
EasyChair Preprint
№ 3061

P versus NP

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 24, 2020

P versus NP
Frank Vega
CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France
vega.frank@gmail.com

Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? It was essentially
mentioned in 1955 from a letter written by John Nash to the United States National Security Agency.
However, a precise statement of the P versus NP problem was introduced independently by Stephen
Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed.
It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to
carry a US 1,000,000 prize for the first correct solution. Another major complexity classes are FP
and Sharp-P. Whether FP = Sharp-P is another fundamental question that it is as important as
it is unresolved. We know if FP = Sharp-P, then P = NP. We demonstrate there is a problem in
Sharp-P-complete that can be solved in polynomial time. In this way, we prove the complexity class
P is equal to NP.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases complexity classes, completeness, polynomial time, reduction, logarithmic
space, one-way

1 Introduction

The P versus NP problem is a major unsolved problem in computer science [7]. This is
considered by many to be the most important open problem in the field [7]. The precise
statement of the P = NP problem was introduced in 1971 by Stephen Cook in a seminal
paper [7]. In 2012, a poll of 151 researchers showed that 126 (83%) believed the answer to
be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may be independent
of the currently accepted axioms and therefore impossible to prove or disprove, 8 (5%) said
either do not know or do not care or don’t want the answer to be yes nor the problem to be
resolved [13].

The P = NP question is also singular in the number of approaches that researchers
have brought to bear upon it over the years [10]. From the initial question in logic, the
focus moved to complexity theory where early work used diagonalization and relativization
techniques [10]. It was showed that these methods were perhaps inadequate to resolve P
versus NP by demonstrating relativized worlds in which P = NP and others in which
P 6= NP [4]. This shifted the focus to methods using circuit complexity and for a while this
approach was deemed the one most likely to resolve the question [10]. Once again, a negative
result showed that a class of techniques known as “Natural Proofs” that subsumed the above
could not separate the classes NP and P , provided one-way functions exist [23]. There
has been speculation that resolving the P = NP question might be outside the domain of
mathematical techniques [10]. More precisely, the question might be independent of standard
axioms of set theory [10]. Some results have showed that some relativized versions of the
P = NP question are independent of reasonable formalizations of set theory [14].

In 1936, Turing developed his theoretical computational model [24]. The deterministic
and nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [24]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [24]. A

https://orcid.org/0000-0001-8210-4126
mailto:vega.frank@gmail.com

2 P versus NP

nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [24]. Another relevant
advance in the last century has been the definition of a complexity class. A language over an
alphabet is any set of strings made up of symbols from that alphabet [8]. A complexity class
is a set of problems, which are represented as a language, grouped by measures such as the
running time, memory, etc [8]. NP is the complexity class which contains those languages
that can be decided in polynomial time by nondeterministic Turing machines.

A major complexity class is Sharp-P (denoted as #P) [25]. This can be defined by the
class of function problems of the form “compute f(x)”, where f is the number of accepting
paths of a nondeterministic Turing machines, where this machine always accepts in polynomial
time [25]. In previous years there has been great interest in the verification or checking of
computations [18]. Interactive proofs introduced by Goldwasser, Micali and Rackoff and Babi
can be viewed as a model of the verification process [18]. Dwork and Stockmeyer and Condon
have studied interactive proofs where the verifier is a space bounded computation instead of
the original model where the verifier is a time bounded computation [18]. In addition, Blum
and Kannan have studied another model where the goal is to check a computation based
solely on the final answer [18]. More about probabilistic logarithmic space verifiers and the
complexity class NP has been investigated on a technique of Lipton [18]. We show some
results about the logarithmic space verifiers applied to the class #P . In this way, we provide
a proof to solve the outstanding P versus NP problem.

2 Materials & Methods

2.1 Polynomial time verifiers
Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings
over Σ [3]. A Turing machine M has an associated input alphabet Σ [3]. For each string w
in Σ∗ there is a computation associated with M on input w [3]. We say that M accepts w if
this computation terminates in the accepting state, that is M(w) = “yes” [3]. Note that M
fails to accept w either if this computation ends in the rejecting state, that is M(w) = “no”,
or if the computation fails to terminate, or the computation ends in the halting state with
some output, that is M(w) = y (when M outputs the string y on the input w) [3].

The language accepted by a Turing machineM , denoted L(M), has an associated alphabet
Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

Moreover, L(M) is decided by M , when w /∈ L(M) if and only if M(w) = “no” [8]. We
denote by tM (w) the number of steps in the computation of M on input w [3]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [3]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [3]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [8]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w : M(w, c) = “yes” for some string c}.

