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Abstract—Federate learning is a generic method to

augment medical data by training a global model with

distributed data located in regional medical

environment. Nevertheless, there exists a significant

distinction with respect to the distribution of medical

cases between primary hospitals and tertiary hospitals,

which lead to the state that the global model is

incapable of satisfying individual medical needs. We

propose a novel multi-task cardiovascular disease

classification method based on adaptive update of

sample masking and the adaptive optimization of weights.

First, a mask is designed to fit local data, and it can

guide the weight updated with accordance to hard

samples. Then, the global model is focused on specific

task with adaptive optimization of weights.

Experimental evaluation on our collected data show

great improvement. The F1 metric increases from 49.54%

to 75.5% by adopting the proposed method.
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Adaptive update

I. INTRODUCTION
Cardiovascular disease is one of the major diseases

threatening human life and health. ECG analysis is the widely
used method for cardiovascular disease classification.
Traditional methods generally depend on human detection, and
their accurary highly depends on the doctor's efficiency, work
intensity, and professional level. Compared with manual
diagnosis, intelligent diagnosis of cardiovascular diseases has
natural advantages. However, it is difficult for primary medical
institutions to train a cardiovascular disease classification
model that meets the needs of the real medical environment
due to data scale and other reasons in practical work.

In order to solve the problem of ECG data scarcity, the
generic way is to augment medical data with federated learning
framework, which can train a global model with data located
on distributed regional node. Then each local hospital
downloads the global model for private ECG classification.
Unfortunately, after evaluation, it is found that the global
model has a low classification accuracy rate in some specialty
local hospitals. The classification rate is high when the ECG
data sample distribution of a medical institution is close to the
training data of the global model. On the contrary, model
performance descreases drasticlly when local data is different
from global data. When the global model is updated based on a
small amount of unbalanced data, the evaluation performance
of the model is not the optimal result. One of the important
factors is that data distribution may quite different between
local and global, and this makes it difficult for a unified global
model to meet the individual needs of characteristic hospitals.
Therefore, it is necessary to design a general model to solve the
imbalance problem. In this paper, we propose a novel
cardiovascular disease multi-task classification method base on
adaptive update. Adaptive update of sample masks and
adaptive weights optimization are used to improve the model
classification ability for both global and local data.

The organization of this article is as follows: Chapter 2
introduces the related works. Chapter 3 gives the multi-task
classification method for cardiovascular diseases based on
adaptive update. Experimental results are given in Chapter 4.
Chapter 5 summarizes this paper.

II. RELATEDWORK

Automatic processing and diagnosis methods of ECG
signals have made rapid progresses. Ref.[1] designed filters for
ECG signal preprocessing including low-pass, high-pass, and
time-space domain. A discrete cosine transformation was



proposed in ref.[2]. Ref.[3] utilized discrete wavelets and the
non-local mean to filter and reconstruct ECG signal. Wavelet
transform was used to locate the main wave position in ECG,
and locatef the position of R waveform[4]. In addition to
traditional methods, some improved techniques have been
proposed, such as the analysis based on the ordinary spatial
spectrum mode[5], etc. However, these ways still have many
missed and false detections in clinical ECG signal analysis.

Machine learning and statistic based methods are also
widely used in ECG analysis, such as bayes' theorem, k-nearest
neighbor, decision tree and linear discriminator[6-8], etc.
Ref.[9] used fuzzy neural networks for extracting features
including the period in ECG and the high-order quantities of
the QRS wave. Ref.[10] leveraged multi-layer perceptrons by
adopting features with regard to the wavelet transform.
Ref.[11-13] proposed a method that classify bioelectric signals
via support vector machines, least squares support vector
machines and twin support vector machines. These methods
are data-driven with clear and efficient processes, but are
limited by feature extraction and expression capabilities.

As the explosive increase of data and computing power,
deep learning has gradually become the mainstream method. It
can automatically represent the complex features of ECG
signals with non-linear fitting, and then the performance can
be greatly improved. Ref.[17] proposed a convolutional neural
network for multi-lead ECG classification. Deep belief
network was used to diagnosis of ECG arrhythmia in ref.[14-
16]. Adversarial networks were used for data enhancement in
ref.[18]. High error recognition rate associated with the high
accuracy was discussed in ref.[19], and CNNs model was
corrected. Depth factorization was used to deal with the
complex noise in ECG[20]. Ref.[21] used autoencoder model
for ECG feature extraction. Graph regularization non-negative
matrix decomposition was used for dimension reduction, and
sparse representation is used for feature representation[22].
However, most of the studies are based on public data sets and
the sample size is small. It is not possible to deal diversity,
variability, and randomness of clinical data.

