the health condition burden for the population to 
which an individual belongs, and specific to the individual. 
This paper does not consider how a health condition is treated 
or managed. Rather, it concerns itself only with the generated 



health conditions, their diagnosis, impact and treatment as 
data-points, and when they intersect with the synthetic 
individual’s timeline. The RS-HCT timeline is segmented into 
age ranges common to the way health authorities report 
population-wide health statistics. The problem of this paper is 
finding approaches to populate an RS-HCT with health 
conditions appropriate to these age ranges and with 
consistency to the progression and lived experience of real 
patients. The health condition is seen in this paper only 
through the scope of the probability of it being suffered by a 
person from a given population within a particular age group. 
Thus, a person has a likelihood for experiencing a particular 
health condition, and this changes as the person passes 
through each age range subject to factors that may have 
existed at birth, or arisen due to prior disease, lifestyle and 
social status. The remainder of this paper is organised as 
follows: After discussion of the fundamental problems that 
must be overcome in order to generate the RS-HCT we review 
recent works that have focused on generating the longitudinal 
synthetic EHR. The Approach and Method section discusses 
each of the component problems before introducing the 
GenSeT method, RS-HCT knowledge model and health 
condition typology. The GenSeT method generation approach 
and algorithms are then presented, followed by discussion of 
the strengths and limitations of our proposed approach. We 
then summarise and conclude the paper. 

II. THE PROBLEM OF GENERATING RS-HCT 
This paper addresses the problem of providing  a practical 

method for generating the RS-HCT as a skeletal structure for 
the lifelong RS-EHR without requiring the real EHR. Similar 
to that for health condition generating RS-EHR [2], the 
method under investigation uses declarative constraints (DC) 
for ensuring realistic properties in the generated HCT. Where 
this approach differs is that while methods like Synthea [3] 
and CoMSER [2] for generating RS-EHR consider DC as 
static components related only to the health condition being 
generated, the RS-HCT method provides dynamic declarative 
constraints (DDC) for the prior probabilities for generating 
each health condition instance. These are based first on 
defining an appropriate overall population to align the RS-
HCT to, and second on resolving factors to provide the 
evidence for DDC to underpin RS-HCT generation that 
include: (i) synthetic patient ethnicity as a factor of parental 
ethnicities; (ii) inherited genetic, congenital and epigenetic 
conditions; (iii) demographic factors including their place of 
birth and the environment where the reside; and (iv) socio-
economic factors both during childhood and, as the rest of the 
RS-HCT is generated, for later adult life. The aim of this paper 
is to present Generating Synthetic health condition Timelines, 
or GenSeT, which is a newly developed component that 
extends on the authors’ prior work on RS-EHR [2]. To achieve 
this aim the paper presents: (1) the HCT knowledge model; 
(2) the method for using publicly available statistics along 
with clinical practice guidelines (CPG), caremaps 
incorporating clinical decisions [8, 9] and clinical expertise; 
(3) a typology for health conditions and their dependencies; 
and (4) application of the GenSeT method to a geographical 
and clinical area, thus demonstrating and validating the 
method and critically assessing the RS-HCTs that are 
generated. 

III.  RELATED WORKS 
Some works on synthetic health record generation provide 

complex technical detail regarding the generation method or 

solution architecture [5, 10, 11], while others focus on the 
health condition, symptoms, and an evaluation of the resulting 
synthetic data [6, 12]. A much smaller group present absent 
any detail for either the generation method or health condition 
[13]. Generally, two approaches exist for generating what are 
described in the literature as fully synthetic EHR. The first 
generates synthetic EHR from samples of real EHR [14, 15]. 
The second uses surrogates in place of real EHR that include 
some or all of: aggregated demographic, health incidence, 
treatment and outcome statistics [2, 3]. Leaving aside that 
clinical datasets are often found to be littered with missing 
entries which could affect the accuracy of any aggregated 
knowledge developed from them, it is argued that a key 
weakness of the first method is that it still has potential to pose 
a significant privacy risk to those patients whose real EHR are 
used during the sampling process [14]. While an inherent 
strength promoted of the second method is that it completely 
eschews access to real EHR at any point in the process [1, 2]. 