F. Vega 3

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [3]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L1. This information
is called certificate. NP is also the complexity class of languages defined by polynomial time
verifiers [22]. A decision problem in NP can be restated in this way: There is a string c
with M(w, c) = “yes” if and only if w ∈ L1, where L1 is defined by the polynomial time
verifier M [22]. The function problem associated with L1, denoted FL1, is the following
computational problem: Given w, find a string c such that M(w, c) = “yes” if such string
exists; if no such string exists, then reject, that is, return “no” [22]. The complexity class
of all function problems associated with languages in NP is called FNP [22]. FP is the
complexity class that contains those problems in FNP which can be solved in polynomial
time [22].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape
[24]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗
is polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

The NP–completeness is principally defined under polynomial time reductions [12]. To attack
the P versus NP question the concept of NP–completeness has been very useful [12]. A
principal NP–complete problem is SAT [12]. An instance of SAT is a Boolean formula φ
which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ. On the
one hand, a satisfying truth assignment is a truth assignment that causes φ to be evaluated
as true. On the other hand, a truth assignment that causes φ to be evaluated as false is
a unsatisfying truth assignment. A Boolean formula with a satisfying truth assignment is
satisfiable. The problem SAT asks whether a given Boolean formula is satisfiable [12].

An important complexity is Sharp-P (denoted as #P) [25]. We can also define the class
#P using polynomial time verifiers. Let {0, 1}∗ be the infinite set of binary strings, a function
f : {0, 1}∗ → N is in #P if there exists a polynomial time verifier M such that for every
x ∈ {0, 1}∗,

f(x) = |{y : M(x, y) = “yes”}|

where | · · · | denotes the cardinality set function [3]. #P–complete is another complexity
class. A problem is #P–complete if and only if it is in #P , and every problem in #P can be
reduced to it by a polynomial time counting reduction [22].

2.2 Logarithmic space verifiers
A logarithmic space Turing machine has a read-only input tape, a write-only output tape,
and read/write work tapes [24]. The work tapes may contain at most O(logn) symbols [24].
In computational complexity theory, L is the complexity class containing those decision

4 P versus NP

problems that can be decided by a deterministic logarithmic space Turing machine [22].
NL is the complexity class containing the decision problems that can be decided by a
nondeterministic logarithmic space Turing machine [22].

A logarithmic space transducer is a Turing machine with a read-only input tape, a
write-only output tape, and read/write work tapes [24]. The work tapes must contain at most
O(logn) symbols [24]. A logarithmic space transducer M computes a function f : Σ∗ → Σ∗,
where f(w) is the string remaining on the output tape after M halts when it is started with
w on its input tape [24]. We call f a logarithmic space computable function [24]. We say that
a language L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written
L1 ≤l L2, if there exists a logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such
that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic space reduction is used in the definition of the complete languages for the
classes L and NL [22]. We define a CNF Boolean formula using the following terms: A
literal in a Boolean formula is an occurrence of a variable or its negation [8]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [8]. A Boolean formula is in 2-conjunctive normal
form or 2CNF , if each clause has exactly two distinct literals [8]. There is a problem called
2SAT , where we asked whether a given Boolean formula φ in 2CNF is satisfiable. 2SAT is
complete for NL [22].

We can give a certificate-based definition for NL [3]. The certificate-based definition of
NL assumes that a logarithmic space Turing machine has another separated read-only tape
[3]. On each step of the machine, the machine’s head on that tape can either stay in place or
move to the right [3]. In particular, it cannot reread any bit to the left of where the head
currently is [3]. For that reason this kind of special tape is called “read-once” [3].

I Definition 1. A language L1 is in NL if there exists a deterministic logarithmic space
Turing machine M with an additional special read-once input tape polynomial p : N → N
such that for every x ∈ {0, 1}∗:

x ∈ L1 ⇔ ∃ u ∈ {0, 1}p([x]) such that M(x, u) = “yes”

where by M(x, u) we denote the computation of M where x is placed on its input tape, and
the certificate u is placed on its special read-once tape, and M uses at most O(log[x]) space
on its read/write tapes for every input x, where [. . .] is the bit-length function [3]. M is called
a logarithmic space verifier [3].

An interesting complexity class is Sharp-L (denoted as #L). #L has the same relation to
L as #P does to P [2]. We can define the class #L using logarithmic space verifiers as well.

I Definition 2. Let {0, 1}∗ be the infinite set of binary strings, a function f : {0, 1}∗ → N
is in #L if there exists a logarithmic space verifier M such that for every x ∈ {0, 1}∗,

f(x) = |{u : M(x, u) = “yes”}|

where | · · · | denotes the cardinality set function [2].

