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MORGAN-STONE LATTICES VERSUS DE MORGAN LATTICES

ALEXEJ P. PYNKO

Abstract. Morgan-Stone (MS) lattices are axiomatized by the constant-free

identities of those axiomatizing Morgan-Stone (MS) algebras, in which case
double negation is an endomorphism of any MS lattice onto its De Morgan

lattice subalgebra, and so this point has interesting consequences concerning

the issues of lattices of [quasi-]varieties of MS lattices facilitating finding these
much. First, we prove that the variety of MS lattices is the quasi-variety

generated by a six-element one with lattice reduct being the direct product of
the three- and two-element chain lattices, in which case subdirectly-irreducible

MS lattices are exactly isomorphic copies of non-one-element subalgebras of

the six-element generating MS lattice with the double negation endomorphism
kernel being the only non-trivial congruence of any non-simple one, and so, by

a universal tool elaborated here, we get a 29-element non-chain distributive

lattice of varieties of MS lattices, isomorphic to the one of sets of such sub-
algebras containing embedable ones, subsuming the four-/three-element chain

one of “De Morgan”/Stone lattices/algebras (viz., constant-free versions of

De Morgan algebras)/(more precisely, their term-wise definitionally equivalent
constant-free versions, called Stone lattices). And what is more, we prove that

any sub-quasi-variety of the quasi-equational join (viz., the quasi-variety gen-

erated by the union) of a finitely-generated quasi-variety of MS lattices and the
variety of De Morgan lattices, including the former, is the quasi-equational join

of its intersection with the latter and the former. As a consequence, using the
eight-element non-chain distributive lattice L of quasi-varieties of De Morgan

lattices, found earlier, we prove that the lattice of sub-quasi-varieties of “the

[quasi-]equational join of the varieties of De Morgan and Stone lattices”/“the
unbounded equational approximation of MS algebras (viz., the greatest variety

of MS lattices without bounded members not expandable to MS algebras)”,

being a non-chain distributive (15/29)-element one embedable into the direct
product of L and a (2/5)-element chain, is constituted by 2/5 planes, each

being isomorphic to the filter F of L with least element, being the intersection

of that Q of the plane and the variety of De Morgan lattices, and consisting
of the quasi-equational joins of Q and elements of F .

1. Introduction

The notion of De Morgan lattice, being originally due to [7], has been indepen-
dently explored in [5] under the term distributive i-lattice w.r.t. their subdirectly-
irreducibles and the lattice of varieties. They satisfy so-called De Morgan identities.
On the other hand, these are equally satisfied in Stone algebras (cf., e.g., [4]). This
has inevitably raised the issue of unifying such varieties. Perhaps, a first way of
doing it within the framework of De Morgan algebras (viz., bounded De Morgan
lattices; cf., e.g., [1]) has been due to [2] under the term Morgan-Stone (MS) algebra
providing a description of their subdirectly-irreducibles. Here, we study unbounded
MS algebras naturally called Morgan-Stone (MS) lattices.

The rest of the work is as follows. Section 2 is a concise summary of basic
set-theoretical and algebraic issues underlying the work. Next, in Section 3, we
elaborate a universal tool of finding the lattice of relative sub-varieties of finite
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2 A. P. PYNKO

sub-classes of congruence-distributive varieties, consisting of finite algebras, each
non-one-element non-simple subalgebra of which has an endomorphism with ker-
nel, being the only non-trivial congruence of the subalgebra. Then, in Section 4, we
apply it to finding the lattices of varieties of [bounded] MS lattices [properly sub-
suming MS algebras]. Likewise, in Section 5, upon the basis of the double negation
endomorphism of MS lattices and the eight-element non-chain distributive lattice
of quasi-varieties of De Morgan lattices found in [9], we find a (15/29)-element
one of sub-quasi-varieties of “the [quasi-]equational join of De Morgan and Stone
lattices”/“the unbounded equational approximation of MS algebras”.

2. General background

2.1. Set-theoretical background. Non-negative integers are identified with sets/
ordinals of lesser ones, their set/ordinal being denoted by ω. Unless any confusion
is possible, one-element sets are identified with their elements.

Given any sets A, B, D and θ ⊆ A2, let ℘(ω)([B, ]A) be the set of all (finite)
subsets of A [including B], (∆A|νθ) , {〈a, a|θ[{a}]〉 | a ∈ A} and χB

A , (((A∩B)×
{1}) ∪ ((A \ B) × {0})), A-tuples {viz., functions with domain A} being written
in the sequence form t̄ with ta, where a ∈ A, standing for πa(t̄). Then, given
any S ∈ ℘(D)B and f̄ ∈

∏
b∈B S

A
b , we have its functional product (

∏F
f̄) : A →

(
∏

b∈B Sb), a 7→ 〈fb(a)〉b∈B such that

ker(
∏F

f̄) = (A2 ∩ (
⋂
b∈B

(ker fb))),(2.1)

∀b ∈ B : fb = ((
∏F

f̄) ◦ πb),(2.2)

f0 � f1 standing for (
∏F

f̄), whenever B = 2.
A lower/upper cone of a poset P = 〈P,5〉 is any C ⊆ P such that, for all

a ∈ C and b ∈ P , (a = / 5 b) ⇒ (b ∈ C). Then, an a ∈ S ⊆ P is said to be
minimal/maximal in S, if {a} is a lower/upper cone of S, their set being denoted
by (min /max)P|5(S), in case of the equality of which to S, this is called an anti-
chain of P.

An X ∈ Y ⊆ ℘(A) is said to be meet-irreducible in Y , if ∀Z ∈ ℘(Y ) : ((A ∩
(
⋂
Z)) = X) ⇒ (X ∈ Z), their set being denoted by MI(Y ).

2.2. Algebraic background. Unless otherwise specified, we deal with a fixed but
arbitrary finitary functional signature Σ, Σ-algebras/“their carriers” being denoted
by /respective [multiple] capital Fraktur/Italic letters (with /same indices|suffices)
“their class being denoted by AΣ”/. Let TmΣ be the set of Σ-terms with variables
in {xi}i∈ω and EqΣ , Tm2

Σ, any ([〈Γ, ]〈φ, ψ〉[〉]) ∈ ([℘ω(EqΣ)×] EqΣ) being viewed
as a Σ[-quasi]-equation/-identity [Γ →](φ ≈ ψ) /“identified with the universal
closure of [

∧
Γ →](φ ≈ ψ), in which case, providing Σ+ , {∧,∨} ⊆ Σ, φ / ψ

stands for (φ ∧ ψ) ≈ φ, while, for any Σ-algebra A and ā ∈ A2, a0|1(6 | >)A
a1|0

means A |= (x0 / x1)[xi/ai]i∈2, whereas, for any � ∈ L+ [and n ∈ (ω \ 1)],
�1[+n](x̄1[+n]) , ([�n(x̄n)�]x0[+n]). The set [Q]E(K) of Σ[-quasi]-identities true in a
K ⊆ AΣ is called its [quasi-]equational theory. Given a unary o ∈ Σ and a ϕ ∈ TmΣ,
(by induction on n ∈ (ω \ 1)) set o0(+n)ϕ , (o on−1)ϕ.