The unbalanced distribution of ECG data is one of the most
challenge problems. It has severely affected the performance of
the global model in local inference. Generally, reducing the
impact of data imbalance by changing the distribution of
samples in the data procesing, such as over sampling, under
sampling and mixed sampling, etc. Ref.[23] proposed the
SMOTE algorithm that synthesizes minority samples through
heuristic strategies. Ref.[24] proposed the Borderline-SMOTE
algorithm, which leveraged the SMOTE algorithm to
synthesize new samples for minority at the border. Ref.[25]
proposed ADASYN, which is based on the adaptive synthetic
sampling of imbalanced data. A cluster-based over-sampling
algorithm that combines clustering algorithm and over-
sampling technology was proposed in ref.[26]. It ensured
synthetic sample is always located in the minority area. Ref.[27]
combined SMOTE with TomekLink to avoid noise data.
Oversampling was adopted for the minority class of boundary
samples in ref.[28]. It can satisfy the balance of training
samples after processing noise data and redundant data in
majority class. Ref.[29] studied the best class distribution from
the perspective of data sets. Ref.[30] used optimization of KL

divergence for post-training priori and rebalancing. Ref.[31]
proposed a novel focal loss, which focused on hard samples
during training. However, case distribution of each medical
node actually reflects the medical health characteristics of the
population in a region, and it cannot be simply adjusted at the
data level or loss function. ECG data has special biological
characteristics, and it is very difficult to up-sampling to
construct samples. Therefore, we proposes a personalized
update method of cardiovascular disease classification model
based on mixed loss. Through the adaptive weight update of
sample masking and loss, we can explore the personalized
update of the global model in private hospitals.

III. MULTI-TASK CLASSIFICATION METHOD FOR
CARDIOVASCULAR DISEASES

Equation 1 gives the private data Dp, which is collected in a
hospital node.



Dpi is the i-th data tuple. xi represents the i-th ECG data,
and [yi0,yi1,...,yiT] indicates the type label. It is supposed that
there are T tasks in total. In this paper, a multi-task
classification method is proposed based on adaptive update.
Figure 1 gives the framework of the proposed method. The
backbone network for ECG feature extraction is shared. Then a
mask is assigned to each task, and a weight adaptive
adjustment is conducted with final loss function.

FIGURE I. MULTI-TASK CLASSIFICATION METHOD FOR
CARDIOVASCULAR DISEASES BASED ON ADPTIVE UPDATE

However, there is a serious imbalance between the types of
ECG symptoms in different local node, which leads to huge
discrepancies in local data evaluation with the same global
model. Data types of global node could be rare in local node,
so the local training data may fail to meet the needs of model
updating. The proposed method has two main components:
adaptive sample masking weight update and adaptive loss cost
weight update. The adaptive sample masking weight update
generates adaptive sample masks via the local data, diagnostic
models and dynamically adjusted thresholds. After the model
iteration, the mask will be adaptively updated at the same time
to ensure that it is on a single task. The model adaptively select
samples that are difficult to infer for update accurately. The
adaptive loss cost weight update the model's loss weights by
leveraging the local case distribution. At the same time, the



model will adaptively adjust the loss weights of multiple tasks
according to the loss changes of different tasks to ensure that
the model can focus on tasks with weaker classification
capabilities. Details are described as follows:

A. The Adaptive Sample Masking Update
The global model can be trained well with federate learning

framework across distributed data. For model personalization,
we design a mask for local samples. Easy samples are masked,
and samples that are not recognized by the global model are
selected to update the personalized model.

Let y represents the true lable of an ECG data sample, y’
represents the predicted value of the model that data. gap is the
absolute value of the difference between the predicted value
and the true label, as shown in equation 2.



When the global model is iteratively updated locally, it is
necessary to calculate the difference between the predicted
value and the true label gap. When gap is lower than the
dynamic threshold, it indicates that the model can accurately
predict the sample. We generate a mask that represents the
predictive ability of the model based on gap and the dynamic
threshold. The mask can be computed as equation 3.



