
EasyChair Preprint

№ 597

From Classical to Generalized Zero-Shot Learning:

a Simple Adaptation Process

Yannick Le Cacheux, Hervé Le Borgne and Michel Crucianu

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 29, 2018

From Classical to Generalized Zero-Shot
Learning: a Simple Adaptation Process

Yannick Le Cacheux1, Hervé Le Borgne1, and Michel Crucianu2

1 CEA LIST
{yannick.lecacheux,herve.le-borgne}@cea.fr

2 CEDRIC – CNAM
michel.crucianu@cnam.fr

Abstract. Zero-shot learning (ZSL) is concerned with the recognition of
previously unseen classes. It relies on additional semantic knowledge for
which a mapping can be learned with training examples of seen classes.
While classical ZSL considers the recognition performance on unseen
classes only, generalized zero-shot learning (GZSL) aims at maximizing
performance on both seen and unseen classes. In this paper, we propose a
new process for training and evaluation in the GZSL setting; this process
addresses the gap in performance between samples from unseen and seen
classes by penalizing the latter, and enables to select hyper-parameters
well-suited to the GZSL task. It can be applied to any existing ZSL
approach and leads to a significant performance boost: the experimental
evaluation shows that GZSL performance, averaged over eight state-of-
the-art methods, is improved from 28.5 to 42.2 on CUB and from 28.2
to 57.1 on AwA2.

Keywords: Zero-Shot Learning · Multimodal Classification

1 Introduction

Zero-shot learning (ZSL) [14, 16, 17] aims to recognize classes for which no train-
ing example is available. This is often achieved by relying on additional semantic
knowledge, consisting for example in vectors of attributes. During training, a re-
lation between visual features and semantic attributes is learned from training
examples belonging to the seen classes, for which both modalities (visual and
semantic) are available. This model is then applied in the testing phase on ex-
amples from unseen classes, for which no visual instance was available during
training. Predictions on these classes can thus be made on the basis of the in-
ferred relation between visual and semantic features.

In classical ZSL, the test set only contains examples from the novel, un-
seen classes, and these classes alone can be predicted. Although this setting has
enabled significant progress in methods linking visual content to semantic in-
formation in the last few years [27], it is hardly realistic. It seems much more
reasonable to assume that objects which are to be classified can belong to either
a seen class or an unseen class, since in real-life use-cases one could legitimately

2 Y. Le Cacheux et al.

want to recognize both former and novel classes. This setting is usually referred
to as generalized zero-shot learning (GZSL).

However, recent work shows that a direct use of a ZSL model in a GZSL
setting usually leads to unsatisfactory results. Indeed, in addition to the number
of candidate classes being higher due to the presence of the seen classes among
them, most samples from unseen classes are incorrectly classified as belonging to
one of the seen classes [6]. Different methods have been proposed to measure this
discrepancy, such as the area under the curve representing all the possible trade-
offs between the accuracies on samples from seen classes versus samples from
unseen classes [6], or their harmonic mean [27] to penalize models with strong
imbalance between the two. While these proposals only measure the extent of
the problem, we aim to explicitly address this issue in addition to quantifying
its impact.

The main contribution of this paper is a new process for training and evalu-
ating models in a GZSL setting. In accordance with recent studies, we show that
the application of a ZSL model “out of the box” gives results that are far from
optimal in the GZSL context. We demonstrate how two simple techniques – the
calibration of similarities and the use of appropriately balanced regularization
– can dramatically improve the performance of most models. The final score
for the GZSL task can thus be increased up to a factor of two, with no change
regarding the underlying hypotheses of the GZSL task or the data available at
any given time, which means that our process is applicable to any ZSL model.
We also provide new insights on the reasons why these two techniques are rele-
vant and on the fundamental differences between samples from seen and unseen
classes.