A recent focus in research has been approaches for 
generating the digital twin - a computer-based doppelganger 
for elements of, or entire, cities and nation states [16, 17]. 
SyntheaTM [3], SPEW [18], SynC [19], CoMSER [2] and 
spatial microsimulation algorithms (SMA) [20] are all recent 
approaches that are receiving ongoing attention in the 
literature. Synthea’s strengths included that it sought to 
synthesise the entire Massachusetts population, including both 
those who were patients and those who were not, and that it 
sought to create a framework for generation of multiple health 
conditions; so it had direct applicability to the problem of this 
paper. However, Synthea’s weaknesses included that it 
generates each medical condition absent of important 
knowledge regarding the demographics and other health 
conditions suffered by the patient. This led to synthetic 
patients being generated with gender inappropriate medical or 
surgical interventions, and others having amputations for 
diabetic foot ulcers after they had already lost the leg onto 
which that foot had been attached [3]. SPEW, SynC and MSA 
are all approaches that apply weightings developed from 
census and population data to constrain generation. CoMSER, 
SPEW and SMA are built with common underlying methods 
such as Markov and Walker Alias models. Each work presents 
quite specific to the area being modelled but a key strength is 
that the underlying approach could be more generally applied. 
SynC provides a larger range of fields for generation and does 
demonstrate an ability to generate data other than simple 
demographics. Weaknesses include that these approaches 
were developed for generating generic populations with 
limited demographic fields and would need considerable 
redevelopment for use in generating a synthetic patient 
population with a much wider range of demographic, 
predisposition and socio-economic fields so as to be capable 
of supporting true RS-HCT and RS-EHR generation.  

IV. APPROACH AND METHOD 
This section begins by exploring and resolving each of the 

component issues identified from the problem. It also 
introduces several components of the GenSeT method for 
generating the realistic synthetic HCT: the underlying 
knowledge model and a typology for health conditions.  



A. Age ranges 
Many health authorities and researchers provide 

prevalence and ethnic variance data in five-year age ranges1 
[21-23]. For this work, five-year intervals are used to segment 
the synthetic patient population during SDG. A higher degree 
of granularity could be applied, but for the purpose of this 
work, these arbitrary age intervals achieve a sufficiently 
realistic outcome. It is recognised that there are specific 
conditions that are particular to certain subsets within a chosen 
age interval that less granular data may overlook (e.g. neonatal 
jaundice is specific only to newborns). However, given the 
unique and innovative approach that we have developed, we 
believe such limitations are acceptable for what is a proof of 
concept. The choice of discrete numerical age intervals also 
avoids the debate regarding applicability of results that could 
arise from the use of descriptive life stages, for example: 
newborn, adolescent, young adult, middle age and older [24]. 

B. Population 
The target population to be simulated should be one 

suitable to the purpose that the resulting RS-HCT and RS-
EHR will be applied. That population could be global, 
national, state/county or even a local clinical catchment area. 
In the New Zealand (NZ) context shown in Figure 1, the local 
population could be: (i) an entire city like Auckland; or (ii) a 
District Health Board (DHB) catchment such as Waitemata 
DHB. For the United Kingdom (UK) the local population 
could encompass: (i) a county like Essex; (ii) a local council 
district like Tower Hamlets; (iii) or a National Health Service 
(NHS) Trust catchment area such as Barts and the London 
NHS Trust. Each local area context can present with minor 
differences to the wider area, or with significant differences 
that may dramatically alter the spread of ethnicity, age or 
disease prevalence. 

Each random colour in Fig. 1 could represent a particular 
ethnicity, age range or primary medical condition. While 
general heterogeneity often exists amongst national and large 
city populations, there can be homogenous clusters within, 
and significant differences between, local level populations. 
While the three similarly sized local DHB all exist within the 
larger Auckland city area of NZ, each has unique population 
clusters that would significantly alter their aggregate statistics, 
dramatically changing their RS-HCT and RS-EHR 
requirements. These differences would also render knowledge 
developed solely from a national or even Auckland-based 
dataset less accurate if used in any precision medicine solution 
developed for or applied at the local level. 

C. Health conditions 
A health condition is a disease or injury experienced by 

the patient. In the RS-HCT we focus on the health condition 
at the point in time of its onset, as well as any ongoing impact 
it may have on the synthetic patient’s future health conditions 
and life expectancy. This can include adjusting the 
probabilities of resulting or comorbid health conditions the 
synthetic patient may go on to develop. 

D. Disease burden 
Disease burden is the accrued impact of living with illness 

or injury and premature mortality [25, 26]. Disease burden 
incorporates direct and incurred costs of treatment, 

 
1 We recognise that other age ranges are possible in publicly released health 
data. However, age ranges of 5 years were used in the examples cited herein 
and which were used in supporting our synthetic data generation processes.  

medication, ongoing surveillance and lost life expectancy [25, 
26]. Different models and measures have been used to 
calculate and describe disease burden including total years of 
life lost (YLL), years lived with disability (YLD), the 
disability life-adjusted year (DALY) that measures the 
difference between the current situation and an ideal situation 
[27], and a range of estimations and approaches for calculating 
the more frequently used quality life-adjusted year (QALY) 
[28]. RS-HCT consider disease burden in a more practical 
manner that focuses on current and ongoing impacts of the 
generated disease on the health state and life duration of the 
synthetic patient. 