The dynamic threshold at the beginning of training should
not be large because the accuracy of the model is poor. In the
subsequent iterative training, the dynamic threshold is
gradually increased to a higher value. In the final tuning stage,
the model will only focus on samples that cannot be accurately
predicted. Figure 2 shows the trend of the dynamic threshold
versus the number of iterations. The abscissa represents
iteration rounds during the model updating, and the ordinate
represents the threshold value.

FIGURE II. TREND OF DYNAMIC THRESHOLD WITH THE NUMBER OF
ITERATIONS

The dynamic threshold is set to 0.05 at the beginning of the
iteration, then the threshold will be gradually increased to 0.35
in subsequent iterations, and it will fall back to 0.15 finally. We
found that if the model pay too much attention to extremely
hard samples, it may lead to a decline in the overall evaluation
of the model in later stages of iterative training. Therefore, the
dynamic threshold needs to return to a relatively low value.

The basic loss function we used is focal loss, which is
improved on the basis of standard cross-entropy loss. Let pt
represents the probability that the sample belongs to the
positive sample. In order to distinguish the difficulty of the
prediction accuracy of the sample, a small weight is added.
Increasing the adjustment factor (1-pt)r . The representation of
focal loss is given in equation 4:



When the model is iteratively trained, the range of the
dynamic mask is adjusted through the dynamic threshold, and
the appropriate sample is selected to update the model using
focal loss. The final maskloss is given as equation 5:



As shown in Figure 3, the abscissa is pt, and the ordinate is
loss value. It shows the change curve of the loss value of the
standard cross entropy formula CE and the mask loss according
to the pt. For simply sample, the pt is very high. The model will
adjust the range of the mask through the dynamic threshold,
and more suitable samples to update weights can be selected.

FIGURE III. LOSS FUNCTION GRAPHS UNDER DIFFERENT THRESHOLDS
ADAPTIVE SAMPLE MASK WEIGHT UPDATE METHOD

With the adaptive sample masking update, model
performance for a locally single task can be improved.

B. Multi-task Classification With Self-optimized Weights
The adaptive weight update of sample masking solves the

problem of unbalanced samples. It can adjust the loss weights
of different classification tasks when the model updates
weights of the task locally. In this subsection, we propose an
adaptive loss cost weight update mechanism, which
dynamically adjusts the loss weights of different tasks to make
the model focus tasks with large differences in sample cases.

(6)

The loss function is shown as equation 6. wk is the loss
weight corresponding to the k-th task in the multi-task learning
mechanism. It is an adaptive weight coefficient.



The initial loss weights is set as equation 7. N is the total
number of local samples. Nk is the number of local samples in
the k-th category. wL is the threshold of loss weights, which
ensures that some symptoms do not cause the initial weight
assigned to be too large because the sample ratio is too low. wk0
is the initial weight of the k-th task:



The loss function can be adjusted adaptively according to
different distribution of samples in multiple nodes. When the
number of samples for this task is large, the model will tend to
neglect it in the iterative process, so the weight coefficient is
set to be small. When the number of samples for this task is
small, it’s easier to identify inaccurately in the iterative process
of the model. Therefore, Therefore, increasing the loss weight
of the task in the loss function. The model increases the penalty
for misjudgment of the task, which makes the model more bias
towards tasks with fewer samples.

In the subsequent iterative training, the loss weight of the
task will be adaptively fine-tuned according to the loss changes
of different tasks. The dynamic loss weight of the multi-task
learning mechanism is dynamically adjusted. The details are as
follows. losski is the loss of the i-th iteration of the k-th task,
and losski-1 is the loss of the (i-1)th iteration of the k-th task.
diffki is the difference of the k-th task in loss change between
the adjacent iteration, which indicates the training difficulty of
the current task, as shown in equation 8.



As shown in equation 9, dki is the adjustment rate of the
dynamic loss weight wk. It is the ratio of the average difference
of the loss change of all tasks to the difference of the loss
change of the k-th task. When the change of the loss weight of
the k-th task becomes smaller than that of other tasks, the
multi-task model will appropriately increases the loss weight of
the task.