We extensively evaluate these techniques on several recent ZSL methods.
For sanity-check, we independently reproduce results obtained in the literature
before applying our process. We find that some models show a variability in per-
formance with respect to their random initialization, so measures averaged over
several runs should be preferred. We eventually find that, with fair comparison
under unbiased conditions as enabled by our process, a regularized linear model
can give results close to or even better than the state-of-the-art.

2 Related work

An early rigorous definition and evaluation of GZSL was put forward in [6]. The
authors argue that this setting is more realistic than ZSL and highlight the gap
between accuracies on seen and unseen classes when labels from all classes can
be predicted (denoted respectively AU→C and AS→C , and formally defined in
Sec. 3.1). They also introduce the idea of calibration to address this issue and
suggest a new metric for GZSL, Accuracy Under Seen-Unseen Curve (AUSUC),
which measures the trade-off between the two accuracies but does not directly
provide the expected performance in real use-cases.

An extensive evaluation of recent ZSL methods with a common protocol is
provided in [27], both in ZSL and GZSL settings. The authors use a different

From Classical to Generalized Zero-Shot Learning 3

Fig. 1. Illustration of how the regularization parameter λ affects the accuracies on
samples from seen and unseen classes AU→Cu and AS→Cs (see Sec. 3.1) as measured
on CUB [23] (left) and AwA2 [25] (right). Optimal regularization is not the same in
a ZSL setting, where performance is measured by AU→Cu (red dotted line), and in a
GZSL setting, where it is measured by the harmonic mean of AU→C and AS→C (black
dotted line).

metric for GZSL, the harmonic mean between AU→C and AS→C , which does
not directly quantify the trade-off between accuracies but better estimates the
practical performance of a given model. However, they do not explicitly address
the gap between similarities evaluated on seen and unseen classes [6], which has
a significant impact on the final performance as we show in Sec. 4.3.

Further GZSL results based on the harmonic mean metric are provided in [4,
13, 26]. All three methods rely on generators of artificial training examples from
unseen classes. However, these methods assume that a semantic description of all
unseen classes is available during training. This assumption is not necessarily met
in practice and makes the inclusion of additional unseen classes more difficult.

Transductive ZSL methods [9, 11, 19] also assume that additional informa-
tion, taking the form of unlabeled samples from unseen classes, is available dur-
ing training. This can naturally lead to improved performance. In this article,
we make none of these assumptions and consider that no information regarding
unseen classes is available at training time.

3 Proposed approach

3.1 Problem statement

We denote by Cs the set of classes seen during training and by Cu the set of
unseen classes. We define C = Cs ∪ Cu, with Cs ∩ Cu = ∅. During the train-
ing phase, we consider N tr training samples consisting of D-dimensional vi-
sual features Xtr = (xtr

1 , . . . ,x
tr
Ntr)> ∈ RNtr×D and corresponding labels ytr =

(ytr1 , . . . , y
tr
Ntr)> ∈ CsN

tr

, as well as K-dimensional semantic class prototypes
noted by Str = (str1 , . . . , s

tr
|Cs|)

> ∈ R|Cs|×K . We seek to learn a function f :

4 Y. Le Cacheux et al.

RD × RK → R assigning a similarity score to each pair composed of a visual
feature vector and a semantic representation so as to minimize the following
regularized loss:

1

N tr

Ntr∑
n=1

|Cs|∑
c=1

L(f(xtr
n ; strc), ytrn) + λΩ[f] (1)

where L is the loss function and Ω the regularization term weighted by λ.
During the testing phase, we consider N te unlabeled visual samples Xte =
(xte

1 , . . . ,x
te
Nte)> ∈ RNte×D and class prototypes for candidate classes. In a ZSL

setting, the candidate classes Cte are the unseen classes such that Ste ∈ R|Cu|×K .
In a GZSL setting, classes to be predicted can be in either Cu or Cs, such that
Cte = C and the class prototypes are Ste = (ste1 , . . . , s

te
|Cs|, s

te
|Cs|+1, . . . , s

te
|Cs|+|Cu|)

>

∈ R|C|×K . In both cases, given a function f̂ learned in the training phase, we
want to estimate a prediction ŷ for a visual testing sample x such that:

ŷ = argmax
c∈Cte

f̂(x; stec) (2)

In classical ZSL, performance is measured by the accuracy of unseen classes
among unseen classes, noted AU→Cu , while in GZSL we are interested in the
accuracy of unseen classes among all classes and the accuracy of seen classes
among all classes, noted respectively AU→C and AS→C as in [6]. AS→Cs is simi-
larly defined.