A subclass of (K ⊆)AΣ “closed under (K∩)I[S]|S|P{U}“/“containing every Σ-
algebra with all finitely-generated subalgebras in the class” is referred to as “(rel-
atively) [hereditarily-]abstract |hereditary |{ultra-}multiplicative”/local 〈cf. [6]〉. Gi-
ven a K ⊆ AΣ 3 A, set hom[S]

(I)(A,K) , {h ∈ hom(A,B) | B ∈ K[, (img h) =

B](, (kerh) = ∆A)} and CoK(A) , {θ ∈ Co(A) | (A/θ) ∈ K}, in which case, for all
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B ∈ AΣ and h ∈ hom[S](A,B):

(2.3) ∀θ ∈ Co(B) : (kerh) ⊆ h−1[θ] , {a ∈ A2 | (a ◦ h) ∈ θ} ∈ Co(A)

[∀ϑ ∈ (Co(A) ∩ ℘(kerh,A2)) : h[ϑ] , {b ◦ h | b ∈ ϑ} ∈ Co(B),

ϑ = h−1[h[ϑ]], θ = h[h−1[θ]],

and so the posets Co(A) ∩ ℘(kerh,A2) and Co(B) partially ordered by inclusion
are isomorphic], while, by the Homomorphism Theorem:

(2.4) ker[homS|(A,K)] = Co(I|(IS))K(A),

and so, since, for any set I, B ∈ AI
Σ and f̄ ∈ (

∏
i∈I hom(A,Bi)):

(2.5) (
∏F

f̄) ∈ hom(A,
∏
i∈I

Bi),

taking I , Co(I|(IS))K(A), B , 〈A/i〉i∈I ∈ ((I|(IS))K)I and f̄ , 〈νi〉i∈I ∈ (
∏

i∈I

homS(A,Bi)), by (2.1) and (2.2), we eventually get:

(2.6) (A ∈ IPSD({I}|({I}S))K) ⇔ ((A2 ∩ (
⋂

ker[homS|(A,K)])) = ∆A).

According to [10], pre-varieties are abstract hereditary multiplicative classes of
Σ-algebras, ISPK = IPSDS(>1)K being the least one including a {finite} class K
of {finite} Σ-algebras and so said to be generated by this {and finitely-generated}.
Likewise, [quasi-]varieties are hereditary [ultra-]multiplicative classes closed un-
der H[I][, I] (these are exactly model classes of sets of Σ-[quasi-]identities, and
so are local and also said to be [quasi-]equational ; cf., e.g., [6]), H[I]SP

[U]
K =

Mod([Q]E(K))[{= ISPK; cf., e.g., [3, Corollary 2.3]}] being the least one including
K and so said to be generated by this {and finitely-generated}. Then, intersections of
a K ⊆ AΣ with [quasi-/pre-]varieties are called its relative sub-[quasi-/pre-]varieties,
in which case, for any I ⊆ EqΣ,

(2.7) (IPSD(K) ∩Mod(I)) = IPSD(K ∩Mod(I)),

and so S 7→ (S ∩ K) and R 7→ IPSDR are inverse to one another isomorphisms
between the lattices of relative sub-varieties of IPSDK and those of K. Furthermore,
a variety V ⊆ AΣ is said to be congruence-distributive, if, for each A ∈ V, the lattice
Co(A) is distributive. Given [quasi-]varieties Q,Q′ ⊆ AΣ, their [quasi-]equational
join is the [quasi-]variety Q ][Q] Q′ generated by Q ∪ Q′, the lattice of sub-[quasi-
]varieties of Q (including Q′) with meet/join ∩/][U] being denoted by L[Q]((Q′, )Q).1

Finally, recall that an A ∈ AΣ is said to be simple/subdirectly-irreducible, if
∆A ∈ (max⊆ /MI)(Co(A)\ ({A2}/∅)), in which case |A| 6= 1, the class of [those of]
them [which are in a K ⊆ AΣ] being denoted by (Si /SI)[(K)] and, by (2.3), being
[relatively] abstract, and so, by (2.3),

(2.8) (Si |SI)(IPSD(S)K′) ⊆ I(S>1)K
′,

for any K′ ⊆ AΣ. Then, varieties without non-simple subdirectly-irreducibles are
said to be semi-simple.

1Though being proper classes, [quasi-]varieties, being model classes of their [quasi-]equational

theories, are uniquely determined by these, so, under identification with them, are allowed to be

viewed as sets and to constitute {po}sets, lattices, etc.
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3. Preliminaries

A congruence-determining endomorphism for/of a non-simple non-one-element
Σ-algebra A is any h ∈ hom(A,A) such that Co(A) = {∆A, kerh,A2}, in case of
existence of which A is called endo-pre-simple, either simple or endo-pre-simple Σ-
algebras [without non-pre-simple non-one-element subalgebras] being called [(non-
trivially-)hereditarily] pre-simple and being, clearly, subdirectly-irreducible.

Theorem 3.1. Let K be a [finite] class of [finite] hereditarily pre-simple Σ-algebras
[ V ⊇ K a congruence-distributive variety {in particular, Σ+ ⊆ Σ, while each mem-
ber of K�Σ+ is a lattice; cf. [8]}] and K′ ⊆ IS>1K. [Suppose S>1K ⊆ IK′.] Then,
for all A,B ∈ S>1K, and every (non-)injective h ∈ homS(A,B), (A is not simple
with a congruence-determining endomorphism h′ such that (kerh′) = (kerh) and)
(h−1(◦h′)) ∈ homI(B,A), in which case, for every A′ ∈ K′, (K′ ∩ HA′) ⊆ ISA′

[and so relative sub-varieties of K′ are exactly its relatively hereditarily-abstract
subclasses. In particular, for any relatively hereditarily-abstract K′′ ⊆ K′, i.e.,
K′′ = (K′ ∩ ISK′′〈′〉)〈 where K′′′ ⊆ K′〉, there is a Φ ∈ (

∏
C∈(K′\K′′)(E(K′′) \ E(C))),

K′′ being then the relative sub-variety of K′ relatively axiomatized by img Φ].

Proof. The []-non-optional part is by the Homomorphism Theorem. [Now, consider
any relatively hereditarily-abstract K′′ ⊆ K′, any set I, any D ∈ (K′′)I , any sub-
algebra E of B′ ,

∏
i∈I Di, any F ∈ K′ and any g ∈ homS(E,F), in which case,

as F is finite, there are a finitely-generated E′ ∈ SE ⊆ SB′, a F′ ∈ S>1K and an
e ∈ homS

I (F,F′) such that g′ , ((g�E′) ◦ e) ∈ homS(E′,F
′), while, for each i ∈ I,

there are some Gi ∈ S>1K and some e′i ∈ homS
I (Di,Gi), and so, by (2.3) and the

subdirect irreducibility of F′, (ker g′) ∈ MI(Co(E′)), as well as H , {(πi�E′) ◦ e′i |
i ∈ I} ⊆ hom(E′,K) is finite, for both K and all its members are so, whereas
((E′)2 ∩ (

⋂
ker[H])) = ((E′)2 ∩ (

⋂
i∈I ker(πi�E′))) = ∆E′ ⊆ (ker g′) ( (E′)2, for

| img g′| = |F ′| = |F | > 1, H being thus non-empty. Then, by the congruence
distributivity of V 3 E′, there is some f ∈ H such that (ker f) ⊆ (ker g′), in which
case there is some i ∈ I such that f ′ , (f ◦ e′−1

i ) = (πi�E′) ∈ hom(E′,Di), while
(ker f ′) = (ker f) ⊆ (ker g′) ( (E′)2, and so (ker f ′) 6= (E′)2, i.e., | img f ′| > 1,
whereas D′ , f ′[E′] ∈ S>1Di ⊆ S>1K

′ ⊆ IS>1K ⊆ IK′. Take any C′ ∈ (K′ ∩ ID′) 6=
∅ and any h′′ ∈ homS

I (C′,D′) 6= ∅, in which case C′ ∈ (K′ ∩ ISDi) ⊆ (K′ ∩ ISK′′) ⊆
K′′, while, by the Homomorphism Theorem, (h′′ ◦ f ′−1 ◦ g′ ◦ e−1) ∈ homS(C′,F),
and so F ∈ (K′ ∩HC′) ⊆ (K′ ∩ ISC′) ⊆ (K′ ∩ ISK′′) ⊆ K′′, as required.] �

4. Morgan-Stone lattices versus distributive lattices

From now on, we deal with the signatures Σ(−)
+[,01] , (Σ+(∪{¬})[∪{⊥,>}]),

[bounded] lattices being supposed Σ+[,01]-algebras. For any n ∈ ((ω \ 2)|2), let
Dn[,01] be the chain bounded lattice with carrier n|{n}. Recall the well-known:

Lemma 4.1. Let A be a [bounded] lattice and F ⊆ A. Suppose F is either a prime
filter of A or in {∅, A}[∩∅]. Then, (unless F ∈ {∅, A}) χF

A ∈ hom(S)(A,D2[,01]).