E. The HCT knowledge model 
This work focuses on the process of generating realistic 

health condition onsets for a patient from cradle to current age, 
and recognises that to be realistic they must be cognisant of 
the synthetic patient’s: (a) genetic, demographic and socio-
economic factors; and (b) their health status up to the current 
generation stage. To achieve this we must define an 
appropriate knowledge model from which and into which 
health conditions are generated, and a model that describes the 
source materials and timeline into which the health conditions 
can be chronologically prescribed. The HCT knowledge 
model is built of many static and dynamic fields as shown in 
Table 1. Static fields are those that, once populated, do not 
change throughout life, such as ethnicity and genetic 
predispositions. A static field can also include injuries and 
exposures that, once incurred, remain permanent, such as 
radiation and chemotherapy exposure, removal of a gland or 
organ, and amputation. Dynamic fields are those that may 
change during life, whether independently or resulting from 
interaction with other factors; and include conditions that, 
once treated or resolved, create no lasting burden for the 
individual. The overall knowledge model describes the 
synthetic patient as: (1) an accumulation of static and dynamic 
demographic, predisposition and socioeconomic factors at 
birth (generated as part of the gestation phase of the timeline 
shown in Fig. 2); (2) the value of updated dynamic factors 

 

Fig. 1. Populations (New Zealand example, approx.) 



shown in Figure 2); (2) the value of updated dynamic factors 
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re-generated at the beginning of each age range phase of the 
RS-HCT generation process; and (3) the diagnosed health 
conditions which are also generated during each age range 
phase of the RS-HCT generation process. 

F. Generating the health condition 
Generating a health condition on the RS-HCT requires that 

we identify the likelihood, or probability, of that health 
condition for the current synthetic patient. As shown in Fig. 2, 
these probabilities can be identified from prevalence data, 
which is the frequency of a given disease in the overall 
population, and incidence statistics, which are aggregate 
health statistics for a health condition from a national health 
department or clinical source, often presenting segregated by 
factors of interest, such as ethnicity and age range at diagnosis. 
Clinical expertise and clinical practice guidelines (CPG) are 
also used to identify risk factors for a given health condition, 
any dependent or co-morbid conditions that are likely to 
influence or be influenced by the health condition of interest, 
and when onset is more likely to occur. 

This section also presents a typology for generation of 
health conditions. This typology is presented visually in 
Figures 3-6, and describes the generic dependencies or 
influences health conditions may have on each other. The 
typology describes health conditions that: (i) are independent; 
(ii) have a one-way dependency ; (iii) have multiple one-way 
dependences; or (iv) have cycle-bound dependencies. 

Risk factor dependent health conditions: Many health 
conditions have known risk factors that predispose an 
individual to that health condition. Within a given population 
there will also be prevalence data published for a broad range 
of known health conditions. The prevalence represents the 
population prior probability for that health condition and is 
often expressed either as a rate within the population (e.g.: 
1.4/1000) or as a percentage of the overall population (4%). If 
A is the health condition, the P(A) represents the population 
prior probability for that health condition. 

If R is a risk factor for the health condition that is present 
for the current synthetic patient, the effect of R is to update 
P(A) for that health condition. The updated probability is 

described as the probability for having the health condition 
given the risk factor, and is written as P(A|R). 

If x is a person (real or synthetic) with specific risk factors 
R1, R2, ...,Rn then we can think of P(A|R1, R2, ..., Rn) as the 
personalised health condition of x; that is to say, it is the 
probability that this person x has health condition A given the 
known risk factors for x. 

Independent and dependant health conditions: The 
independent disease, as shown in Figure 3a, is one that could 
be described as being absent a patient-intrinsic cause or lasting 
consequence. 

Some health conditions are known to be dependent risk 
factors for developing additional health conditions. These 
health condition relationships can be observed in several 
forms. Figure 3b shows a single relationship where health 
condition A influences the likelihood of health condition B. 
An example is where the presence of one autoimmune health 
condition is known to increase the likelihood of another, as in 
our later example where Type 1 Diabetes Mellitus (T1DM) 
influences the potential for Systemic Lupus Erythematosus 
(Lupus). 

Fig. 4 shows multiple one-way relationships wherein: (i) 
health condition A influences the likelihood of health 
conditions B or C; (ii) the presence of health conditions A and 
C together influence the likelihood of health condition B; (iii) 
the presence of health condition C influences the likelihood of 
health condition D; and (iv) the presence of health conditions 

                      
Fig 3a. Independent health condition   

 

Fig. 3b.  One-way health condition dependency 

 
Fig. 2. The GenSeT Method knowledge model for generating the RS-HCT 



B and C together influence the likelihood of health condition 
D. 

Fig. 5 shows examples of cycle-bound relationships 
where: (i) a single health condition, once experienced, is 
recurrent; or (ii) two or more health conditions act to either 
amplify each other, or cause recurrent experience of the health 
condition. 