3.2 Calibration and GZSL split

As evidenced by [6], when a ZSL model is applied in a GZSL setting, AS→C
is usually significantly higher than AU→C . This is because most samples from
unseen classes are incorrectly classified into one of the seen classes. To address
this, a calibration factor γ is added in [6] to penalize seen classes. Eq. (2) then
becomes:

ŷ = argmax
c∈Cte

(
f̂(x; stec)− γ1[c ∈ Cs]

)
(3)

where 1[·] is an indicator function.
The Accuracy Under Seen-Unseen Curve (AUSUC) metric also proposed

in [6] is defined as the area under the curve representing AS→C versus AU→C
when γ varies from −∞ to +∞, which shows the trade-off between the two.

Instead of computing a metric involving all possible trade-offs between AU→C
and AS→C , we look for a single specific value of γ, corresponding to the best
compromise between the two as measured by the harmonic mean of AU→C
and AS→C [27]. We propose to determine the optimal value of γ with a cross-
validation specific to GZSL. Usually in machine learning a dataset is divided at
random into three parts: a training, a validation and a testing set. In classical
ZSL, this splitting process is done with respect to the classes as opposed to the
samples: a set of classes is used for training, a disjoint set for validation and a
final mutually disjoint set for testing. In GZSL, a fraction (usually 20%) of the

From Classical to Generalized Zero-Shot Learning 5

samples from the validation and training sets are kept for testing time to be used
as test samples from seen classes. We refer to this set as the seen test set. Note
that here seen only indicates that these samples belong to seen classes, not that
they have been used during training. To be able to cross-validate parameters for
GZSL, we further keep an additional 20% of the remaining training set to be
used as samples from seen classes when cross-validating parameters; we refer to
this set as the seen validation set. Fig. 2 illustrates this partitioning.

Fig. 2. Illustration of the different splits. Each column is a class and each cell is a
sample. In this example there are 20 different classes with 10 samples per class. Five
classes are used for testing, five other for validation and the remaining ten for training.
Among the samples from the validation and training classes, 20% are kept for testing
(seen test set) and 20% more samples from training classes are kept for validation (seen
validation set).

To determine the optimal value of γ we first train a model on the GZSL
training set. We then use the (GZSL) validation set and the seen validation set
to compute the GZSL metric (the harmonic mean) and keep the value γ∗ that
maximizes this metric. The ZSL model is subsequently re-trained on the training,
validation and seen validation sets, then class similarities are computed for the
test set. The value γ∗ is subtracted from the similarities of seen classes and the
resulting similarities are used to compute the final GZSL score.

3.3 Regularization for GZSL

The usual approach to optimize the regularized loss (Eq. (1)) in GZSL consists
in using the value of λ determined on the ZSL task. We argue here that this is
unlikely to be optimal and provide some insight to justify our position. Then, we
propose a simple method to determine a better value of λ to improve performance
in GZSL.

Figure 1 shows AU→Cu and AS→Cs as a function of λ for a regularized linear
model (ridge regression [3, 24]), measured on the first validation splits of the
proposed splits of [27] on CUB [23] and AwA2 [25].

