s

£

5 EasyChair Preprint

Ne 2686

Budget Active Learning for Deep Networks

Patrick Gikunda and Nicolas Jouandeau

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 17, 2020



Budget Active Learning For Deep Networks

Namel Surnamel and Name2 Surname? !

Abstract. In the digital world unlabeled data is relatively easy to ac-
quire but expensive to label even with use of domain experts. On the
other hand, state-of-the-art Deep Learning methods are dependent on
large labeled datasets for training. Recent works on Deep Learning
focus on use of Active Learning with uncertainty for model train-
ing. Although most uncertainty Active Learning selection strategies
are very effective, they fail to take informativeness of the unlabeled
instances into account and are prone to querying outliers. In order
to address these challenges, we propose a Budget Active Learning
(BAL) algorithm for Deep Networks that advances active learning
methods in three ways. First, we exploit both the uncertainty and di-
versity of instance using uncertainty and correlation evaluation met-
rics. Second, we use a budget annotator to label high confidence in-
stances, and simultaneously update the selection strategy. Third, we
incorporate Active Learning in Deep Networks and perform classifi-
cations on untrained and pretrained models with two classical and a
plant-seedling sets of data while minimizing the prediction loss. Ex-
perimental results on the three datasets of varying sizes demonstrate
the efficacy of the proposed BAL method over other state-of-the-art
Deep Active Learning methods.

1 INTRODUCTION

Current ICT technologies include Internet of Things [47], Remote
Sensing [35], Cloud Computing [22] and Big Data [5]. The contin-
uous use of these technologies to collect, monitor, measure, store
and analyze data has led to a phenomena of Big Data [4] which is
in abundance of unlabeled data. Unlabeled data is relatively easy to
acquire and it is expensive to label even with use of domain experts.
For example, its expensive to hire dermatologists to annotate 129,450
skin cancer images [9]. Even when using state-of-the-art computing
resources, training a Machine Learning (ML) model on large data
sets can take long time. However, like other ML researchers [29],
we believe that ML algorithm does not need all of the available data
for training. The main motivation for use of Active Learning (AL) is
that, if a learning algorithm can pick the data it want to learn from,
then a small set of selected data-points can be used for training. Typ-
ically this process would involve randomly sampling large amount
of data from underlying distribution for training a model. Collect-
ing large amount of labeled data for training is time consuming and
expensive. AL provides methods for analyzing vast amount of data
with improved efficiency than other computing approaches, because
of the ability to iteratively select the most informative data samples
[11]. AL is a semi-supervised method meaning that it does not re-
quire labels of all the samples in a dataset. In unsupervised methods
no labeled samples are used and for fully supervised all samples are
labeled. The decision of how much data to use for training a Deep
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Learning model or alternatively the level of performance required is
a resource management decision.

The emphasis in AL is to evaluate the informativeness of an in-
stance, with an assumption that an instance with higher classification
uncertainty is more crucial to label. This classical approach usually
uses statistical theory such as entropy and margin to measure instance
utility, however it fails to capture the data distribution information
contained in the unlabeled data. This can eventually cause the clas-
sifier to select outlier instances to label Therefore, its important to
consider the classification uncertainty as well as instances diversity
in a population while developing an AL solution. In this paper, we
present a Budget Active Learning (BAL) for Deep Networks a new
robust AL method created by combining both uncertainty and corre-
lation measure as an instance informativeness evaluation metric. An
instance is selected based on its informativeness measure and then
a budget annotator is used to label the instance. After each success-
ful labeling the model selection strategy is updated with the new la-
beled data information. We perform various experiments on batched
SVHN, CIFARI10 and plant-seedling-V2 datasets using Deep Net-
works models : Inception-V3, DenseNet and SqueezeNet.

The paper is organized as follows: Section 2 presents related
works. Section 3 presents our proposed Budget AL algorithm. Sec-
tion 4 presents the experiments and results. Section 5 concludes the

paper.

2 LITERATURE REVIEW

Successful investigations on ways to reduce labeling cost by use of
AL has been going on for years now [6]. AL helps reduce the training
data by selecting the most informative instances to label for training
the model [37]. In a typical AL method, learning proceeds sequen-
tially, while actively querying the labels of some instances from the
membership queries. In AL there are three scenarios in which the ML
algorithm will query the label of an instance, they include: a) Mem-
bership Query Synthesis that generates constructs of an instance from
underlying distribution [1]; b) Stream-Based Selective Sampling that
uses query strategy to determine whether to query the label of an
instance or reject it based on informativeness [50]; ¢) Pool-Based
Sampling that uses instances that are drawn from a pool of unlabeled
data according to some informativeness measure [31]. Many recent
works focuses on use of pool-based sampling approach. The aim is
to query labels of the most informative instances, consequently re-
ducing labeling costs and accelerating the learning.