Where health condition A influences health condition B, 
the effect is to update P(B) given health condition A. The 
updated probability is described as the probability for having 
health condition B given the presence of health condition A, 
and is written as P(B|A).  

If person x (real or synthetic) has health condition A which 
influences health condition B, as well as specific risk factors 
R1, R2 and R3 that also influence health condition B, then we 
can think of P(B|A, R1, R2, R3) as the extended personalised 
health condition of x. 

Figures 6 and 7 apply the health condition typology to two 
common health conditions: diabetes and malaria. Fig. 6 
demonstrates that diabetes has a direct influence that 
predisposes the patient to nephropathy, cardio-vascular 
disease and retinopathy. 

Even after treatment and a return to a seemingly healthy 
state, patients with malaria can experience relapse, or 
recrudescence. In this way, as shown in Fig. 7, malaria can be 
an example of a recurrent or cycle-bound health condition. 

V. GENERATING THE REALISTIC SYNTHETIC HEALTH 
CONDITION TIMELINE 

To simplify the process, the continuous health timeline is 
generated chronologically in discrete five-year-long age 
groups. The background prior for each disease that may be 
relevant to the current age group is identified and, where risk 
or other factors apply, updated. This process is demonstrated 
in Fig. 8. Demographic and predisposition factors have been 
generated during the Gestation period, and are used during the 
0-4yrs period to update background priors for all diseases 
known to the system. In the example shown the synthetic 
patient has risk factors for Type 1 Diabetes Mellitus (T1DM) 

 
Fig. 4. Multiple one-way dependencies 

 
Fig. 5. Cycle-binding dependencies 

 
Fig. 6. Example of multiple one-way dependencies in diabetes 

 
Fig. 7. Example of cycle-binding in recurrent malaria 

 
Fig. 8. How GenSeT generates health condition timelines 



that include: (i) a family history (FamilyHx) of T1DM [29, 
30]; (ii) being of an east Asian ethnicity [31, 32]; and (iii) 
living in a colder northern climate [33]. These risk factors 
individually and cumulatively increase the 4% background 
prior for T1DM, as shown by the upward pointing arrows. The 
system, based on these risk factors, has chosen to generate a 
diagnosis for T1DM. Contemporaneously the synthetic 
patient’s ethnicity has acted to decrease the likelihood for 
obesity, as shown by the downward pointing arrow. 

In the later 20-24yrs age range the accumulation of our 
synthetic patient’s ethnicity [34], gender [35] and prior non-
obese autoimmune T1DM diagnosis [36, 37] have all 
increased her likelihood for Lupus; which has been diagnosed. 
While T1DM increases her risk for certain cancers [38], a 
cancer diagnosis has not been generated during this age range 
cycle. 

A. Generation algorithm 
The GenSeT method consists of two phases. The first 

phase generates synthetic patients and populates their record 
with values for the demographic, predisposition and socio-
economic factors described in Table 1. The second phase 
generates health conditions along the synthetic health 
condition timeline. 

Generating synthetic patients: There are many ways to 
generate the synthetic patient. We have previously explained 
a process using a stepwise Walker’s Alias algorithm for 
constrained realistic demographics generation in [2]. The 
GenSeT synthetic patient generator described in Listing 1 
draws on national and local demographics data for such things 
as ethnicity and gender. It also draws on a combination of 
demographics data, prevalence data and incidence statistics to 
generate predisposition and socio-economic factors. Aside 
from preparing the locale-specific data and statistics, the other 
user-controlled feature is selecting the size of the synthetic 
population; or number of synthetic patients to generate. The 
accumulated fields generated during this phase populate the 
complete Gestation stage of the RS-HCT. The GenSeT 
synthetic patient generator delivers a database of synthetic 
patients ready to receive simulated health conditions on a 
health timeline generated by the GenSeT RS-HCT generator. 

Generating synthetic health timelines: The GenSeT RS-
HCT generator described in Listing 2 extends the synthetic 
patient through each age range using the accumulated patient 
data generated in the Gestation stage, along with prevalence 
data, incidence and treatment statistics. The clinical 
vocabulary and clinical expertise are used to temper the 
statistical data with knowledge of which conditions are 
independent and dependent, and the strength of relationship 
between dependent conditions. 

Since the number of age ranges and health conditions may 
be considered to be constants, it follows that the 
computational complexity of this algorithm is of order O(n), 
where n is the number of synthetic patients required to be 
generated together with their RS-HCT. 