In each case, there is a value of λ that maximizes the ZSL score AU→Cu ,
indicated by the red dotted vertical line, that we note λ∗ZSL. The overall tendency
for AS→Cs is to decrease as λ increases. This is not a concern for the ZSL task,
since it only considers samples from unseen classes. However, for the GZSL

6 Y. Le Cacheux et al.

(a) (b)

Fig. 3. (a) MSE of predicted attributes (averaged over attributes and samples) as a
function of the regularization parameter λ; (b) Illustration of the bias-variance decom-
position.

task, we want the best trade-off between AU→C and AS→C . Note that AU→C ≤
AU→Cu and AS→C ≤ AS→Cs , with equality only if we are able to perfectly
distinguish samples from seen and unseen classes. It follows that λ∗GZSL, the
value of λ that maximizes the GZSL score, is not necessarily the same as λ∗ZSL:
a small decrease from λ∗ZSL can significantly increase AS→Cs while only slightly
penalizing AU→Cu . This has a similar impact on the maximum values obtainable
by AS→C and AU→C , and can ultimately improve the GZSL score. We quantify
in Sec. 4.3 the gains attributed to the use of λ∗GZSL.

The reason why λ affects AU→Cu and AS→Cs in this way can be explained
with the bias-variance decomposition. For regression, we generally assume that
we are given a dataset D = (X, t), with samples (xn, tn) independently drawn
from a joint distribution p(x, t), such that p(t|x) = N (t|h(x), σ2), where h is

the true dependence. For a prediction function ĥ estimated from D we can then
write the expected loss on a new pair (x, t) as:

ED,x,t[(t− ĥ(x))2] = σ2 + ED,x[(h(x)− ĥ(x))2] + varD,x[ĥ(x)] (4)

where the first term is the intrinsic noise of the dataset, the second is the
(squared) bias of the predictor and the third is the variance in the estimation of
the predictor. It can be shown [3, 24] that for ridge regression the bias increases
and the variance decreases with the regularization parameter λ, as illustrated in
Fig. 3(b).

In the case of ZSL, x corresponds to visual samples and t to attribute(s) to be
estimated from x. The variance comes from both the differences between sam-
ples from the same class (intra-class variance) and from the differences between
classes (inter-class variance). Intra-class variance is usually significantly smaller
than inter-class variance in ZSL; therefore, most of the variance in Eq. (4) can be
attributed to the choice of training classes Cs. For samples from unseen classes,

From Classical to Generalized Zero-Shot Learning 7

the bias-variance decomposition applies and there exists a λ corresponding to
the best trade-off between the two. This is evidenced in Fig. 3(a), where the
red curve shows the Mean Squared Error (MSE) in the predictions of attributes
from unseen classes as a function of λ, for a regularized linear model on the first
validation split of AwA2 [25].

For a sample from a seen class, the variance attributable to the choice of the
training classes is much smaller since, by definition, the seen class is present in
the training dataset. This allows to better estimate attributes from seen classes
and most of the expected error therefore comes from the intrinsic noise and the
bias. Thus, the expected error mostly increases with λ, as evidenced by the blue
curve in Fig. 3(a). If we plausibly assume that the accuracy of predictions for
samples from a given class depends on how well we estimate their attributes,
this explains both why predictions are better for samples from seen classes than
from unseen classes and why their behavior with respect to λ is different.

We then suggest the following procedure to select the optimal value of λ:
we repeat the protocol described in Sec. 3.2 for selecting γ∗ and we take the
value of λ which gives the best result for the harmonic mean between AU→C and
AS→C on the validation set after having subtracted γ∗ from the similarities of
seen classes. The rest of the process is identical: we retrain the ZSL model on
the training, validation and seen validation sets with the hyperparameter λ∗GZSL

that we just determined, we compute similarities for the test set, subtract γ∗

from the similarities of seen classes and compute the resulting GZSL score.

4 Experimental evaluation

4.1 Methods

We independently reimplemented six methods frequently cited in the literature
to evaluate them with our protocol: ALE [1], DeViSE [8], SJE [2], Sync [5],
ESZSL [20] and SAE [12].