As shown in equation 10, wki is the dynamic loss weight of
the ith iteration, and wki-1 is the loss weight of the i-1th iteration.
step is the maximum value of the adjustment step of the
regulation coefficient dk. The task does not benefit from
increasing the loss weight significantly because some tasks
may have completed convergence earlier in the model iteration.
For this reason, it is necessary to constrain the change span of
the loss weight of different tasks and prevent the imbalance of
the dynamic loss weight of the multi-task learning mechanism.



In summary, the adaptive cost-sensitive modeling loss
based on the mixed loss can be expressed as equation 11.



lossk represents the loss function of the kth task. T
represents the total number of tasks for multi-task classification.
k represents the k-th task. wk is the dynamic loss weight.
Through the above loss function, the secondary learning of the
misclassified samples of the global model can be realized by
combining with the imbalance between multiple tasks for the
personalized update of the local model.

IV. EXPERIMENTS

A. Datasets
We collect two clinical datasets from primary medical

institutions for evaluation. One comes from a basic children's
hospital in Zhejiang province, China, and the other one comes
from a basic general hospital in Zhejiang province, China.
There are 12 leads of ECG data including 6 leads of the limbs
and 6 leads of the chest. Basic unit of ECG is splitted with 10
seconds, and the sampling frequency of the equipment is
500Hz. The sample size of cases of basic general hospitals is
2156 , and the sample size of cases of children's hospitals is
2594. The specific case distribution of data is given in Table 1.

B. Experimental environment
Experiments are conducted on Jiutian deep learning

platform provided by China Mobile CMCC. It provides GPU
cloud services. CPU adopts E5-2640V4. The memory is
128GB DRAM, 250GB SDD. Graphics card adopts TeslaV100.
Standard library CUDA10 is pre-built. The 1.12.0 version of
tensorflow and 2.2.4 version of keras are pre-installed.

C. Evaluation criteria
We use stardand accuracy, precision, recall and F1 to

evaluate the performance of the proposed method.

(12)

As shown in equation 12, TP indicates the number of
positive samples correctly classified. TN indicates the number
of negative samples correctly classified. FP indicates the
number of negative samples that are misclassified as positive
samples. FN indicates the number of positive samples that are
misclassified as negative samples.

D. Analysis
The global model will be evaluated on the basic general

hospitals with a data set with size 2156. The model will be
evaluated in the primary children's hospital data with 2594



samples. The evaluation result of the global model in basic
general hospitals and children's hospitals is shown in Table 2.

TABLE I. CASES DISTRIBUTION IN GENERAL HOSPITALS AND
CHILDREN'S HOSPITALS

Case Junior General
Hospitals

Junior Children's
Hospitals

Poor r wave
progression

8 0

ST-T variant 71 4
ST segment variant 115 16
T wave variant 365 50
RAD 20 55
LAD 52 14
Sinus bradycardia 173 14
Sinus tachycardia 115 402
Sinus rhythm 1764 1557
Sinus arrhythmia 72 603
Atrial fibrillation 39 0
Atrioventricular block 39 3
Atrial escape rhythm 1 7
Atrial ectopic beats 57 16
Counterclockwise
rotation

15 3

Paroxysmal vertricular
tachycardia

11 0

Ventricular premature
beats

40 5

Bifascicular block 1 1
Clockwise rotation 3 3
Myocardial infarction 5 0
Ventricular
preexcitation

4 5

Abnormal q wave 12 9
Right bundlebranch
block

67 12

Normal ecg 1208 1425
Limb leads low voltage 16 0
Left anterior hemiblock 15 0
Left bundle branch
block

4 0

Left ventricular
hypertrophy

5 1

High voltage of left
ventricular

116 24

Limb lead reversal 1 7

TABLE II. THE PERFORMANCE OF THE GLOBAL MODEL IN DIFFERENT
MEDICAL INSTITUTIONS

mode best acc best
recall

best
precision

best F1

Primary General Hospital 78.14% 80.36% 76.18% 78.22%

Children's Hospital（before
update）

54.32% 41.58% 61.29% 49.54%

Children's Hospital （ after
update）

80.35% 75% 75.98% 75.50%

The distribution of samples in basic general hospitals are
close to that of training data in global model. Its accuracy rate,
recall rate, precision rate and F1 can reach 78.14%, 80.36%,
76.18% and 78.22% respectively. The distribution
characteristics of cases of children's hospitals are quite
different to the distribution of global model, and its accuracy,
recall, precision, and F1 can only reach 54.32%, 41.58%,
61.29% and 49.54%. This shows the global model cannot adapt

to the special medical environment like children's hospitals
directly. The classification performance of the model is
significantly reduced. By means of the personalized update of
the classification model based on mixed loss. The accuracy rate,
recall rate, precision rate, and F1 of children's hospitals rare
80.35%, 75%, 75.98% and 75.5%. The performance is close to
the level of basic general hospitals.