For each health condition, the prior probability is 
identified from national or local prevalence data and incidence 
statistics. Drawing on clinical expert knowledge, it is then 
updated to account for the influence of specific risk factors 
and any dependent health conditions the synthetic patient has. 
The final step is for the system to use the updated probability 
in a decision process that will render a Boolean decision for 
whether the patient is or is not diagnosed with the health 
condition. There are a number of SDG decision processes that 
may be used such as Walker’s Alias, Markov Chains, 
Generative adversarial networks and probabilistic Bayesian 
networks. 

VI. STRENGTHS, LIMITATIONS AND FUTURE WORK 
It is important to emphasise here that this is a position 

paper with the limitation that it reports work in progress that 
is currently incomplete but worthy of reporting due to the 
current attention [39-41] and funding [42, 43, 41] being made 
available for research into development of realistic digital 
twin solutions for environments, civic systems and 
populations [44]. 

Many published synthetic EHR solutions draw use health 
condition prevalence as a fixed rate, effectively salting their 
synthetic dataset of patients with that diagnosis at the given 
frequency. A key strength for GenSeT is use of the prevalence 
value as a prior probability that is dynamically updated based 
on risk factors and dependent health conditions that are 
already known for this patient. This process means GenSeT 

Listing 1: GenSeT Synthetic Patient Generation Algorithm: RS-HCT Generation Algorithm for the GenSeT 
Method 
Inputs: 

1. prevData - Prevalence data; 
2. stats - Incidence and treatment statistics; 
3. popDemo - Population Demographics; 
4. patientPop - Numeric value for the required patient population size 

 
Output: synPatientDB - Synthetic patients database 
 
Pre-condition: synPatientDB is initially empty; 
 
Post-condition: synPatientDB is populated and has size patientPop 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

GenSeT.genSynthPatients() 
Begin  
   repeat: 

a. patientDemographics ← GenerateDemographicFactors(popDemo); 
b. predispositions ← GeneratePredispositionFactors(popDemo, prevData, stats); 
c. socioEcoFactors ← GenerateCurrentSocioEcoFactors(popDemo); 
d. synthPatient ← GenerateSynthPatient(patientDemographics, predispositions, 

socioEcoFactors); 
addPatient(synthPatient, synPatientDB); 
   Until synthPatientDB.size() == patientPop; 
End; 

 



ensures conditions are generated for synthetic patients that are 
more likely to experience them. Another strength is use of 
phased generation using age ranges as this enables ongoing 
updating of the prior probability based on the ongoing health 
experience of the synthetic patient. This means dependent 
health conditions are more likely to be generated only for 
those patients with the related primary health condition, for 
example: that diabetic foot ulcers are more likely to be 
generated for: (a) diabetic patients; who (b) still have the limb 
on which is the ulcerated foot is attached. 

Limitations exist that require further work. It is necessary 
to develop an approach for computing the boundary for how 
many conditions any one patient may be capable of bearing 
and therefore, at what point it is most appropriate to impute 
death. An approach is also needed for evaluating the synthetic 
HCT to validate whether the accumulated conditions 
experienced by each patient remain realistic. This approach 
must be capable of evaluating clinical knowledge and 
identifying three types of situations that make the new 
condition: (1) more likely; (2) extremely unlikely; and (3) 
impossible. For example, identifying that: (1) someone with 
an autoimmune disease is more likely to experience additional 
autoimmune diseases or renal and hepatic failure; (2) after bi-
lateral tubal ligation a woman is unlikely to be found pregnant 
(but it has happened and therefore is not impossible); and (3) 
a woman who has undergone a full hysterectomy could not be 
diagnosed with ovarian cancer or poly-cystic ovarian 
syndrome. 

VII. SUMMARY AND CONCLUSIONS 
The realistic synthetic health condition timeline (RS-

HCT) forms a strong basis for generating a more 
comprehensive and realistic synthetic electronic healthcare 
record (RS-EHR) for a synthetic patient population. Some 
works in the literature have recognised this by the inclusion of 
a step for mining the HCT from the real EHR within their 
algorithm for generating the synthetic EHR. Other works 
place no emphasis on generating the RS-HCT despite that it 
forms the skeletal form of the desired RS-EHR. This position 
paper has presented an approach and method in our early 
efforts in developing a framework and software tool for 
generating the RS-HCT for the patient segment of a 
population without access to the EHR of real patients, which 
potentially could breach patient privacy. Through 
incorporation of publicly available datasets and clinical expert 
knowledge and applied to common age ranges, this paper has 
presented a novel strategy for generating the RS-HCT. In the 
method presented here, synthetic patients with a broad range 
of demographic and predisposition data are also generated as 
a precondition for generating the RS-HCT for those patients. 
The uniqueness of the approach and method presented here 
lies in: (i) segmenting the HCT based on age groups; and (ii) 
running patients through the common age group-based 
temporal segments; while (iii) applying health condition 
prevalence statistics and health expertise;  together with (iv) 
health condition dependency considerations in the form of 
dynamic forward adjustment of prior probabilities as patients 
move along the timeline. We contend the RS-HCT will have 
as much of an impact on developing health-related digital twin 