In addition, we also evaluate two simple linear models. LinearV → S applies
a linear mapping W ∈ RK×D from the visual space V to the semantic space S
to minimize standard MSE. With Ttr = (strytr

1
, ..., strytr

N
)> ∈ RNtr×K the matrix

whose rows correspond to the class prototypes associated to each training sample
based on its label, the loss function can be formulated as:

1

N tr
‖XtrW> −Ttr‖2F + λ‖W‖2F (5)

LinearS → V is based on [21] where the authors argue that using the seman-
tic space as the embedding space reduces the variance of the projected points
and thus aggravates the hubness problem [18]. They suggest instead to project
semantic class prototypes onto the visual space and to compute similarities in
this space. Keeping W ∈ RK×D as our linear mapping, we formulate the loss
function as:

1

N tr
‖Xtr −TtrW‖2F + λ‖W‖2F (6)

8 Y. Le Cacheux et al.

We can easily obtain closed-form solutions for the two models from the
objective functions (5) and (6). For the LinearV → S model we have W =

Ttr>Xtr(Xtr>Xtr + λN trID)−1 (7) and for the LinearS → V model W =

(Ttr>Ttr + λN trIK)−1Ttr>Xtr (8).

4.2 Experimental setting

Datasets We perform our experiments on two standard datasets for ZSL:
Caltech-UCSD-Birds 200-2011 (CUB) [23] and Animals with Attributes23 (AwA2)
[25]. CUB is a fine-grained dataset composed of 11788 pictures of birds from 200
species (black footed albatross, . . . , common yellowthroat). It comes with 312-
dimensional binary attributes for each picture, that are averaged by class to
obtain semantic class prototypes. AwA2 is a coarse-grained dataset compris-
ing 37322 pictures of 50 animal species (antelope, . . . , zebra). For each class,
85-dimensional attributes are provided.

Splits The best performing ZSL methods usually rely on visual features ob-
tained with deep neural networks pre-trained on ImageNet [7], such as GoogLeNet
[22] or ResNet [10]. As evidenced by [27], this induces a huge bias for ZSL
datasets whose classes are not disjoint from categories of ImageNet, as is the
case with AwA2, since test classes cannot be considered truly unseen. We there-
fore adopt the approach of [27] and use their terms Standard Split (S.S.) for the
split widely used in the literature and Proposed Split (P.S.) for the split they
introduce. The training and validation splits are further divided for GZSL as
described in Sec. 3.2.

Settings Attributes are normalized such that each class prototype has unit `2
norm. We use the 101-layered ResNet [10] pre-trained on ImageNet [7] as visual
features extractor, keeping the D = 2048 activations of the last pooling units.

Metrics For ZSL, we evaluate the accuracy of samples from unseen classes
among unseen classes AU→Cu . There are two possible ways to define accuracy:

most of the literature uses per sample accuracy, defined as 100· 1
Nte

∑Nte

n=1 1[ŷ(xte
n) =

yten], while in [27] it is argued that per class accuracy, defined as
100 · 1

|Cte|
∑

c∈Cte
1

|{n|yn=c}|
∑

n
yn=c

1[ŷ(xte
n) = yten], better takes class imbalance

into account.
We report per class accuracy for fair comparison with the extensive results

of [27]. Nonetheless, to enable comparison with the rest of the literature, we
also provide per sample accuracy results in Table 3. For GZSL we compute the
harmonic mean between AU→C and AS→C , defined as 2·AU→C·AS→C

AU→C+AS→C
.

Accuracy is again assumed to be per class unless otherwise stated.

3 AwA2 was recently proposed in [25] as a replacement for the Animals with Attributes
(AwA) dataset [15] whose images are not publicly available.

From Classical to Generalized Zero-Shot Learning 9

Table 1. ZSL score: per-class accuracy AU→Cu , as reported in [27] and independently
reproduced. S.S.: Standard Split, P.S.: Proposed Split [27]. Averaged over 5 runs.

Method
CUB [23] AwA2 [25]

Reported in [27] Reproduced Reported in [27] Reproduced
S.S. P.S. S.S. P.S. S.S. P.S. S.S. P.S.