Lemma 4.2. Let A ∈ A∧ 3 B be a semi-lattice with bound b ∈ A (i.e., b = (a∧Ab),
for all a ∈ A) and h ∈ homS(A,B). Then, B is a semi-lattice with bound h(b).

Let (�‖[)0|1 , ((∧‖⊥)|(∨‖>)), DMi , (¬(x0 �i x1) ≈ (¬x0 �1−i ¬x1)), MNi,j ,
(¬3·ix0 ≈ (¬3·ix0 �j ¬2−ix0)) and NBi , (¬[1−i ≈ [i), where i, j ∈ 2. Then, a
[bounded/] Morgan{-Stone} ( {MS}) lattice[/algebra] is any Σ−

+[,01]-algebra A ∈
Mod({DMi}i∈(1〈+1〉)∪{MNj,k}j∈(1〈+1〉),k∈(2{−1})[∪{NBl}l∈((0/1)〈∪{1}〉)]) with [bo-
unded] distributive lattice A�Σ+[,01] /[[1] {resp., [2]}] and their variety denoted
by [B/]M{S}(L[/A]), in which case }A , (¬2)A ∈ hom(A[�Σ−

+/],A[�Σ−
+/]) and
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Figure 1. The [bounded] Morgan-Stone lattice MS(6|2)[,01].

((A[�Σ−
+/])�(img }A)) ∈ M(L[/A]), an a ∈ A being called (negatively) idempotent, if

¬A(¬A)a = (¬A)a, with their set =A
(¬)(⊇ =A).

4.1. Subdirectly-irreducibles. Let MS(6|2)[,01] be the [bounded] MS lattice with
Σ+[,01]-reduct ((D2[,01]×D(2|1)[,01])�((22\{〈k, 0〉 | k ∈ (2\(1|0))})))×D(2|0)[,01] and
¬MS(6|2)[,01] , {〈a, 〈1− πmin(2,3−`)(a)〉`∈3〉 | a ∈ MS6|2} the Hasse diagram of its
lattice reduct with its (non-)idempotent elements marked by (non-)solid |large cir-
cles and arrows reflecting action of its operation ¬ on its non-idempotent elements
|“as well as thick lines” being depicted at Figure 1. Then, (MS5[,01]|MS4:n[,01]|
DM4[,01]|K3:n[,01]|S3[,01]|B2[,01]) , (MS6[,01]�((MS6\{〈0, 0, 1〉})|((MS6∩π−1

2 [{n}])
∪ (3×{1−n}))|}MS6 [MS6]|(DM4∩MS4:n)|(MS5∩MS4:1)|(K3:0∩K3:1))), where
n ∈ 2, and members of M[01(+)/−] , ({MS6[,01]} ∪ ({MS2[,01]}[\/ ∩ ∅])) ex-
haust those of MS[01(+)/−] , S>1({MS6[,01]}[∪M01/−]) with isomorphic K3:0[,01]

and K3:1[,01] “but without”// “being the only” isomorphic distinct members of
MSn//2[,01(+)/−] , (MS[01/−] \ ({K3:(1−n)[,01]}//∅)) partially-//quasi-ordered by the
embedability relation between them �n//[,01(+)/−], {〈B,C〉 ∈ MS2

n//[,01/−] | (B *
C) ⇒ (∃m ∈ ({n}//2) : K3:m‖(1−m) = ‖ ⊆ (B‖C))[, (B = MS2) ⇒ (B = C)/]}
“the Hasse diagram of the poset being depicted at Figure 2”//.

Lemma 4.3. For any A ∈ S(>1)M[01], Co(A) = {∆A, ker }A, A2} (in which case
A, being subdirectly-irreducible, is simple iff either A2 = (ker }A), i.e., A = MS2,
or }A is injective, i.e., A ⊆ DM4), and so {non-}simple members of MSn[,01] are
marked by {non-}solid circles-nodes at Figure 2.

Proof. Given any I ⊆ 3, put θI , (A2 ∩ (
⋂

i∈I ker(πi�A))). Consider any θ ∈
(Co(A) \ {∆A}) ⊆ Co(A�Σ+), in which case, by the congruence-distributivity of
lattices [8], the simplicity of two-element algebras, absence of their proper non-one-
element subalgebras and (2.3), there is some J ⊆ 3 such that θ = θJ . Take any a ∈
(θ\∆A) 6= ∅, in which case there is some j ∈ 3 such that πj(π0(a)) 6= πj(π1(a)), and
so 0 6∈ J , because θ 3 (a◦(¬(2·j) mod 3)A) 6∈ (kerπ0). Then, J ⊆ K , (3\1), in which
case θ ⊇ θK = (ker }A). Furthermore, unless θ = θK , take any b ∈ (θ \ θK) 6= ∅, in
which case (θ∩DM2

4 ) 3 c , (b◦ (¬2)A) = (b◦}A) 6∈ ∆A, and so there is some k ∈ 3
such that πk(π0(c)) 6= πk(π1(c)). In that case, since π0(πl(c)) = π1(πl(c)), for all
l ∈ 2, nom ∈ K is in J , because θ 3 (c◦(¬max(m−max(1,k),max(1,k)−m))A) 6∈ (kerπm),
and so θ = θJ∩K = θ∅ = A2, as required. �

Theorem 4.4. [B/]MSL[/A] = ISP({MS6[,01]}[∪M01/−]) = IPSDMS((0|1)[,])[01/−],
in which case SI([B/]MSL[/A]) = IMS((0|1)[,])[01/−], and so Si([B/]MS(L[/A]) =
I(({MS2[,01]}[/∅]) ∪ S>1DM4[,01]).
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Figure 2. The embedability poset MSn[,01] [with merely thick lines].

Proof. By the Prime Ideal Theorem, for any A ∈ MSL and any a ∈ (A2 \ ∆A),
there is a prime filter F of A�Σ+ such that a 6∈ (kerχF

A), in which case, by DM0‖1,
(H|G) , ((A \ (¬A)−1[F ])|(¬A)−1[A \ H]) is either a prime filter of A�Σ+ or in
{∅, A}, and so, by MN0‖1,0 and Lemma 4.1, h , {〈b, 〈χF

A(b), χG
A(b), χH

A (b)〉〉 | b ∈
A} ∈ hom(A,MS6) with a 6∈ (kerh). Then, (2.3), (2.6), (2.8), Lemmas 4.2, 4.3
and the following equality complete the argument:

(4.1) (MS01 ∩MSA) = MS01−. �

4.2. The lattice of sub-varieties. First, by Theorem 3.1, Lemma 4.3 and (4.1),
we immediately have:

Corollary 4.5. Let K ⊆ M[01] and K′ ⊆ IS>1K. {Suppose S>1K ⊆ IK′.} Then,
for all A,B ∈ S>1K and every (non-)injective h ∈ homS(A,B), (h−1(◦}A)) ∈
homI(B,A), in which case, for each A′ ∈ K′, (K′ ∩HA′) ⊆ ISA′ {and so relative
sub-varieties of K′ are exactly its relatively hereditarily-abstract subclasses. In par-
ticular, for any relatively hereditarily-abstract K′′ ⊆ K′, i.e., K′′ = (K′ ∩ ISK′′〈′〉)〈
where K′′′ ⊆ K′〉, there is a Φ ∈ (

∏
C∈(K′\K′′)(E(K′′) \ E(C))), K′′ being then the

relative sub-variety of K′ relatively axiomatized by img Φ}.