Listing 2: GenSeT Synthetic Health Condition Timeline Algorithm: RS-HCT Generation Algorithm for 
the GenSeT Method 
Inputs: 

1. clinVoc - Clinical vocabulary; 
2. prevData - Prevalence data; 
3. stats - Incidence and treatment statistics; 
4. synPatientDB - Synthetic Patients with Demographics; 
5. clinExp - Clinical expertise 
6. stdClinicalAgeRanges - Age ranges common to stats; 

 
Output: 

1. synPatientDB.rsHCT - Synthetic patients database with Health Condition Timelines 
 
Pre-condition:  

1. synPatientDB.rsHCT is initially empty for each patient, 
2. stdAgeRanges contains age ranges sorted by temporal order; 

 
Post-condition: synPatientDB.rsHCT is populated for each patient 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

GenSeT.rsHCT()  
# generates synthetic HCT for each range in order 
 
Begin 
For each ageRange in stdClinicalAgeRanges do 
    For each synthPatient in synPatientDB Do 
        For each healthCondition in PrevData Do 

i. priorProb ← GetPriorProbability(prevData) 
ii. priorProb ← riskFactorUpdate(priorProb, clinVoc, clinExp, prevData, stats, 

synthPatient) 
iii. priorProb ← dependentHealthConditionsUpdate(priorProb, clinVoc, clinExp, 

prevData, stats, synthPatient) 
iv. hasDiagnosis ← isDiagnosed(priorProb) 
v. If (hasDiagnosis)then  

a. date ← determineDateOfDiagnosis(ageRange) 
b. Update(synPatientDB.rsHCT, healthCondition, date) 

        Repeat (nextHealthCondition) 
    Repeat (nextPatient) 
Repeat (nextAgeRange) 
End; 

 



solutions as the RS-EHR has been seen to have during the last 
seven years. 

 

CONTRIBUTION STATEMENT 
SM prepared the first draft with assistance from KD. NF 

reviewed the probabilistic, typology and constraint approach. 
GAH, BJD, DB and PC provided clinical content and review. 
CP and MP proposed the health condition typology and 
prepared beta code for proof of concept testing. 

 

ACKNOWLEDGMENT 
SM, BJD, GAH, and NF acknowledge support from the 

EPSRC under project EP/P009964/1: PAMBAYESIAN: 
Patient Managed decision-support using Bayes Networks. MP 
and CP acknowledge the support of Massey University and 
ESEO for providing the opportunity to attend Massey and 
undertake this work with the HiKER Group. 

 

COMPETING INTERESTS 
No author identified a competing interest relevant to this 

research. 

REFERENCES 
 

[1] Dube, K. and T. Gallagher. (2014). Approach and method for 
generating Realistic Synthetic Electronic Healthcare Records for 
secondary use. Paper presented at the International Symposium on 
Foundations of Health Informatics Engineering and Systems, Berlin, 
Heidelberg. 

[2] McLachlan, S., K. Dube and T. Gallagher. (2016). Using CareMaps 
and health statistics for generating the realistic synthetic Electronic 
Healthcare Record. Paper presented at the International Conference on 
Healthcare Informatics (ICHI'16), Chicago, USA. 

[3] Walonoski, J., M. Kramer, J. Nichols, A. Quina, C. Moesel, D. Hall, C. 
Duffett, K. Dube, T. Gallagher, and S. McLachlan. (2018). Synthea: 
An approach, method, and software mechanism for generating 
synthetic patients and the synthetic electronic health care record. 
Journal of the American Medical Informatics Association, 25(3), 230-
238.  

[4] Avino, L., M. Ruffini and R. Gavalda. (2018). Generating synthetic but 
plausible healthcare record datasets. ArXiv Preprint, 
arXiv:1807.01514.  

[5] Buczak, A., S. Babin and L. Moniz. (2010). Data-driven approach for 
creating synthetic electronic medical records. BMC medical 
informatics and decision making, 10(1), 1-28.  

[6] Dash, S., R. Dutta, I. Guyon, A. Pavao, A. Yale and K. Bennett. (2019). 
Synthetic event time series health data generation, arXiv:1911.06411.   

[7] Piacentino, E., A. Guarner and C. Angulo. (2021). Generating 
Synthetic ECGs using GANs for Anonymising Healthcare Data. 
Electronics, 10(389).  

[8] McLachlan, S., E. Kyrimi, B. Daley, K. Dube, M. Marsden, S. Finer, 
G. Hitman and N. Fenton. (2020). Incorporating Clinical Decisions into 
Standardised Caremaps. Paper presented at the IEEE International 
Conference on Health Informatics (ICHI), DOI: 
10.1109/ICHI48887.2020.9374381. 