LinearV → S n/a n/a 41.0 ± 0.0 41.8 ± 0.0 n/a n/a 68.2 ± 0.0 49.7 ± 0.0
LinearS → V n/a n/a 56.0 ± 0.0 53.5 ± 0.0 n/a n/a 85.5 ± 0.0 68.9 ± 0.0
ALE [1] 53.2 54.9 54.8 ± 0.8 54.0 ± 1.2 80.3 62.5 80.3 ± 2.2 62.9 ± 2.3
DeViSE [8] 53.2 52.0 52.5 ± 0.9 52.6 ± 1.3 68.6 59.7 76.6 ± 1.6 62.1 ± 1.6
SJE [2] 55.3 53.9 53.8 ± 2.3 49.2 ± 1.4 69.5 61.9 80.4 ± 2.9 62.2 ± 1.2
ESZSL [20] 55.1 53.9 34.9 ± 0.0 34.9 ± 0.0 75.6 58.6 70.5 ± 0.0 50.8 ± 0.0
Sync [5] 54.1 55.6 56.4 ± 0.9 54.8 ± 0.6 71.2 46.6 65.6 ± 0.8 58.1 ± 0.8
SAE [12] 33.4 33.3 56.2 ± 0.0 53.3 ± 0.0 80.7 54.1 81.1 ± 0.0 62.8 ± 0.0

4.3 Results

Table 2. GZSL score (harmonic mean of AU→C and AS→C , per class accuracy) with
and without calibration and GZSL regularization. On Proposed Split [27], averaged
over 5 runs.

Method
CUB [23] AwA2 [25]

Reported in [27] Ours Reported in [27] Ours

with calibration - - 3 3 - - 3 3

with λ∗GZSL - - - 3 - - - 3

LinearV → S n/a 18.2 34.3 35.5 n/a 8.3 47.3 48.1
LinearS → V n/a 32.5 41.9 43.5 n/a 44.3 62.7 64.0
ALE [1] 34.4 35.6 45.1 46.2 23.9 26.9 55.8 55.8
DeViSE [8] 32.8 35.1 43.6 43.4 27.8 17.4 54.6 54.6
SJE [2] 33.6 29.7 41.2 44.2 14.4 28.9 58.2 59.0
ESZSL [20] 21.0 17.9 33.7 33.9 11.0 39.9 53.6 53.7
Sync [5] 19.8 33.2 46.2 47.6 18.0 30.6 61.0 61.0
SAE [12] 13.6 25.7 43.1 43.1 2.2 29.5 60.2 60.2

Average 25.9 28.5 41.1 42.2 16.2 28.2 56.7 57.1

We first evaluate the performances of the different methods in a classical ZSL
setting. Table 1 shows the average per class accuracy measured on testing sets
of the Standard Splits (S.S.) and the Proposed Splits (P.S.) [27] of CUB [23]
and AwA2 [25]. We report the average score and the standard deviation over 5
runs with different random initializations. We also report the results from [27].
We see that some methods such as SJE [2] have high variability with respect to
the initialization; for such methods, it is good practice to report average results
since a single test run may not be representative of the true performance of the
model. On the other hand, methods with closed-form or deterministic solutions

10 Y. Le Cacheux et al.

Table 3. ZSL and GZSL scores with 10-crop features, evaluated with per class (p.c.)
and per sample (p.s.) accuracies. With calibration and λ∗GZSL. On P.S. [27], averaged
over 5 runs.

Method
CUB [23] AwA2 [25]

ZSL GZSL ZSL GZSL
Acc. p.c. Acc. p.s. H. p.c. H. p.s. Acc. p.c. Acc. p.s. H. p.c. H. p.s.