In recent time, there are a number of works focusing on AL strate-
gies to reduce the labeling cost. Yang ef al. (2017) defines in [48]
ways to segment biomedical images by combining fully convolu-
tional network and AL to reduce annotation effort by making sug-
gestions on the most effective annotation areas. In their approach,
the network is used to provide uncertainty and similarity information



which is used to evaluate the most informative areas for annotation.
Sener et al. (2017) in [36] defines AL as a core-set selection problem
by choosing a set of points that the model can use to learn in a batch
setting environment. A geometrical method is used to characterize
the performance of the selected subset. Wanh ef al. (2016) in [45]
introduced a framework for updating the feature representation and
the classifier simultaneously. A sample selection strategy is used to
improve the classifier performance while reducing the manual anno-
tation. Huang et al. (2018) in [18] uses fine tuned pretrained model
on most useful examples. The examples are estimated based on po-
tential contribution of an instance to feature representation. Iscen et
al. (2019) in [21] introduces a transductive method that uses nearest
neighbor graph to make predictions for generating pseudo-labels of
the unlabeled dataset. Wang et al. (2014) in [46] combines AL and
transfer learning into a Gaussian process based approach, and se-
quentially uses predictive covariance to select most suitable queries
from the target domain. Kale and Liu in [25] proposes a framework
to combine the AL with transfer Learning, and utilize labeled data
from source domain to improve the performance in the target domain.
Kale et al. (2015)in [24] introduces a framework for generating ef-
fective label queries by performing transfer learning. The framework
is able to perform both the un-supervised and semi-supervised learn-
ing. Cai et al. (2019) in [2] defines online video recommendation as a
multi-view AL problem. A joint model is proposed to learn the map-
ping from visual view to text view by simultaneously aligning the
two views. In their work Joshi et al. (2009) proposes an uncertainty
measure that generalizes margin based uncertainty to the multi-class
[23]. Chakraborty et al. (2011) propose a dynamic-batch-mode-AL
combined with selection criteria as a single formulation [3].

The conventional way to reduce the cost of designing Deep Learn-
ing model and optimizing its parameters is by exploiting available
pretrained models. Use of pretrained models trained on large bench-
mark dataset can helps reduce the training cost by utilizing the
learned information. This is also referred to as Transfer Learning
(TL) [33]. In TL, instead of starting the learning process from ran-
domly initialized model weights, learning starts from patterns that
have been learned when solving a different problem. This way there
is leverage on previous learnings.The information transfer between
the source and the target domain is done through feature sharing [44]
and components transformation [32]. Performing batch training with
gradient descent optimization helps address the challenge of limited
computing power in deep learning. However, it is not possible to train
Deep Networks efficiently with large training set. To overcome this
challenge, a mini-batch gradient descent is performed by splitting the
training set into smaller sets and gradient descent is implemented on
each of the batches. This approach make training more faster and
efficient. Classical state-of-the-art Deep Network models include:
AlexNet [27], NIN [28], ENet [34], ZFNet [49], GoogLeNet [41]
and VGG 16 [38]. Modern models include: Inception [42], ResNet
[15], and DenseNet [16]. These networks have achieved impressive
performance on computer vision, speech and text recognition with
effective representations for visual objects [13].

From the literature presented, recent AL works focus on select-
ing a single informative unlabeled instance to label using uncertainty
metrics. One main shortcoming of the above approaches is poor gen-
eralization for unseen instances in the domain. This is due to the fact
that they only select queries based on how the instance related to the
classifier while ignoring unlabeled instances. Also with a large set of
instances classification response time can be slow, therefore use of
budget annotator will help reduce active selection and labeling time.

3 AL WITH BUDGET ANNOTATION

In this section, we first describe the general AL algorithm, then we
introduce our algorithm detailing each component. We will use the
following notation in this paper. Let x represents instances and y rep-
resents labels, D = D* U DY, D* denotes labeled instances where
D = {(z1,11), (z2,¥2), ..., (Zn,Yn)}, DY denotes unlabeled in-
stances where DY = {(x1,7), (2,7), ..., (xn,?)}, D denotes
high confidence instances and © denotes the model defined by model
parameters. For label space L° with m classes in D the label of DY
can be expressed as y; = [,l € {1,2,...,m}. Therefore, instance
selection criteria in this study will be based on probability of x; be-
longing to I*" class which can be expressed as:

p(yi = l]z:;0) )

where 6 denotes the CNN network weights and Equation 1 denotes
the network softmax output for I class.