In this way, taking (2.7) and Theorem 4.4 into account, the lattice of varieties
of [bounded/] MS lattices[/algebras] is isomorphic to the one of lower cones of the
poset 〈MS(0|1)[,01/−],�(0|1)[,01/−]〉, given by Figure 2. Though the task of finding
the latter, being reduced to that of finding anti-chains of the poset involved, is to
be solved rather mechanically, the one of finding relative axiomatizations of lower
cones of the poset under consideration is not so easily solvable.
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Let ϕi,j,k,l,m
n , ((¬jxi �n ¬kxi) �n ¬mxl), where i, j, k, l,m ∈ 3 and n ∈ 2, while

I
i,j,k,l,m
o,ı,,k,` , (ϕi,j,k,l,m

0 / ϕo,ı,,k,`
1 ), where o, ı, ,k, ` ∈ 3, whereas:

M(N|A) , I
0,2,2,0(+(0|1)),2
0,0,0(+(1|0)),0(+(0|1)),0(+1),

S(A) , I
0,0,1,0(+2),1(+1)
1,0,0,1(+1),0(+1),

K
(W)
{M} , I

0,0,1,0{+2},1{+1}
1,1,0(+2),1{+1},1 ,

T , I
0,2,2,0,2
0,1,1,0,1,

Q(A) , I
0,1,2,0(+1),2
0,0,0,0(+1),0(+1),

P , I
0,2,2,0,2
1,2,1,0,0.

Then, members of [B/](N|A){D}ML[/A] , ([B/]MSL[/A]∩Mod(M(N|A))) are called
[bounded/] (nearly |almost) {De} Morgan lattices[/algebras]. Likewise, ones of

[B/](A)SL[/A] , ([B/]MSL[/A] ∩Mod(S(A)))

are called [bounded/] (almost) Stone lattices[/algebras], those of [B/](A)BL[/A] ,
([B/](A)SL[/A] ∩ [B/](A)ML[/A]) being called [bounded/] (almost) Boolean lattices
[/algebras] ; cf. [9, Definition 3.5] for an equivalent definition in the non-optional
case. Next, members of

[B/](P|{A}Q)SMSL[/A] , ([B/]MSL[/A] ∩Mod((P|Q)|{A}))

are said to be |{almost} pseudo-|quasi-strong, those of

[B/]{A}SMSL[/A] , ([B/]PSMSL[/A] ∩ [B/]{A}QSMSL[/A])

being said to be {almost} strong. Likewise, members of [B]TNIMSL , ([B]MSL ∩
Mod(T)) are said to be totally negatively idempotent, for their elements are all neg-
atively idempotent, in view of their being models of {T,MN0}[x0/¬x0]. Further,
members of [B/]〈bAcQeS〉(W)K{M}SL[/A] , ([B/]〈dP|〈bAcQeS〉(W)K{M}SL[/A] ∩
Mod(K(W)

{M})) are called [bounded/] 〈d |balmostc pseudo-|quasi-estrong〉 (weakly)
Kleene-{Morgan-}Stone lattices[/algebras]. Likewise, those of

[B/]{N|A}(W)KL[/A] , ([B/]{N|A}DML[/A] ∩Mod(K(W)))

are called [bounded/] {nearly |almost} (weakly) Kleene lattices[/algebras]. Finally,
the trivial variety of one-element Σ−

+[,01]-algebras is naturally denoted by [B]OMSL.

Let MS[01]〈(A)〉 , ({[NB0, ]M,MN,MA, S, SA,Q,QA,P,K,KM,K
W,KW

M ,T}〈∩
E(A)〉) 〈where A ∈ MS[01]〉.

Lemma 4.6. For any A ∈ MS[01], MS[01](A) is given by Table 1.

Table 1. Identities of MS[01] true in members of MS[01].

MS6[,01] ∅[∪{NB0}]
MS5[,01] {[NB0, ]P,KW,KW

M}
MS4:0[,01] {[NB0, ]MN,P,K,KM,K

W,KW
M}

MS4:1[,01] {[NB0, ]Q,QA,K,KM,K
W,KW

M}
DM4[,01] MS[01] \ {K,KW, S, SA,T}
MS2[,01] MS[01] \ {[NB0, ]M,Q, S}
K3:0|1[,01] MS[01] \ {S, SA,T}
S3[,01] MS[01] \ {M,MN,MA,T}
B2[,01] MS[01] \ {T}
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Proof. Clearly, for any line of Table 1, the identities of the second column of it are
true in the algebra of the first one. Conversely,

MS(5|6)[,01] 6|= K
|W
{M}[xi/〈1−min(1, i), 1|max(1− i, i− 1),

min(1, i)〉]i∈(2{+1}),

S3[,01] 6|= M(N|A)[xi/〈i, 1, 1〉]i∈(1(+(0|1))),

DM4[,01] 6|= K(W)[xi/(〈i, i, 1− i〉]i∈2,

MS4:1[,01] 6|= P[x0/〈0, 1, 1〉, x1/〈0, 0, 1〉],
MS4:0[,01] 6|= QA[xi/〈i, 1, i〉]i∈2,

K3:0[,01] 6|= S(A)[xi/〈max(1− i, i− 1),max(1− i, i− 1),
max(0, i− 1)〉]i∈(2(+1)),

(B|MS)2[,01] 6|= (T|(M‖Q‖S[‖NB0]))[xi/〈1|(i‖i‖(1− i)[‖1]),

1, 1|0〉]i∈(1|(1‖1‖2[‖0])).

Then, the fact that varieties are abstract and hereditary ends the proof. �

Theorem 4.7. Sub-varieties of [B/]MS(L[/A]) form the non-chain distributive lat-
tice with 29[(+11)/(−9)] elements, embedable into (D4[+(3/0)] × D4[+(3/0)−1]) ×
D4, whose Hasse diagram with [either thick or] thin lines is depicted at Figure
3, any (non-)solid circle-node of it being marked by a (non-)semi-simple variety
V ⊆ [B/]MS(L[/A]), numbered from 1[+(0/20)] to 29[+11] according to Table 2 with
K , ({MS2[,01]}[/∅]), i ∈ 2, MSV,i[,01/−] , max�i[,01/−](MSi[,01/−] ∩ V), given by
the third column, and k , (9 · (1[/0])) [as well as ` , (29 · (0/1))], in which
case SI(V) = IS>1MSV,i[,01/−], and so V is the (pre-‖quasi-)variety generated by
MSV,i[,01/−], [B]SMSL being that generated by {SI}([B]DML ∪ [B]SL).

Proof. Clearly, the sets appearing in the third column of Table 2 are exactly all
anti-chains of the poset 〈MSi[,01/−],�i[,01/−]〉. Then, (2.7), Theorem 4.4, Corollary
4.5 and Lemma 4.6 complete the argument. �

Table 2. Maximal subdirectly-irreducibles of varieties of [bound-
ed/] Morgan-Stone lattices[/algebras].