LinearV → S 45.6 45.6 39.8 39.8 51.0 43.6 49.0 45.6
LinearS → V 57.1 57.2 47.7 48.0 70.4 69.3 65.1 68.7
ALE [1] 57.4 57.5 49.2 49.3 63.0 61.1 56.9 55.5
DeViSE [8] 52.9 52.9 42.4 42.5 63.1 62.2 55.0 50.6
SJE [2] 51.9 52.1 46.7 46.9 63.8 61.6 59.4 57.6
ESZSL [20] 39.0 38.8 38.7 38.6 52.6 51.9 54.4 57.9
Sync [5] 57.5 57.6 48.9 49.1 59.3 56.1 62.6 63.2
SAE [12] 56.1 56.2 46.3 46.6 63.5 65.4 62.3 63.6

such as the LinearV → S , LinearS → V , ESZSL [20] or SAE [12] are not dependent
on the initialization and thus have a standard deviation of 0.

Most of the reproduced scores are consistent with [27], with two notable ex-
ceptions: first, a significant increase in performance is observed with SAE [12]
and can be explained by the fact that similarities are computed in the visual
space, with results close to those of the LinearS → V model (results are close
to those of LinearV → S when similarities are computed in the semantic space).
Second, the score for ESZSL [20] is significantly lower than reported in [27]. We
found that the use of non-normalized attributes enables to reach performances
comparable with [27], but we could not reproduce the reported results for ES-
ZSL [20] with normalized attributes. For the sake of consistency, we chose to
report results obtained with normalized attributes.

Table 2 shows results for GZSL. We measure the harmonic mean between per
class accuracies AU→C and AS→C on the testing set of the Proposed Split [27].
We evaluate three settings: a ZSL model applied directly in a GZSL setting,
i.e. with no calibration and a regularization specific to ZSL (λ∗ZSL) as opposed
to GZSL (λ∗GZSL); a ZSL model with calibration and ZSL regularization λ∗ZSL;
and a ZSL model with calibration and regularization λ∗GZSL specific to the GZSL
problem. We report the average score over 5 runs; standard deviations are avail-
able in the supplementary material. We also report the results from [27], which
correspond to the setting with no calibration and no λ∗GZSL. We can see that
the calibration process significantly improves GZSL performance: in our exper-
iments, the average score for all models improves from 28.5 with no calibration
to 41.1 with calibration on CUB, and from 28.2 to 56.7 on AwA2. It is worth
noting that the lowest score with calibration is close to or higher than the high-
est score without. The use of a regularization parameter specific to the GZSL
task can lead to an additional improvement in performance. In some cases, the
optimal λ is the same for the ZSL task and the GZSL task on the validation set,
leading to no additional improvement over the score with calibration. However,

From Classical to Generalized Zero-Shot Learning 11

every time they are different, λ∗GZSL is smaller than λ∗ZSL, as expected from the
results in Sec. 3.3. The only exception is with DeViSE [8] on CUB: a λ∗GZSL

higher than λ∗ZSL was selected during cross-validation, probably due to random
noise, resulting in a slightly lower final GZSL score.

Table 3 shows results with improved visual features; each original 256× 256
image is cropped into ten 224×224 images: one in each corner and one in the cen-
ter for both the original image and its horizontal symmetry. The ResNet features
of the resulting images are averaged to obtain a 2048-dimensional vector. We re-
port results for ZSL (AC→Cu , abbreviated Acc.) and GZSL (using the harmonic
mean metric, abbreviated H.) on the testing set of the Proposed Split [27]. In
order to facilitate fair comparison with the rest of the literature, both per class
(p.c.) and per sample (p.s.) metrics are reported.Results with 10-cropped visual
features are almost always better than the results with standard visual features
in Table 2. The per sample metrics are on average not very different from the
per class metrics. This is not surprising since classes in both CUB and AwA2
are fairly balanced.

5 Conclusion

We proposed a simple process for applying ZSL methods in a GZSL setting.
This process is based on the empirical observation that ZSL models perform
differently on samples from seen and unseen classes. We provided insights about
why this should be expected and suggested steps to overcome these problems.
Through extensive experiments, we showed that this process enables significant
improvements in performance for many existing ZSL methods. Finally, we pro-
vided results under optimal conditions for these methods with different metrics
to support fair comparison with the rest of the state-of-the-art.