[9] McLachlan, S., E. Kyrimi, K. Dube and N. Fenton. (2019). Clinical 
caremap development: How can caremaps standardise care when they 
are not standardised? Paper presented at the 12th International Joint 
Conference on Biomedical Systems and Technologies (BIOSTEC 
2019), volume 5: HEALTHINF, Prague, Czech Republic. 

[10] Gaba, S., Y. Havinga, T. van der Weide, J. Visser, E. Hoijtink, H. 
Brons, J. Kijne, P. Dijksta, and F. Walraven. (2020). Portavita 
Benchmark: A Dataset Generator for Healthcare. Retrieved from: 
online. 

https://portavita.com/sites/default/files/whitepapers/AXLE_Healthcar
e_Dataset_Generator.pdf 

[11] Yale, A., S. Dash, R. Dutta, I. Guyon, A. Pavao and K. Bennett. (2020). 
Generation and evaluation of privacy preserving synthetic health data. 
Neurocomputing, 416, 244-255.  

[12] Walonoski, J., S. Klaus, E. Granger, D. Hall, A. Gregorowicz, G. 
Neyarapally, A. Watson and J. Eastman. (2020). Synthea™ Novel 
coronavirus (COVID-19) model and synthetic data set. Intelligence-
based medicine, 1(100007).  

[13] Liu, Y. and Y. Theng. (2020). Development of Synthetic Health 
Records to Support Urban Planning for Healthy Aging. Innovation in 
Aging, 4, 12.  

[14] El Emam, K., L. Mosquera and J. Bass. (2020). Evaluating Identity 
Disclosure Risk in Fully Synthetic Health Data: Model Development 
and Validation. Journal of Medical Internet Research, 22(11), e23139.  

[15] Elliot, M. (2014). Final Report on the Disclosure Risk Associated with 
the Synthetic Data Produced by the SYLLS Team. Retrieved from: 
https://hummedia.manchester.ac.uk/institutes/cmist/archive-
publications/reports/2015-02%20-
Report%20on%20disclosure%20risk%20analysis%20of%20synthpop
%20synthetic%20versions%20of%20LCF_%20final.pdf 

[16] El Maria, Q., T. Taleb and J. Song. (2020). Roads Infrastructure Digital 
Twin: A Step Toward Smarter Cities Realization. IEEE Access 
ACCESS.2017.2657006.  

[17] Srinivasan, R., B. Manohar and R. Issa. (2020). Real-Time Demand 
Response Using Digital Twin. In (Ed.), Cyber-Physical Systems in the 
Built Environment. Cham.: Springer. 

[18] Gallagher, S., L. Richardson, S. Ventura and W. Eddy. (2017). SPEW: 
Synthetic Populations and Ecosystems of the World. Carnegie Mellon 
University. ArXiV Preprint. Retrieved from 
https://arxiv.org/pdf/1701.02383.pdf 

[19] Wan, C., Z. Li, A. Guo and Y. Zhao. (2019). SynC: A Unified 
Framework for Generating Synthetic Populationwith Gaussian Copula. 
University of Toronto. ArXiv PrePrint. Retrieved from 
https://arxiv.org/pdf/1904.07998.pdf 

[20] Harland, K., A. Heppenstall, D. Smith and M. Birkin. (2012). Creating 
Realistic Synthetic Populations at Varying Spatial Scales: 
AComparative Critique of Population Synthesis Techniques. Journal of 
Artificial Societies and Social Simulation, 15(1).  

[21] DiabetesUK. (2010). Diabetes in the UK: Key Statistics. Retrieved 
from: https://www.diabetes.org.uk/resources-s3/2017-
11/diabetes_in_the_uk_2010.pdf 

[22] NZMoH. (2019). Report on Maternity Web Tool. Retrieved from: 
https://minhealthnz.shinyapps.io/Maternity_report_webtool/ 

[23] UKONS. (2019). Suicides in the UK: 2018 Registrations. Retrieved 
from: 
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeaths
andmarriages/deaths/bulletins/suicidesintheunitedkingdom/2018regist
rations 

[24] Geifman, N., R. Cohen and E. Rubin. (2013). Redefining meaningful 
age groups in the context of disease. Age, 35(6), 2357-2366. 
doi:10.1007/s11357-013-9510-6 

[25] Ekwueme, D., P. Strebel, S. Hadler, M. Meltzer, J. Allen and J. 
Livengood. (2000). Economic evaluation of use of diphtheria, tetanus, 
and acellular pertussis vaccine or diphtheria, tetanus, and whole-cell 
pertussis vaccine in the United States, 1997. Archives of pediatrics & 
adolescent medicine, 154(8), 797-803.  