1[+`] [B]MS(L[/A]) {MS6[,01]}[∪K]

2[+`] [B]PS〈WK〉MS(L[/A]) {MS5[,01], DM4[,01]}[∪K]

3d+1e[+`] [B]WKdMeS(L[/A]) {MS5[,01], MS4:1[,01]d, DM4[,01]e}[∪K]

5[+`] [B]PSWKS(L[/A]) {MS5[,01]}[∪K]

6d+1e[+`] [B]KdMeS(L[/A]) {MS4:j[,01] | j ∈ 2}d∪{DM4[,01]}e[∪K]

8d+1e[+`] [B]PSKdMeS(L[/A]) {MS4:0[,01], S3[,01]d, DM4[,01]e}[∪K]

10[+`] [B]NDM(L[/A]) {MS4:0[,01], DM4[,01]}[∪K]

11[+`] [B]N{W}K(L[/A]) {MS4:0[,01]}[∪K]

12 [B]TNIMSL {MS2[,01]}
22b−kc [B/]bAcQS〈{W}K〉MS(L[/A]) {MS4:1[,01], DM4[,01]}b∪Kc
23b−kc [B/]bAcQS{W}KS(L[/A]) {MS4:1[,01]}b∪Kc
24b−kc [B/]bAcSMS(L[/A]) {S3[,01], DM4[,01]}b∪Kc
25b−kc [B/]bAcDM(L[/A]) {DM4[,01]}b∪Kc
26b−kc [B/]bAcS{W}KS(L[/A]) {S3[,01], K3:i[,01]}b∪Kc
27b−kc [B/]bAc{W}K(L[/A]) {K3:i[,01]}b∪Kc
28b−kc [B/]bAcS(L[/A]) {S3[,01]}b∪Kc
29b−kc [B/]bAcB(L[/A]) {B2[,01]}b∪Kc

21 [B]OMSL ∅
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Figure 3. The lattice of varieties of [bounded/] Morgan-Stone lattices[/algebras].

Thus, it is rather SMSL/A than MSL/A that is the right “abstraction” of De
Morgan and Stone lattices/algebras. Likewise, QSMSL, being the greatest variety
of MS lattices disjoint with (BMSL \MSA)�Σ−

+, is to be viewed as “the unbounded
equational approximation of MS algebras”.

5. On quasi-varieties of Morgan-Stone lattices

5.1. Non-idempotencity versus two-valued Boolean homomorphisms. Gi-
ven any K ⊆ [B]MSL, NIK stands for the relative sub-quasi-variety of K, relatively
axiomatized by the Σ−

+-quasi-identity:

(5.1) (¬x0 ≈ x0) → (x0 ≈ x1),

members of which are said to be non-idempotent. Conversely, those of IK , (K\NIK)
are said to be idempotent. Clearly, for any Q ⊆ (℘ω(EqΣ−

+[,01]
)× EqΣ−

+[,01]
),

(5.2) (NIK ∪ (K ∩Mod(Q))) = (K ∩Mod({({¬x0 ≈ x0} ∪ Γ) → Φ |
(Γ → Φ) ∈ (Q[xi/xi+1]i∈ω}).

Likewise,

(5.3) NI[B]TNIMSL = [B]OMSL.
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Given any more K′ ⊆ [B]MSL, set (K⊗ K′) , {A×B | 〈A,B〉 ∈ (K× K′)}.

Lemma 5.1. Any (non-one-element) A ∈ [B]MSL is non-idempotent if(f) hom(A,
B2[,01]) 6= ∅. In particular, NIMS[01] = SS3 = {S3[,01],B2[,01]}, while any variety
V ⊆ [B]MSL with NIV * [B]OMSL contains B2[,01].

Proof. The “if” part is by the equality =B2[,01] = ∅. (Conversely, assume A is
non-idempotent, in which case B , ((A�Σ−

+)�(img }A)) ∈ DML is neither idem-
potent nor one-element, and so, by (2.6) and [9, Proposition 4.2], there is an
h ∈ hom(B,B2). Then, [by Lemma 4.2 and absense of proper subalgebras of B2]
(}A ◦ h) ∈ hom(A,B2[,01]).) Finally, the fact that }S3[,01] ∈ hom(S3[,01],B2[,01])
completes the argument. �

Lemma 5.2. B2 is embedable into any A ∈ (MSL \ TNIMSL) ⊇ ((NIMSL ∪
[Q]SMSL) \ OMSL).

Proof. Take any a ∈ (A \=A
¬) 6= ∅, in which case {〈i, i, i,¬Aa �A

i ¬A¬Aa〉 | i ∈ 2} ∈
homI(B2,A), and so Theorem 4.7 and (5.3) complete the argument. �

Though this not expandable to the bounded case, because B2,01 is not embedable
into A = (MS2,01 × B2,01) ∈ (BMSL \ (BTNIMSL ∪MSA)), since, by Lemma 4.6,
(MS|B)2,01 6∈ (MSA|BTNIMSL), we clearly have:

(5.4) {〈i, i, i, [Ai 〉 | i ∈ 2} ∈ homI(B2,01,A),

for all A ∈ (MSA \ BOMSL). This, by (2.1), (2.5), (2.6), (5.2), (5.3), Lemmas 5.1,
5.2 and Theorem 4.7, immediately yields, subsuming [9, Propositions 4.2, 4.5 and
Corollary 4.4]:

Theorem 5.3. Let P be the pre-variety generated by a K ⊆ [B]MSL. Suppose
((K[∩MSA]) \ ([B]TNIMSL[∩BOMSL])) 6= ∅. Then, NIP is the pre-variety generated
by (IK ⊗ {B2[,01]}) ∪ NIK, in which case, for any varieties U ⊆ V ⊆ [B]MSL such
that V ⊆ | * [B]TNIMSL and i ∈ 2, NIV ∪ U is the pre-/quasi-variety generated by
(∅|((MSV,i[,01] \ SS3[,01]) ⊗ {B2[,01]}) ∪ (MSV,i[,01] ∩ SS3[,01])) ∪MSU,i[,01], and so
NI[B]{bQcS}(M‖K){S}Ld∪({〈S〉}K{〈S〉}L‖∅)e is the one generated by
{((DM)‖K)‖{b0c}4‖(3:i)[,01] ×B2[,01]{, bMcS3b+1:1c[,01]b×B2[,01]c}d,K

‖0
3:ie}.

5.2. Quasi-varieties of quasi-strong Morgan-Stone lattices.

Lemma 5.4. Let K be a (finite) class of (finite) MS lattices, P[′] , ISP(K[∪DML]),
S ⊆ | ⊇ (P′|(P ∪ ISPS)) and {K′ ⊆}S′ , (S ∩ DML){= ISPK′}. Then, S =
ISP((S′{〈∩K〉})∪ (P‖K)), S′ being finitely-generated (and so being S = (S′ ]Q P)).

Proof. Consider any A ∈ S and any 〈a, b〉 ∈ (A2\∆A), in which case (A�(img }A)) ∈
S′ ⊇ ISPS′, and so }A ∈ hom(A,S′), while, by (2.6), there are some B ∈ (K∪DML)
and h ∈ hom(A,B) such that h(a) 6= h(b), and so B ∈ K, whenever }A(a) = }A(b),
for, otherwise, h(a/b) = h(}A(a/b)), (2.6) and [9] completing the argument. �

5.2.1. Morgan-regularity versus regularity. The sub-quasi-variety of any quasi-va-
riety Q ⊆ [B]MSL, relatively axiomatized by (M)R , ({¬x0 / x0, (x0 ∧ ¬x1) /

(¬x0∨x1)} → I
1(+1),1(+1),1(+1),1,1
1(+1),0,0,1,0 ), is denoted by (M)RQ, its members being said to

to be (Morgan-)regular ; cf. [9, Definition 4.6] for the non-optional case. As a matter
of fact, the conception of (Morgan-)regularity has a sense only within (Morgan-
)non-idempotent Kleene(-Morgan) framework, members of NI[B]MSL ∪ DML being
said to be Morgan-non-idempotent. More precisely, we have both:

Lemma 5.5. (M)R[B]MSL ⊆ [B]K(M)SL.
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Proof. Consider any A ∈ (M)R[B]MSL and a, b(, c) ∈ A. Let (d|e) , ((a|b) ∨A

¬A(a|b)) and f , (d∧A e), in which case, by DM1, we have ¬A(d|e) = (¬A(a|b)∧A

¬A¬A(a|b)) 6A ¬A(a|b) 6A (d|e), and so, since, by DM0, ¬Af = (¬Ad ∨A ¬Ae),
get (d ∧A ¬Af) 6A (d ∧A (¬Ad ∨A e)) = (¬Ad ∨A f). Then, by MN0,0, we eventu-
ally get ((a ∧A ¬Aa)(∧A¬A¬Ac)) 6A (¬Ad(∧A¬A¬Ac)) 6A (¬Af(∧A¬A¬Ac)) 6A

(f(∨Ac)) 6A (e(∨Ac)), as required. �

Corollary 5.6. Let K , (∅(∪[B]DML)). Then, ([B]SL∪K) ⊆ Q , (M)R[B]MSL ⊆
(NI[B]MSL ∪ K). In particular, [B]SMSL ⊆ MR[B]MSL.

Proof. Consider any A ∈ Q and any a ∈ =A, in which case, for all b ∈ A,
each Φ ∈ π0((M)R) is true in A under [x0/a, x1/b], and so, for each i ∈ 2,
Ψi , (π1((M)R[x1/¬ix1]) is true in A. Then, in the non-optional case, by MN0,0,
=A = A, so, by DM0, any d ∈ A is equal to a, for (d ∧A a) = ¬A(d ∧A a) =
(d ∨A a), A being thus non-idempotent. (Likewise, by (2.7), Theorem 4.7 and
Lemma 5.5, unless A is non-idempotent, it is in IPSD(K′ ∩ Mod(Ψ0)), where
K′ , S>1({MS4:j[,01] | j ∈ 2} ∪ {DM4[,01][,MS2,01]}). On the other hand,
by Lemma 4.6, (K′ \ [B]DML) = ({MS4:j[,01] | j ∈ 2} ∪ {S3[,01],MS2[,01]}),
while SMS4:1{−1} 3 {M}S3{−1} 6|= Ψ0[xk+1/〈0, k{∪1}, k{∩0}〉]k∈2, whereas Ψ0 ∈
EqΣ−

+
, in which case (K′∩Mod(Ψ0)) ⊆ [B]DML, and so A ∈ (NI[B]MSL∪ [B]DML).)

Finally, Theorem 4.7 and the regularity of S3[,01] complete the argument. �

Let µ , (¬x0 ∨ ¬¬x0), π , ((x0 ∨ ¬x1) ∧ x1) and, for any τ ∈ {µ{, x0}} (and
i ∈ ω) ι{τ,}1(+i+1) , ((x0([x0/π]))[x0/(τ [x0/x0(+i+1)])(, x1/ι{τ,}i+1)]), in which
case, by DMj and MNj,0 with j ∈ 2, the Σ−

+-quasi-identities:

(∅|{¬x0 ≈ ¬¬x0}) → (¬µ / | ≈ ¬¬µ),(5.5)
{¬xk / | ≈ ¬¬xk,¬x1−k / ¬¬x1−k} → (¬π / | ≈ ¬¬π),(5.6)

where k ∈ 2, are true in [B]MSL, and so are:

(5.7) ((∅|{¬((x0{[x0/τ ]})[x0/xl]) ≈ ¬¬((x0{[x0/τ ]})[x0/xl])})
{∪{¬(τ [x0/xn]) / ¬¬(τ [x0/xn]) | n ∈ (m \ (∅|{l}))}}) →

(¬ι{τ,}m / | ≈ ¬¬ι{τ,}m),

where l ∈ m ∈ (ω \ 1), to be shown by induction on m.
Clearly, K5:1[,01] , ((MS4:1[,01]×B2[,01])�((MS4:1×B2)\({〈ā, b̄〉〉 | ā ∈MS4:1, b̄ ∈

B2, (1− b2) = a2})) is regular.

Theorem 5.7. Let Q , (M)R[B]QS{W}K〈M〉SL. Then, dNIeQ is the pre-/quasi-
variety generated by {K5:1[,01](, (DM4[,01]�(K3:(0|1)〈∪DM4〉))d×B2[,01]e)}.

Proof. Consider any non-one-element finitely-generated A ∈ (Q(\[B]DML)) and
any h ∈ (hom(A,MS4:1[,01])(\hom(A, [B]DML))), in which case there are some
n ∈ (ω \ 1) and ā ∈ An such that A is generated by B , (img ā), and so, by
MN0‖1,0 and (5.7), b , ¬A¬AιA

n (ā) >A ¬Ab, while, by Lemma 5.1 and Corollary 5.6,
G , hom(A,B2[,01]) 6= ∅ is finite, for m , |G| 6 |2B | ∈ ω, and so there is a bijection
ḡ from m ∈ (ω\1) onto G (whereas (img h) * DM4, and so there is some c ∈ A such
that h(c) = 〈0, 1, 1〉). Prove that A , (

∏
i∈m((h ◦ π2)

−1[1]∩(gi ◦ π2)
−1[2\1])) = ∅,

by contradiction. For suppose there is some d̄ ∈ A, in which case e , (∨A
md̄) ∈

(h ◦ π2)
−1[1], and so π0(h(¬Ae(∧A¬A¬Ac))) = 1 
 0 = π0(h(e(∨Ac))). Then,

(¬Ae(∧A¬A¬Ac)) 
A (e(∨Ac)), for (h ◦ π0) ∈ hom(A�Σ+,D2). Now, consider
any C ∈ ({MS6[,01]}[∪M01]), any f ∈ hom(A,C) and the following complementary
cases:
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• (img f) ⊆ S3,
in which case f ′ , (f ◦ }S3) ∈ hom(A,B2[,01]), while C = MS6[,01] [since
(S3 ∩MS2) = ∅ 6= (img f), as A 6= ∅], and so f ′ = gj , for some j ∈ m.
Then, 1 = π2(f ′(dj)) 6 π2(f ′(e)) 6 1, in which case π1‖2(f(e)) = 1, and so
f(b ∧A ¬Ae) = 〈0, 0, 0〉 6C f(¬Ab ∨A e).

• (img f) * S3,
in which case, for some k ∈ m, f(ak) ∈ (C \ S3) = =C

¬, and so, by MN0‖1,0

and (5.7), f(b) ∈ =C. Then, f(b∧A¬Ae) 6C f(b) = f(¬Ab) 6C f(¬Ab∨Ae).
Thus, anyway, f(b ∧A ¬Ae) 6C f(¬Ab ∨A e), in which case, by (2.6) and Theorem
4.4, (b ∧A ¬Ae) 6A (¬Ab ∨A e), and so A 6|= (M)R[x0/b, x1/e(, x2/c)]. This con-
tradiction to the (Morgan-)regularity of A shows that there is some l ∈ m such
that π2[gl[(h ◦ π2)

−1[1]]] ⊆ 1, in which case, by (2.1) and (2.5), h′ , (h � gl) ∈
hom(A,K5:1) with (kerh′) ⊆ (kerh), and so (2.6), Theorems 4.4, 5.3, Lemmas
5.1, 5.5, Corollary 5.6, the locality of quasi-varieties and the quasi-equationality of
finitely-generated pre-varieties complete the argument. �

5.2.2. Embedability lemmas and the lattices of quasi-varieties.
5.2.2.1. Quasi-varieties of strong Morgan-Stone lattices. First, by Lemma 4.6, The-
orem 4.7 and the distributivity of lattice reducts of MS lattices, we, clearly, have:

Lemma 5.8. Let A ∈ 〈QS〉MSL, a ∈ A, c , (a∨A¬Aa) and d , (¬A¬Aa∨A¬Aa).
(Suppose (c〈∧Aa〉) 6= (d〈∧A¬A¬Aa〉).) Then, (c 6=)b , ¬Ac = ¬Ad 6A c 6A

d = ¬Ab (in which case {〈0, 0, 0, b〉, 〈0, 1, 1, c〉, 〈1, 1, 1, d〉} ∈ homI(S3,A)), so S3 ∈
K , ([A]{Q}SMSL \ [A]DML) is embedable into any B ∈ (MSL \ NDML) ⊇ K.