The two-way Turing machines may move their head on the input tape into two-way (left
and right directions) while the one-way Turing machines are not allowed to move the head
on the input tape to the left [21]. Hartmanis and Mahaney have investigated the classes
1L and 1NL of languages recognizable by deterministic one-way logarithmic space Turing
machine and nondeterministic one-way logarithmic space Turing machine, respectively [15].

F. Vega 5

I Lemma 3. NL is closed under nondeterministic logarithmic space reductions to every
language in 1NL.

Proof. Suppose, we have two languages L1 and L2 ∈ 1NL, such that there is a nondetermin-
istic logarithmic space Turing machine M which makes a reduction from x ∈ L1 into
M(x) ∈ L2. Besides, we assume there is a nondeterministic one-way logarithmic space
Turing machine M ′ which decides L2. Hence, we only need to prove that M ′(M(x)) is a
nondeterministic logarithmic space Turing machine. The solution to this problem is simple:
We do not explicitly store the output result of M in the work tapes of M ′. Instead, whenever
M ′ needs to move the head on the input tape (this tape will be the output tape of M), then
we continue the computation of M on input x long enough for it to produce the new output
symbol; this is the symbol that will be the next scanned symbol on the input tape of M ′. If
M ′ only needs to read currently from the work tapes, then we just pause the computation of
M on the input x and continue the computation of M ′ until this needs to move to the right
on the input tape. We can always continue the simulation, because M ′ never moves the head
on the input tape to the left. We only accept when the machine M enters in the halting
state and M ′ enters in the accepting state otherwise we reject. It is clear that this simulation
indeed computes M ′(M(x)) in a nondeterministic logarithmic space. In this way, we obtain
x ∈ L1 if and only if M ′(M(x)) = “yes” which is a clear evidence that L1 is in NL. J

We can give an equivalent definition for NL, but this time the output is a string which
belongs to a language in 1NL.

I Definition 4. A language L1 is in NL if there exists another nonempty language L2 ∈ 1NL
and a deterministic logarithmic space Turing machine M with an additional special read-once
input tape polynomial p : N→ N such that for every x ∈ {0, 1}∗:

x ∈ L1 ⇔ ∃ u ∈ {0, 1}p([x]) such that M(x, u) = y, where y ∈ L2

and by M(x, u) = y we denote the computation of M where x is placed on its input tape, and
y is the remaining string in the output tape on M after the halting state, and the certificate u
is placed on its special read-once tape, and M uses at most O(log[x]) space on its read/write
tapes for every input x, where [. . .] is the bit-length function [3]. We call M a one-way
logarithmic space verifier. This definition is still valid, because of Lemma 3.

According to the previous definition, we can redefine #L as follows:

I Definition 5. Let {0, 1}∗ be the infinite set of binary strings, a function f : {0, 1}∗ → N is
in #L if there exists another nonempty language L2 ∈ 1NL, and a nondeterministic one-way
logarithmic space Turing machine M ′ which decides L2, and a one-way logarithmic space
verifier M such that for every x ∈ {0, 1}∗,

f(x) = |{(u, p) : M(x, u) = y, where y ∈ L2 and p is an accepting path of M ′(y)}|

and | · · · | denotes the cardinality set function. This definition is still valid under the result of
Lemma 3.

3 Results

We define a new problem:

6 P versus NP

I Definition 6. NOT–A–SET
INSTANCE: Two unary strings 0p, 0q and a collection of p or more than p binary strings,

such that each element in the collection represents a power number in base 2 with a bit-length
lesser than or equal to q. The collection of numbers is represented by an array N of length
greater than or equal to p.

QUESTION: Is there an element repeated thrice in the array N?

I Theorem 7. NOT–A–SET ∈ 1NL.

Proof. Given an instance (0p, 0q, N) of NOT–A–SET, then we can read its elements from
left to right on the input tape, verify that every element in the collection is a binary string,
check whether every element in N has a bit-length lesser than or equal to q, and finally
count the number of elements in the array N and compare it with p. In addition, we can
nondeterministically pick a binary integer d between 1 and q and accept in case of there
exists the number 2d−1 thrice in N otherwise we reject. We can make all this computation
in a nondeterministic one-way using logarithmic space. Certainly, the verification of the
membership of 2d−1 in N could be done in logarithmic space, since it is trivial to check
whether a binary string represents the power 2d−1. Besides, we can store a logarithmic
amount of symbols, because of d has an exponential more succinct representation in relation
to the unary string 0q [22]. Moreover, the variables that we could use for the iteration
of the elements in N have a logarithmic space in relation to the length of the instance
(0p, 0q, N). We never need to move to the left on the input tape for the acceptance or
rejection of the elements in NOT–A–SET in a nondeterministic logarithmic space. We
describe this nondeterministic one-way logarithmic space computation in the Algorithm 1. In
this algorithm, we assume a value does not exist in the array N into the cell of some position
i when N [i] = undefined. To sum up, we actually prove that NOT–A–SET is in 1NL. J