References

1. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for image
classification. IEEE Transactions on Pattern Analysis and Machine Intelligence
38(7), 1425–1438 (2016)

2. Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embed-
dings for fine-grained image classification. In: Proc. CVPR 2015. pp. 2927–2936.
IEEE (2015)

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
4. Bucher, M., Herbin, S., Jurie, F.: Generating visual representations for zero-shot

classification. In: ICCV Workshops: TASK-CV. IEEE (2017)
5. Changpinyo, S., Chao, W.L., Gong, B., Sha, F.: Synthesized classifiers for zero-shot

learning. In: Proc. CVPR 2016. pp. 5327–5336. IEEE (2016)
6. Chao, W.L., Changpinyo, S., Gong, B., Sha, F.: An empirical study and analysis of

generalized zero-shot learning for object recognition in the wild. In: Proc. ECCV
2016. pp. 52–68. Springer (2016)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: Proc. CVPR 2009. pp. 248–255. IEEE (2009)

12 Y. Le Cacheux et al.

8. Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Mikolov, T., et al.:
Devise: A deep visual-semantic embedding model. In: Proc. NIPS 2013. pp. 2121–
2129 (2013)

9. Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Transductive multi-view zero-shot
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 37(11),
2332–2345 (2015)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proc. CVPR 2016. pp. 770–778. IEEE (2016)

11. Kodirov, E., Xiang, T., Fu, Z., Gong, S.: Unsupervised domain adaptation for
zero-shot learning. In: Proc. CVPR 2015. pp. 2452–2460. IEEE (2015)

12. Kodirov, E., Xiang, T., Gong, S.: Semantic autoencoder for zero-shot learning. In:
Proc. CVPR 2017. pp. 4447–4456. IEEE (2017)

13. Kumar Verma, V., Arora, G., Mishra, A., Rai, P.: Generalized zero-shot learning
via synthesized examples. In: Proc. CVPR 2010. pp. 4281–4289. IEEE (2018)

14. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object
classes by between-class attribute transfer. In: Proc. CVPR 2009. pp. 951–958.
IEEE (2009)

15. Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-
shot visual object categorization. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 36(3), 453–465 (2014)

16. Larochelle, H., Erhan, D., Bengio, Y.: Zero-data learning of new tasks. In: AAAI.
vol. 1, p. 3 (2008)

17. Palatucci, M., Pomerleau, D., Hinton, G.E., Mitchell, T.M.: Zero-shot learning
with semantic output codes. In: Proc. NIPS 2009. pp. 1410–1418 (2009)

18. Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: Popular near-
est neighbors in high-dimensional data. Journal of Machine Learning Research
11(Sep), 2487–2531 (2010)

19. Rohrbach, M., Ebert, S., Schiele, B.: Transfer learning in a transductive setting.
In: Proc. NIPS 2013. pp. 46–54 (2013)

20. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot
learning. In: Proc. ICML 2015. pp. 2152–2161 (2015)

21. Shigeto, Y., Suzuki, I., Hara, K., Shimbo, M., Matsumoto, Y.: Ridge regres-
sion, hubness, and zero-shot learning. In: Proc. ECML PKDD 2015. pp. 135–151.
Springer (2015)

22. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proc. CVPR
2015. pp. 1–9. IEEE (2015)

23. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
Birds-200-2011 dataset (2011)

24. van Wieringen, W.N.: Lecture notes on ridge regression. arXiv preprint
arXiv:1509.09169 (2015)

25. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning – a comprehen-
sive evaluation of the good, the bad and the ugly. arXiv preprint arXiv:1707.00600
(2017)

26. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-
shot learning. In: Proc. CVPR 2018. IEEE (2018)

27. Xian, Y., Schiele, B., Akata, Z.: Zero-shot learning – the good, the bad and the
ugly. In: Proc. CVPR 2017. pp. 3077–3086. IEEE (2017)