This, by Theorem 4.7, (5.2), Lemma 5.4, Corollary 5.6 and [9], yields:

Theorem 5.9. Let P ⊆ SMSL be a pre-variety and (K ⊆)P′ , (P ∩ DML). Suppose
P * DML (and P′ is the pre-variety generated by K). Then, P is the pre-variety
generated by P′ ∪ SL (in which case it is the one generated by K ∪ {S3}), P′ being
a finitely-generated quasi-variety, and so being P = (P′ ]Q SL). In particular,
f : LQ(SL,SMSL) → LQ(BL,DML),Q 7→ (Q ∩ DML) and g : LQ(BL,DML) →
LQ(SL,SMSL) : Q′ 7→ (Q′ ]Q SL) are inverse to one another isomorphisms between
LQ(SL,SMSL) and LQ(BL,DML), in which case for any Q ∈ LQ(SL,SMSL) =
(LQ(SMSL)\LQ(DML)) and Q′ ∈ LQ(DML), (Q∩Q′) = (f(Q)∩Q′) and (Q]QQ′) =
(Q]Ug(Q′)), so {〈S ∩ DML, 1− χ

LQ(DML)

LQ(SMSL)(S)〉 | S ∈ LQ(SMSL)} is an embedding of
LQ(SMSL) into LQ(DML)×D2, the former having (|LQ(DML)|+|LQ(BL,DML)|) =
(8 + 7) = 15 elements and Hasse diagram depicted at Figure 4 with thick lines, the
latter being embedable into the distributive lattice (D5 ×D3)×D2.

Let K4 be the Kleene lattice with Σ+-reduct D4 and ¬K4 , {〈i, 3− i〉 | i ∈ 4}.
Then, Corollary 5.6, Theorems 4.7, 5.9 and [9, Proposition 4.7] immediately yield:

Corollary 5.10. R[S]K[S]L is the pre-/quasi-variety generated by {K4[,S3]}.

5.2.2.2. Quasi-varieties of Morgan-regular quasi-strong Morgan-Stone lattices.

Lemma 5.11. K5:1 is embedable into any A ∈ ((NIQSMSL∪MRQSMSL)\[P]SMSL).

Proof. Take any a, e ∈ A such that A 6|= P[x0/a, x1/e], in which case ¬A¬Aa �A

(a∨A f) with f , (¬Ae∨A ¬A¬Ae)) >A ¬Af , in view of DM1, and so ¬A¬Aa 6= a.
On the other hand, by Theorems 4.7, 5.3, 5.7 and (5.2), NIQSMSL ∪MRQSMSL is
the pre-variety generated by K , {MS4:1 × B2,DM4}, in which case, by (2.6),
there are some C ∈ K and h ∈ hom(A,C) such that h(¬A¬Aa) 
C h(a∨A f), and so
C = (MS4:1×B2), while π1(h(f)) = 〈1, 1, 1〉, whereas π0(h((a|(e‖f))) = 〈0, 1|0, 1〉.
Let b, c, d ∈ A be as in Lemma 5.8 and g , {〈2 × {3 × 1}, b ∧A ¬Af〉, 〈0, 0, 1, 3 ×
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s
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s
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sBL

s
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Figure 4. The lattice of pre-/quasi-varieties of quasi-strong
Morgan-Stone lattices.

1,¬Af〉, 〈0, 0, 1, 3×{1}, f〉, 〈0, 1, 1, 3×{1}, c∨Af〉, 〈2×{3×{1}}, d∨Af〉} : K5:1 → A,
in which case, for all ı̄, ̄ ∈ K5:1, (̄ı 6(D3

2)
2
̄) ⇒ (g(̄ı) 6A g(̄)) and h(g(̄ı)) = ı̄, and

so, as K5:1�Σ+ is a chain lattice, by DM0|1 and MN0|1,0, g ∈ homI(K5:1,A). �

This, by Theorems 4.7, 5.7, 5.9, Lemma 5.4, Corollary 5.6, (5.2) and [9], yields:

Corollary 5.12. Let P ⊆ MRQSMSL be a pre-variety and (K ⊆)P′ , (P ∩ DML).
Suppose P * SMSL (and P′ is the pre-variety generated by K). Then, P is the
pre-variety generated by P′ ∪ RQSKSL (in which case it is the one generated by
K ∪ {K5:1}), P′ being a finitely-generated quasi-variety, and so being P = (P′ ]Q

RQSKSL). In particular, f [′] : LQ(RQSKSL,MRQSMSL) → LQ(RSKSL[∩RKL],
SMSL[∩DML]),Q 7→ ((Q ∩ SMSL)[∩DML]) and g[′] : LQ(RSKSL[∩RKL],SMSL[∩
DML]) → LQ(RQSKSL,MRQSMSL) : Q′ 7→ ((Q′{]QSL}) ]Q RQSKSL) are inverse
to one another isomorphisms between LQ(RQSKSL,MRQSMSL) and LQ(RSKSL[∩
RKL],SMSL[∩DML]), in which case for any Q ∈ LQ(RQSKSL,MRQSMSL) = (LQ

(MRQSMSL) \ LQ(SMSL)) and Q′ ∈ LQ(SMSL), (Q ∩ Q′) = (f(Q) ∩ Q′) and
(Q ]Q Q′) = (Q ]U g(Q′)), so {〈(S ∩ SMSL)[∩DML], (1 − χ

LQ(SMSL)

LQ(MRQSMSL)(S))[+(1 −
χ

LQ(DML)

LQ(MRQSMSL)(S))]〉 | S ∈ LQ(MRQSMSL)} is an embedding of LQ(MRQSMSL) into
LQ(SMSL[∩DML])×D2[+1], the former having (|LQ(SMSL)|+ |LQ(RKL,DML)|) =
(15 + 6) = 21 elements and Hasse diagram depicted at Figure 4 with large solid
circles-nodes [the latter being embedable into the distributive lattice (D5×D3)×D3].
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5.2.2.3. Quasi-varieties of Morgan-non-idempotent quasi-strong MS lattices.

Lemma 5.13. (MS4:1 ×B2) 6∈ MRMSL is embedable into any A ∈ ((NIQSMSL ∪
DML) \MRMSL).