Let’s consider an interesting problem:

I Definition 8. #K–CLAUSES–3UNSAT
INSTANCE: Three natural numbers K, n, m, and a Boolean formula φ of n variables

and m clauses, such that the clauses can contain repeated literals and contain exactly one
constant false value. The clauses are represented by an array C, such that C represents a
set of m collections of size 3, where C[i] is exactly the literals and constant false value into
the clause ci in φ for 1 ≤ i ≤ m. Besides, each variable is represented by a unique integer
between 1 and n. In addition, a positive or negative literal is represented by a positive or
negative integer, respectively. Furthermore, the number 0 represents the constant false value.

ANSWER: Count the number of unsatisfied clauses between all the unsatisfying truth
assignments in φ, such that the sum of all the false literals that contains every clause in each
of these unsatisfying truth assignments is greater than or equal to K. For example, consider
the unsatisfiable formula

(x ∨ y ∨ z) ∧ (⇁ x ∨ y ∨ z) ∧ (x∨⇁ y ∨ z) ∧ (x ∨ y∨⇁ z)

∧ (⇁ x∨⇁ y ∨ z) ∧ (⇁ x ∨ y∨⇁ z) ∧ (x∨⇁ y∨⇁ z) ∧ (⇁ x∨⇁ y∨⇁ z)

where the sum of all the false literals that contains every clause in any unsatisfying truth
assignment is equal to 12.

I Theorem 9. #K–CLAUSES–3UNSAT ∈ FP .

F. Vega 7

ALGORITHM 1: ONE-WAY-ALGO
Data: (0p, 0q, N) where (0p, 0q, N) is an instance of NOT–A–SET
Result: A nondeterministic acceptance or rejection in one-way logarithmic space
// Get the length of the unary string 0p as a binary string
p←− length(0p);
// Get the length of the unary string 0q as a binary string
q ←− length(0q);
// Generate nondeterministically an arbitrary integer between 1 and q

d←− random(1, q);
// If t = 3, then the number 2d−1 appears exactly thrice in N

t←− 0;
// Initial position in N

i←− 1;
while N [i] 6= undefined do

s←− 0;
// N [i][j] represents the jth digit of the binary string in N [i]
for j ← 1 to q + 1 do

if j = q + 1 then
if N [i][j] 6= undefined then

// There exists an element with bit-length greater than q

return “no”;
end

end
else if (j = 1 ∧ (N [i][j] = undefined ∨N [i][j] = 0)) ∨ (j > 1 ∧N [i][j] = 1) ∨N [i][j] /∈
{0, 1, undefined} then

// The element N [i] is not a binary string
return “no”;

end
else if N [i][j] = undefined then

// Break the current for loop statement
break;

end
else

// Store the current position of digit N [i][j] in N [i]
s←− s+ 1;

end
end
if s = d ∧ t < 4 then

// The element N [i] is equal to 2d−1

t←− t+ 1;
end
i←− i+ 1;

end
if i = 1 ∨ (i− 1) < p then

// The array N has not a length greater than or equal to p or N is empty
return “no”;

end
else if t = 3 then

// The element 2d−1 is repeated exactly thrice in the array N

return “yes”;
end
else

// The element 2d−1 is not repeated exactly thrice in the array N

return “no”;
end

8 P versus NP

Proof. We are going to show there is a deterministic Turing machine M , where:

#K–CLAUSES–3UNSAT = {w : M(w, u) = y,∃ u such that y ∈ NOT–A–SET}

when M runs in logarithmic space in the length of w, u is placed on the special read-
once tape of M , and u is polynomially bounded by w. Given an instance (K,n,m,C)
of #K–CLAUSES–3UNSAT, we firstly check whether this instance has an appropriate
representation according to the constraints introduced in the Definition 8. The constraints
for the Definition 8 are the following ones:

1. The array C must contain exactly m collections and,
2. each variable must be represented by a unique integer between 1 and n,
3. there are no two equals collections inside of C and finally,
4. every collection must contain exactly three elements and only one can be equal to 0.

All these requirements are verified in the Algorithm 2, where this subroutine decides
whether the instance has an appropriate representation according to the Definition 8. We
use the function abs(. . .) that denotes the absolute value, that is, for an integer x:

abs(x) = if x < 0 then − x else x.