E. Comparative experiment
We conducted a comparative experiment of two different

methods SMOTE and ANASYN, on the primary children's
hospital data set to verify the effectiveness of the multi-task
learning mechanism. Typical focal loss is used as loss function,.
All methods use fixed task weights, and the specific
experimental results are given in table 3.

TABLE III. COMPARISON OFMODEL EVALUATION UNDER DIFFERENT
PROCESSING MODES

Processing Avg
acc

Avg
recall

Avg
precision

Avg
F1

SMOTE 72.23% 68.21% 70.45% 68.11
%

ANASYN 74.06% 69.55% 71.12% 69.23
%

focal loss + fixed weight 80.54% 71.55% 77.57% 74.44
%

mask loss + dynamic
weight

80.35% 75% 75.98% 75.50
%

As shown in Table 3, the proposed loss function method is
generally better than the data augment method. The new
sample data synthesized by the method of up and down may
not actually meet the medical characteristics. The case
distribution of each medical node actually reflects the medical
health characteristics of the population in a region, so we can
not simply make adjustments at the data level. Correspondingly,
the focal loss function reduces the weight of a large number of
simple negative samples, so that the model can deal with
difficult and misclassified samples. The mask loss function sets
dynamic thresholds and dynamic task weights, so that the
model has different emphasis samples in different training
stages, and its final result is improved compared to focal loss.

F. Ablation experiment
We conducted ablation experiments of a variety of

personalized modes on primary children's hospital dataset to
verify the effectiveness of the proposed method. They include:
binary crossentropy + fixed weight, focal loss + fixed weight,
mask loss + fixed weight, mask loss + dynamic weight. The
specific verification method is that: the 2594 samples from the
Children’s Hospital are cross-validated with 5 folds. The
average of evaluation scores are obtained. The evaluation
performance under different modes are shown in Table 4.

The accuracy rate, recall rate, precision rate and F1 of the
model can be restored to a better level via personalized
updating. And all of them are the optimal values under various
models through mask loss and dynamic weight. Compared
with the standard two-class cross-entropy, focal loss can focus
on samples that are difficult to classify. The adaptive sample
mask weight update is dynamically masked based on the focal
loss. The model will pay more attention to samples separated
difficultly while reducing the impact of samples separated



simply on the model. Adaptive loss cost weight update adopts
dynamic weight adjustment. The model does not focus on the
loss of the classification task of rare cases in children, and pay
more attention to classification tasks that are significantly
different from the case distribution of the global model. The
model performance has been significantly improved.

TABLE IV. COMPARISON OFMODEL EVALUATION UNDER DIFFERENT
LOSSMODES

Personalized update mode Avg
acc

Avg
recall

Avg
precision

Avg
F1

Binary crossentropy + fixed
weight

80.54
%

71.12% 77.83% 74.32
%

focal loss + fixed weight 80.54
%

71.55% 77.57% 74.44
%

mask loss + fixed weight 79.96
%

75.43% 74.79% 75.11
%

mask loss + dynamic weight 80.35
%

75% 75.98% 75.50
%

V. CONCLUSIONS
We proposes a personalized update method for

cardiovascular disease classification. The measure of weight
update by adaptive sample masking makes the model focus on
samples that the global model cannot accurately predict, so that
the model can converge more quickly on local medical data.
Through the weight update via the adaptive loss cost, the
model is trained with tasks that have major differences between
the global and local tasks, so that the model can obtain a better
classification effect in the local medical institution. The model
is validated on the dataset of primary children’s hospitals,
which is better than the traditional update method of the model.
It has achieved a great improvement in the final classification
effect, and its evaluation result is close to the classification
level of the model on the data of basic general hospitals.
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