[26] Fadiga, M., C. Jost and J. Ihedioha. (2013). Financial costs of disease 
burden, morbidity and mortality from priority livestock diseases in 
Nigeria. Retrieved from: Nigeria. 
https://cgspace.cgiar.org/rest/rest/bitstreams/44bed655-da59-4ce4-
a547-931c3ba89aae/retrieve 

[27] WHO. (undated). The Global Burden of Disease concept. Retrieved 
from: 
https://www.who.int/quantifying_ehimpacts/publications/en/9241546
204chap3.pdf 

[28] Smith, M., M. Drummond and D. Brixner. (2009). Moving the QALY 
forward: rationale for change. Value in Health, 12.  

[29] Bonifacio, E., M. Hummel, M. Walter, S. Schmid and A. Zeigler. 
(2004). IDDM1 and multiple family history of type 1 diabetes combine 
to identify neonates at high risk for type 1 diabetes. Diabetes Care, 
27(11), 2695-2700.  



[30] Peng, H. and W. Hagopian. (2006). Environmental factors in the 
development of Type 1 diabetes. Reviews in endocrine and metabolic 
disorders, 7(3), 149-162.  

[31] Mayer-Davis, E., R. Bell, D. Dabelea, R. D’Agostino, G. Imperatore, 
J. Lawrence, L. Liu and S. Marcovina. (2009). The many faces of 
diabetes in American youth: type 1 and type 2 diabetes in five race and 
ethnic populations: the SEARCH for Diabetes in Youth Study. 
Diabetes Care, 32, S99-S101.  

[32] Spanakis, E. and S. Golden. (2013). Race/Ethnic Difference in 
Diabetes and Diabetic Complications. Current Diabetes Reports, 13(6).  

[33] Levy-Marchal, C., C. Patterson and A. Green. (1995). Variation by age 
group and seasonality at diagnosis of childhood IDDM in Europe. 
Diabetologia, 38, 823-830.  

[34] Lau, C., G. Yin and M. Mok. (2006). Ethnic and geographical 
differences in systemic lupus erythematosus: an overview. Lupus, 
15(11), 715-719.  

[35] Bruce, I., M. Urowitz, D. Gladman, D. Ibanez and G. Steiner. (2003). 
Risk factors for coronary heart disease in women with systemic lupus 
erythematosus: the Toronto Risk Factor Study. Arthritis and 
Rheumatism, 48(11), 3159-3167.  

[36] Al Ahmed, O., V. Sivaraman, M. Moore-Clingenpeel, A. S., S. Bout-
Tabaku and CARRA. (2020). Autoimmune thyroid diseases, 
autoimmune hepatitis, celiac disease and type 1 diabetes mellitus in 
pediatric systemic lupus erythematosus: Results from the CARRA 
Legacy Registry. Lupus, 29(14), 1926-1936.  

[37] Esteban, L., T. Tsoutsman, M. Jordan, D. Roach, L. Poulton, A. 
Brooks, O. Naidenko, S. Sidobre, D. Godfrey, and A. Baxter. (2003). 

Genetic control of NKT cell numbers maps to major diabetes and lupus 
loci. The Journal of Immunology, 171(6), 2873-2878.  

[38] Shu, X., J. Ji, X. Li, K. Sundquist and K. Hemminki. (2010). Cancer 
risk among patients hospitalized for Type 1 diabetes mellitus: a 
population‐based cohort study in Sweden. Diabetic Medicine, 27(7), 
791-797.  

[39] Dembski, F., U. Wossner, M. Letzgus, M. Ruddat and C. Yamu. 
(2020). Urban Digital Twins for Smart Cities and Citizens: The Case 
Study of Herrenberg, Germany. Sustainability, 12(2307).  

[40] FrontierSI. (2021). Call for Digital Twin Proposals.   Retrieved from 
https://frontiersi.com.au/digital-twin/ 

[41] SCJ. Moscow “Digital Twin” project received the international 
ISOCARP award. Smart City Journal.  Retrieved from 
https://www.thesmartcityjournal.com/en/cities/moscow-digital-twin-
project-received-the-international-isocarp-award 

[42] Ketzler, B. (2020). Digital Twin cities receives prestigious Epic Mega 
Grant.   Retrieved from https://dtcc.chalmers.se/2020/06/30/digital-
twin-cities-receives-prestigious-epic-mega-grant/ 

[43] RAEng. (2021). UK IC Postdoctoral Research Fellowships.   Retrieved 
from https://www.raeng.org.uk/grants-prizes/grants/support-for-
research/ic-postdoctoral 

[44] CSIRO. (2021). Digital twins at CSIRO's Data61: From objects and 
systems to precincts and cities.   Retrieved from 
https://data61.csiro.au/en/Our-Research/Our-Work/Future-
Cities/NSW-Digital-Twin/NSW-Digital-Twin

 