After that verification, we use a certificate as an array A, such that this consists in an array A
which contains n different integer numbers in ascending absolute value order. But firstly, we
write to the output all the numbers 2j when C[j] contains a constant false value represented
by the number 0. We read at once the elements of the array A and we reject whether this
is not an appropriate certificate: That is, when the absolute value of the numbers are not
sorted in ascending order, or the array A does not contain exactly n elements, or the array
A contains a number that its absolute value is not between 1 and n, since every variable is
represented by an integer between 1 and n in C. While we read each element x of the array
A, then we copy the binary numbers 2j that represent the collections C[j] which contain
the literal x just creating another instance (0p, 0q, N) of NOT–A–SET, where p = K and
q = m. Since the array A does not contain repeated elements, then we could correspond
each certificate A to a truth assignment for φ with all the variables in φ, such that the
literals in A are false. We know a collection C[j] that represents a clause is false if and only
if the three elements in C[i] are false. Therefore, the evaluation as false into the literals
in the array A corresponds to a unsatisfying truth assignment in φ if and only if we write
some number 2j thrice to the output tape, where 2j represents a collection C[j] for some
1 ≤ j ≤ m. Moreover, the sum of all the false literals that contains every clause will be equal
to the length of the array N in the generated instance (0p, 0q, N) under the truth assignment
that represents the certificate A. Furthermore, we can make this verification in logarithmic
space such that the array A is placed on the special read-once tape, because we read at once
the elements in the array A. Indeed, the variables that we could use for the iteration of
the elements in A and C have a logarithmic space in relation to the length of the instance
(K,n,m,C).

Hence, we only need to iterate from the elements of the array A to verify whether the
array is an appropriate certificate and write to the output tape the representation as a power
of two of the collections in C that contain the literals in A and the constant false value.
This logarithmic space verification will be the Algorithm 3. We assume whether a value
does not exist in the arrays A or C into the cell of some position i when A[i] = undefined or
C[i] = undefined. The Algorithm 3 is a one-way logarithmic space verifier, since this never

F. Vega 9

moves the head on the special read-once tape to the left, where it is placed the certificate A.
Moreover, for every unsatisfying truth assignment represented by the array A, the output
of this logarithmic space verifier will always belong to the language NOT–A–SET, where
we know that NOT–A–SET ∈ 1NL as result of Theorem 7. Consequently, we demonstrate
that #K–CLAUSES–3UNSAT belongs to the complexity class #L under the Definition 5.
Certainly, every unsatisfying truth assignment in φ corresponds to a single certificate in
our one-way logarithmic space verifier, when the sum of all the false literals that contains
every clause in this unsatisfying truth assignment is greater than or equal to K. In addition,
the number of accepting paths in the Algorithm 1 for the generated instance (0p, 0q, N) of
NOT–A–SET is exactly the number of clauses that are unsatisfied for a single unsatisfying
truth assignment. The number of accepting paths in the Algorithm 1 for a single instance is
equal to the number of different powers of two which are repeated at least thrice in the array
N . Actually, this corresponds to the clauses which are unsatisfied for the truth assignment
that represents the certificate A. We know that #L is contained in the class FP [2], [6], [3].
As result, #L remains in the class FP under the Definition 5 as a consequence of Lemma 3.
In conclusion, we show that #K–CLAUSES–3UNSAT is indeed in FP . J

We show a previous known #P–complete problem:

I Definition 10. #MONOTONE–2SAT
INSTANCE: Two natural numbers n, m, and a Boolean formula φ in 2CNF of n variables

and m clauses, such that there is no clause in φ which contains a negated variable [26]. We
represent the Boolean formula φ as a set S of clauses. Besides, each variable is represented
by a unique integer between 1 and n in the clauses of S.

ANSWER: Count the number of satisfying truth assignments in φ.
REMARKS:#MONOTONE–2SAT ∈ #P–complete [26].

I Theorem 11. #MONOTONE–2SAT ∈ FP .

Proof. Given an instance (n,m, S) of #MONOTONE–2SAT that represents a Boolean
formula from the Definition 10, then we can use and call a polynomial time algorithm
ALGO for an appropriate instance of #K–CLAUSES–3UNSAT and solve it: This is possible
according to the Theorem 9. In this way, given a clause ci = (x∨ y) in S for 1 ≤ i ≤ m, then
we can count the number of unsatisfying truth assignments in the Boolean formula

ψi = (0∨⇁ x∨⇁ y)∧(⇁ x∨⇁ x∨y)∧(⇁ x∨x∨⇁ y)∧(⇁ x∨y∨⇁ y)∧(x∨⇁ y∨⇁ y).