Proof. Take any a, b, c ∈ A such that ¬Aa 6A a, (a ∧A ¬Ab) 6A (¬Aa ∨A b) but
(¬Ab ∧A ¬A¬Ac) 
A (b ∨A c), in which case, by MNi,0 with i ∈ 2 and DM1, we
have ((d|e)‖f) , (¬A¬A(a|b)‖(c ∨A ¬Ac ∨A d)) = ‖ >A (¬A¬A(d|e)‖¬A(f/d))(>
‖ 6)A((¬Ad|e)‖f), while, by DMj with j ∈ 2, we get (d ∧A ¬Ae) 6A (¬Ad ∨A e),
whereas, by (2.6), (5.2) and Theorem 5.3, there are some C ∈ {MS4:1×B2,DM4}
and some h ∈ hom(A,C) such that (¬Ch(b)∧C ¬C¬Ch(c)) 
C (h(b)∨C h(c)), and so
C = (MS4:1×B2) and h((a‖d)|(b‖e)|f) = 〈〈0, 0|0|1, 1|0|1〉, 3× {1}〉, for ¬Ch(a) 6C

h(a) and (h(a) ∧C ¬Ch(b)) 6C (¬Ch(a) ∨C h(b)). In that case, using MNk,0 and
DMk with k ∈ 2, it is routine checking that the mapping g : (MS4:1 × B2) → A,
given by:

g(〈〈0, 0, 0|1〉, 3× {1}〉) , ((d ∧A (e ∨A (e|¬Ad))) ∨A ¬Af),

g(〈〈1|0, 1|0, 1〉, 3× 1〉) , ¬Ag(〈〈0, 0, 0|1〉, 3× {1}〉),
g(〈3× {l}, 3× {l}〉) , (g(〈3× 1, 3× {1}〉) �A

l g(〈3× {1}, 3× 1〉)),
g(〈〈0, 1, 1〉, 3× {0|1}〉) , (((¬1|0)A(d ∧A e) ∨A ¬A(d ∧A e)) ∧A f),

where l ∈ 2, is a homomorphism from MS4:1 × B2 to A such that (g ◦ h) =
∆MS4:1×B2 , and so it is injective. Finally, (MS4:1×B2) 6|= MR[xn/〈〈0,max(0, n−
1),max(1− n, n− 1)〉, 3× {1}〉]n∈3. �

This, by Theorems 4.7, 5.3, Corollaries 5.12, 5.6, Lemma 5.4, (5.2) and [9],
immediately yields:

Corollary 5.14. Let P ⊆ (NIQSMSL ∪ DML) be a pre-variety and (K ⊆)P′ , (P∩
DML). Suppose P * MRQSMSL (and P′ is the pre-variety generated by K). Then, P
is the pre-variety generated by P′ ∪ NIQSKSL (in which case it is the one generated
by K ∪ {MS4:1 × B2}), P′ being a finitely-generated quasi-variety, and so being
P = (P′ ]Q NIQSKSL). In particular, f [′] : LQ(NIQSKSL,NIQSMSL ∪ DML) →
LQ(NIMRQSKSL[∩NIKL],MRQSMSL[∩DML]),Q 7→ ((Q ∩MRQSMSL)[∩DML]) and
g[′] : LQ(NIMRQSKSL[∩NIKL],MRQSMSL[∩DML]) → LQ(NIQSKSL,NIQSMSL ∪
DML) : Q′ 7→ ((Q′{]Q(RQSKSL ]Q SL)}) ]Q NIQSKSL) are inverse to one another
isomorphisms between LQ(NIQSKSL,NIQSMSL ∪ DML) and LQ(NIMRQSKSL[∩
NIKL],MRQSMSL[∩DML]), in which case for any Q ∈ LQ(NIQSKSL,NIQSMSL ∪
DML) = (LQ(NIQSMSL ∪ DML)\LQ(MRQSMSL)) and Q′ ∈ LQ(MRQSMSL), (Q∩
Q′) = (f(Q)∩Q′) and (Q]QQ′) = (Q]Ug(Q′)), so {〈(S ∩MRQSMSL)[∩DML], (1−
χ

LQ(MRQSMSL)

LQ(NIQSMSL∪DML)(S))[+(1− χ
LQ(DML)

LQ(NIQSMSL∪DML)(S)) + (1− χ
LQ(SMSL)

LQ(NIQSMSL∪DML)(S))]〉 |
S ∈ LQ(NIQSMSL ∪ DML)} is an embedding of LQ(NIQSMSL ∪ DML) into LQ

(MRQSMSL[∩DML]) × D2[+2], the former having (|LQ(MRSMSL)| + |LQ(NIKL,
DML)|) = (21+5) = 26 elements and Hasse diagram depicted at Figure 4 with large
circles-nodes [the latter being embedable into the distributive lattice (D5×D3)×D4].

5.2.2.4. The lattice of quasi-varieties of quasi-strong Morgan-Stone lattices.

Lemma 5.15. MS4:1 ∈ K , (IQSMSL \ [N]DML) is embedable into any A ∈ K.

Proof. By Lemma 5.8, there are some a, e ∈ A such that ¬Ae = e and c 6= d 6= b,
where b, c, d ∈ A are as in Lemma 5.8, in which case b 6A (f |g) , ((e ∧A (c|d)) ∨A

b) = (g ∧A (c|d)), and so, by DMi with i ∈ 2, we have b 6= f 6A g = ¬A(f |g) 6∈
{c, d}, for, otherwise, we would get b = g = d. Then, by Q, we get g = (¬Af ∧A

¬A¬Af) 6A f 6A c, in which case {〈0, 0, 0, b〉, 〈0, 0, 1, g〉, 〈0, 1, 1, c〉, 〈1, 1, 1, d〉} ∈
homI(MS4:1,A), so Lemmas 4.6, 5.1 and Theorem 4.7 complete the argument. �
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This, by Theorems 4.7, 5.3, Corollaries 5.14, 5.6, Lemma 5.4, (5.2) and [9],
eventually yields:

Theorem 5.16. Let P ⊆ QSMSL be a pre-variety and (K ⊆)P′ , (P∩DML). Sup-
pose P * (NIQSMSL ∪ DML) (and P′ is the pre-variety generated by K). Then, P
is the pre-variety generated by P′ ∪ QSKSL (in which case it is the one generated by
K∪ {MS4:1}), P′ being a finitely-generated quasi-variety, and so being P = (P′ ]Q

QSKSL). In particular, f [′] : LQ(QSKSL,QSMSL) → LQ((NIQSKSL ∪ KL)[∩KL],
(NIQSMSL ∪ DML)[∩DML]),Q 7→ ((Q ∩ (NIQSMSL ∪ DML))[∩DML]) and g[′] :
LQ((NIQSKSL ∪ KL)[∩KL], (NIQSMSL ∪ DML)[∩DML]) → LQ(QSKSL,QSMSL) :
Q′ 7→ ((Q′{]Q((QSKSL]Q RQSKSL)]Q SL)})]Q NIQSKSL) are inverse to one an-
other isomorphisms between LQ(QSKSL,QSMSL) and LQ((NIQSKSL ∪ KL)[∩KL],
(NIQSMSL ∪ DML)[∩DML]), in which case, for any Q ∈ LQ(QSKSL,QSMSL) =
(LQ(QSMSL) \LQ(NIQSMSL ∪ DML)) and Q′ ∈ LQ(NIQSMSL ∪ DML), (Q∩Q′) =
(f(Q)∩Q′) and (Q]QQ′) = (Q]Ug(Q′)), so {〈(S ∩ (NIQSMSL ∪ DML))[∩DML], (1−
χ

LQ(NIQSMSL∪DML)

LQ(QSMSL) (S))[+(1−χLQ(MRQSMSL)

LQ(QSMSL) (S))+(1−χLQ(SMSL)

LQ(QSMSL)(S))+(1−χLQ(DML)

LQ(QSMSL)

(S))]〉 | S ∈ LQ(QSMSL)} is an embedding of LQ(QSMSL) into LQ((NIQSMSL ∪
DML)[∩DML])×D2[+3], the former having (|LQ(NIQSMSL ∪ DML)|+|LQ(KL,DML)
|) = (26+3) = 29 elements and Hasse diagram depicted at Figure 4 [the latter being
embedable into the distributive lattice (D5 ×D3)×D5].

Finally, Theorems 4.7, 5.3, 5.7 and Corollary 5.10 provide finite generating sets
of all sub-quasi-varieties of QSMSL.
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