Certainly, ci is satisfied for some truth assignment if and only if ψi has exactly one unsatisfied
clause for the same truth assignment, where the sum of all the false literals that contains
every clause is equal to 8 or 11. However, if ci is unsatisfied for some truth assignment if
and only if ψi is satisfiable for the same truth assignment and the sum of all the false literals
that contains every clause is equal to 5. In this way, the Boolean formula

ψ = ψ1 ∧ ψ2 ∧ . . . ∧ ψm−1 ∧ ψm

complies that exactly every unsatisfying truth assignment ψ coincides with a satisfying truth
assignment in φ, when the sum of all the false literals that contains every clause in ψ is
greater than or equal to 8×m. Furthermore, in this case there will be exactly m unsatisfied
clauses and thus, we can use the problem #K–CLAUSES–3UNSAT to calculate the number
of satisfying truth assignments in φ multiplied by m. Finally, we only need to divide by m
to obtain the number of satisfying truth assignments in φ. We show this polynomial time
reduction in the Algorithm 4. J

10 P versus NP

ALGORITHM 2: CHECK-ALGO
Data: (K,n,m,C) where (K,n,m,C) is an instance of #K–CLAUSES–3UNSAT
Result: A logarithmic space subroutine
for i← 1 to m+ 1 do

if (i < m+ 1 ∧ C[i] = undefined) ∨ (i = m+ 1 ∧ C[i] 6= undefined) then
// C does not contain exactly m collections
return “no”;

end
end
for i← 1 to n do

// If t = 1, then the variable i exists in some collection of C

t←− 0;
foreach j ← 1 to m; C[j] = {x, y, z} do

if x = y = 0 ∨ x = z = 0 ∨ y = z = 0 then
// C[j] contains more than one number equal to 0
return “no”;

end
if abs(x) > n ∨ abs(y) > n ∨ abs(z) > n then

// C does not contain exactly n variables from 1 to n

return “no”;
end
if t < 1 ∧ (i = abs(x) ∨ i = abs(y) ∨ i = abs(z)) then

// Store the existence of the variable i in the collections of C

t←− 1;
end

end
if t = 0 then

// C does not contain the variable i

return “no”;
end

end
for i← 1 to m− 1 do

// size(· · ·) denotes the size of a collection, that is the number of elements
if size(C[i]) 6= 3 then

// The array C has at least one collection with size different of 3
return “no”;

end
for j ← i+ 1 to m do

// We ignore the order of the elements in the collections C[i] and C[j]
if C[i] = C[j] then

// The array C is not exactly a “set” of collections
return “no”;

end
end

end
if K ≤ 0 ∨ n ≤ 0 ∨m ≤ 0 then

// K,m, n must be natural numbers
return “no”;

end
// The instance (K,n,m,C) is appropriate for #K–CLAUSES–3UNSAT
return “yes”;

F. Vega 11

ALGORITHM 3: VERIFIER-ALGO
Data: (K,n,m,C,A) where (K,n,m,C) is an instance of #K–CLAUSES–3UNSAT and A is a

certificate
Result: A one-way logarithmic space verifier
if CHECK-ALGO(K,n,m,C) = “no” then

// (K,n,m,C) is not an appropriate instance of #K–CLAUSES–3UNSAT
return “no”;

end
else

output 0K ;
output , 0m;
for j ← 1 to m do

if 0 ∈ C[j] then
/* Output the number 2j when the collection C[j] contains the constant

false value represented by the number 0 */
output , 1;
if j − 1 > 0 then

output 0j−1;
end

end
end

end
// Minimum current variable during the iteration of the array A

x←− 0;
for i← 1 to n+ 1 do

if i = n+ 1 then
if A[i] 6= undefined then

// There exists a n+ 1 element in the array A

return “no”;
end

end
else if A[i] = undefined ∨ abs(A[i]) < 1 ∨ abs(A[i]) > n ∨ abs(A[i]) ≤ x then

// The certificate A is not appropriate
return “no”;

end
else

x←− abs(A[i]);
y ←− A[i];
for j ← 1 to m do

if y ∈ C[j] then
/* Output the number 2j when the collection C[j] contains the

literal y */
output , 1;
if j − 1 > 0 then

output 0j−1;
end

end
end

end
end

12 P versus NP

ALGORITHM 4: COMPUTE-ALGO
Data: (n,m, S) where (n,m, S) is an instance of #MONOTONE–2SAT that represents a

Boolean formula φ
Result: A polynomial time algorithm
// | · · · | denotes the cardinality set function
if m 6= |S| then

// (n,m, S) is not an appropriate instance of #MONOTONE–2SAT
return “no”;

end
// Create array of collections C with length 5×m
C ←− Array(5×m);
// Create an empty set of variables
V ←− ∅;
foreach i← 1 to m; ci = (x ∨ y) such that ci ∈ S do

if x ≤ 0 ∨ y ≤ 0 ∨ x > n ∨ y > n then
// (n,m, S) is not an appropriate instance of #MONOTONE–2SAT
return “no”;

end
else

// ∪ denotes the union set function
V ←− V ∪ {x, y};
C[5× (i− 1) + 1]←− {0,−x,−y};
C[5× (i− 1) + 2]←− {−x,−x, y};
C[5× (i− 1) + 3]←− {−x, x,−y};
C[5× (i− 1) + 4]←− {−y,−x, y};
C[5× (i− 1) + 5]←− {−y, x,−y};

end
end
// | · · · | denotes the cardinality set function
if n 6= |V | then

// (n,m, S) is not an appropriate instance of #MONOTONE–2SAT
return “no”;

end
else

// Call the count algorithm for the problem #K–CLAUSES–3UNSAT
count←− ALGO(8×m,n,m,C);
// The number of satisfying truth assignments in φ

return count
m

;
end

F. Vega 13

I Theorem 12. P = NP .

Proof. It is known that if some #P–complete is in FP , then FP = #P However, if this
happens, then P = NP , since all known NP–complete sets have a defining relation which is
#P–complete [19]. Therefore, this is a direct consequence of Theorem 11. J

4 Conclusions

No one has been able to find a polynomial time algorithm for any of more than 300
important known NP–complete problems [12]. A proof of P = NP will have stunning
practical consequences, because it leads to efficient methods for solving some of the important
problems in NP [7]. The consequences, both positive and negative, arise since various
NP–complete problems are fundamental in many fields [7].

Cryptography, for example, relies on certain problems being difficult. A constructive
and efficient solution to an NP–complete problem such as SAT will break most existing
cryptosystems including: Public-key cryptography [16], symmetric ciphers [20] and one-way
functions used in cryptographic hashing [9]. These would need to be modified or replaced by
information-theoretically secure solutions not inherently based on P–NP equivalence.

There are positive consequences that will follow from rendering tractable many currently
mathematically intractable problems. For instance, many problems in operations research
are NP–complete, such as some types of integer programming and the traveling salesman
problem [12]. Efficient solutions to these problems have enormous implications for logistics
[7]. Many other important problems, such as some problems in protein structure prediction,
are also NP–complete, so this will spur considerable advances in biology [5].

Since all the NP–complete optimization problems become easy, everything will be much
more efficient [11]. Transportation of all forms will be scheduled optimally to move people
and goods around quicker and cheaper [11]. Manufacturers can improve their production to
increase speed and create less waste [11]. Learning becomes easy by using the principle of
Occam’s razor: We simply find the smallest program consistent with the data [11]. Near
perfect vision recognition, language comprehension and translation and all other learning tasks
become trivial [11]. We will also have much better predictions of weather and earthquakes
and other natural phenomenon [11].

There would be disruption, including maybe displacing programmers [17]. The practice of
programming itself would be more about gathering training data and less about writing code
[17]. Google would have the resources to excel in such a world [17]. But such changes may
pale in significance compared to the revolution an efficient method for solving NP–complete
problems will cause in mathematics itself [7]. Research mathematicians spend their careers
trying to prove theorems, and some proofs have taken decades or even centuries to find
after problems have been stated [1]. For instance, Fermat’s Last Theorem took over three
centuries to prove [1]. A method that is guaranteed to find proofs to theorems, should one
exist of a “reasonable” size, would essentially end this struggle [7].

References

1 Scott Aaronson. P ? NP. Electronic Colloquium on Computational Complexity, Report No. 4,
2017.

2 Carme Álvarez and Birgit Jenner. A Very Hard Log-Space Counting Class. Theor. Comput.
Sci., 107(1):3–30, January 1993. doi:10.1016/0304-3975(93)90252-O.

3 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

http://dx.doi.org/10.1016/0304-3975(93)90252-O

14 P versus NP

4 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =?NP Question.
SIAM Journal on computing, 4(4):431–442, 1975. doi:10.1137/0204037.

5 Bonnie Berger and Tom Leighton. Protein Folding in the Hydrophobic-Hydrophilic (HP)
Model is NP-complete. Journal of Computational Biology, 5(1):27–40, 1998. doi:10.1145/
279069.279080.

6 Allan Borodin, Stephen A. Cook, and Nick Pippenger. Parallel Computation for Well-Endowed
Rings and Space-Bounded Probabilistic Machines. Inf. Control, 58(1–3):113–136, July 1984.
doi:10.1016/S0019-9958(83)80060-6.

7 Stephen A. Cook. The P versus NP Problem, April 2000. In Clay Mathematics Institute at
http://www.claymath.org/sites/default/files/pvsnp.pdf. Retrieved June 24, 2020.

8 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

9 Debapratim De, Abishek Kumarasubramanian, and Ramarathnam Venkatesan. Inversion
Attacks on Secure Hash Functions Using SAT Solvers. In International Conference on
Theory and Applications of Satisfiability Testing, pages 377–382. Springer, 2007. doi:10.1007/
978-3-540-72788-0_36.

10 Vinay Deolalikar. P 6= NP, 2010. In Woeginger Home Page at https://www.win.tue.nl/
~gwoegi/P-versus-NP/Deolalikar.pdf. Retrieved June 24, 2020.

11 Lance Fortnow. The Status of the P Versus NP Problem. Commun. ACM, 52(9):78–86,
September 2009. doi:10.1145/1562164.1562186.

12 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

13 William I. Gasarch. Guest column: The second P ? NP poll. ACM SIGACT News, 43(2):53–77,
2012. doi:10.1145/2261417.2261434.

14 Juris Hartmanis and John E. Hopcroft. Independence Results in Computer Science. SIGACT
News, 8(4):13–24, October 1976. doi:10.1145/1008335.1008336.

15 Juris Hartmanis and Stephen R. Mahaney. Languages Simultaneously Complete for One-
Way and Two-Way Log-Tape automata. SIAM Journal on Computing, 10(2):383–390, 1981.
doi:10.1137/0210027.

16 Satoshi Horie and Osamu Watanabe. Hard instance generation for SAT. Algorithms and
Computation, pages 22–31, 1997. doi:10.1007/3-540-63890-3_4.

17 Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of Structure
in Complexity Theory. Tenth Annual IEEE Conference, pages 134–147. IEEE, 1995. doi:
10.1109/SCT.1995.514853.

18 Richard J. Lipton. Efficient checking of computations. In STACS 90, pages 207–215. Springer
Berlin Heidelberg, 1990. doi:10.1007/3-540-52282-4_44.

19 Noam Livne. A note on #P-completeness of NP-witnessing relations. Information Processing
Letters, 109(5):259–261, 2009. doi:10.1016/j.ipl.2008.10.009.

20 Fabio Massacci and Laura Marraro. Logical Cryptanalysis as a SAT Problem. Journal of
Automated Reasoning, 24(1):165–203, 2000. doi:10.1023/A:1006326723002.

21 Pascal Michel. A survey of space complexity. Theoretical computer science, 101(1):99–132,
1992. doi:10.1016/0304-3975(92)90151-5.

22 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
23 Alexander A. Razborov and Steven Rudich. Natural Proofs. J. Comput. Syst. Sci., 55(1):24–35,

August 1997. doi:10.1006/jcss.1997.1494.
24 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course

Technology Boston, 2006.
25 Leslie G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,

(2):189–201, 1979. doi:10.1016/0304-3975(79)90044-6.
26 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on

Computing, (3):410–421, 1979. doi:10.1137/0208032.

http://dx.doi.org/10.1137/0204037
http://dx.doi.org/10.1145/279069.279080
http://dx.doi.org/10.1145/279069.279080
http://dx.doi.org/10.1016/S0019-9958(83)80060-6
http://www.claymath.org/sites/default/files/pvsnp.pdf
http://dx.doi.org/10.1007/978-3-540-72788-0_36
http://dx.doi.org/10.1007/978-3-540-72788-0_36
https://www.win.tue.nl/~gwoegi/P-versus-NP/Deolalikar.pdf
https://www.win.tue.nl/~gwoegi/P-versus-NP/Deolalikar.pdf
http://dx.doi.org/10.1145/1562164.1562186
http://dx.doi.org/10.1145/2261417.2261434
http://dx.doi.org/10.1145/1008335.1008336
http://dx.doi.org/10.1137/0210027
http://dx.doi.org/10.1007/3-540-63890-3_4
http://dx.doi.org/10.1109/SCT.1995.514853
http://dx.doi.org/10.1109/SCT.1995.514853
http://dx.doi.org/10.1007/3-540-52282-4_44
http://dx.doi.org/10.1016/j.ipl.2008.10.009
http://dx.doi.org/10.1023/A:1006326723002
http://dx.doi.org/10.1016/0304-3975(92)90151-5
http://dx.doi.org/10.1006/jcss.1997.1494
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1137/0208032

	Introduction
	Materials & Methods
	Polynomial time verifiers
	Logarithmic space verifiers

	Results
	Conclusions