Fu et al. presents a survey on instance selection and introduces
in [10] an inefficient general AL algorithm for Deep Networks. We
present in Algorithm 1 a new generalized form of AL. From lines 4
to 10, the model is iteratively defined according to a budget m.

Algorithm 1: General Active Learning.

1 Input: labeled instance set DL, unlabeled instance set DY,
a budget m;
Output: a model O;

O < getModel(DY);
while | D¥| < m do
DY « D\ D";
for each x; in DV do
L u; < u(zi, O);
8 "« argmax(u;);
i

9 DY « D u{z*};
0| 0+« getModel(DY);

N S ;R W N

return ©;
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Figure 1. BAL conceptual representation

Figure 1 describes the conceptual representation of our method.
The method progressively get data as input from the unlabeled set.
While on initial model parameters, the most informative instance is
selected from the unlabeled set for labeling by the Budget Annota-
tor. On sucessful selection and labeling the labeled instance is added



to the training set and the model selection strategy is simultaneously
updated and validated. Most informative samples and the classified
samples are applied on the classifier output. The process to select and
label instances will iterate until the budget is achieved while simul-
taneously updating the selection strategy.

In order to avoid the problem of generalization of unseen instances
and to learn an accurate model, we present a robust approach by com-
bining the strengths of different learning strategies. An AL annota-
tor use evaluation metrics to compute the instance utility in order to
select the most appropriate instance to label. The utility metrics con-
sidered in this work are uncertainty, correlation and informativeness
measure, thus we present four main components: a) an uncertainty
measure, b) correlation measure, ¢) an informative measure and d)
and budget annotator.

3.1 Uncertainty Measure

Given a label space L° the uncertainty measure f,, of a sample (fea-
tures & label) can be defined as:

(@) : L° - R, (1) features view @)
fule): (DY x L®) = R, (i) features-label view

to a real number space R. From Equation 2, (i) the uncertainty mea-
sure is computed from sample features only while (ii) the measure
is computed from both the sample features and label. In our method
we consider the uncertainty measure computed from sample features
and label view which is considered the most effective [17]. Out of the
three common uncertainty measure criteria namely least confidence,
sample margin and entropy, we considered sampling margin since
it integrates the second most probable class label in the uncertainty
metric hence able to reduce the error rate by defining the decision
boundary. We therefore define uncertainty measure as:

Ju(s) = pys = li|zs;0) — p(yi = lo|2:;0) 3)

High uncertainty value f,, implies current model have little knowl-
edge of the instance, and including it into the training set can help
improve the prediction performance of the model.

3.2 Correlation Measure

When developing efficient AL methods, its is critical to consider
samples distribution information [43]. The instance diversity infor-
mation aids in selecting most representative instances. In order to
have more information about the unlabeled instances its appropriate
to select a candidate instance in a more dense region. In addition, se-
lecting an instance to label only based on uncertainty measure may
lead to redundancy, therefore exploiting sample instance diversity
will provide an optimal instance to label. Our method is based on
the fact that the trade off between instance uncertainty and correla-
tion is an essential AL problem to address. Given a label space L°,
we can define different groups of correlation of an instance x in a set
of unlabeled set as;

DY x DY — R, feature view
L° x L° - R, label view “)
(DY,y) x (DY,y) = R, combined view

fe(@):

to a real number space R. In Equation 4, the combination of feature
and label correlation is called combined view. Different algorithms

exist for exploiting this type of combination [17]. Majorly these al-
gorithms are used in a multi-label learning tasks when an instance
has more than one label. This setting is ideal for mining tasks on in-
stances with complex structure. On our work we focus on exploiting
the pairwise similarities of instances, therefore the informativeness
of an instances is weighed by average similarity to its neighbours.
Let z; and z; be a pair of instances. To cope with the drawback of
uncertainty based selection, we then consider the diversity by eval-
uating the correlation of the instances. Given a label space L° the
correlation measure f.(x;,z;) between a pair of instances in a sam-
ple z; and x; can be defined as:

felw) = = 3" (wi,35) 5)

szDU

The value of f.(x;) represents the instance density of x; in the unla-
beled set. The larger the value, the more densely an instance is cor-
related with others. A low value of the correlation measure indicates
an outlier instance which should not be considered for labeling.

3.3 Informativeness Measure

Our motivation is that the most representative instances of a distribu-
tion can be very informative for improving the generalization perfor-
mance. Therefore, given correlation measure f.(x;) and uncertainty
measure f, (x;) the informativeness of an instance can be defined as:

fi(x) = fulz:) X fe(zi) (6)

It can be rewritten as:

= argr_nax(ui .Ci) @)

3.4 Instance evaluation and Budget Labeling

Instance evaluation is based on the instance informativeness in a set.
In our method we use query by a single model evaluation learned
from the training set. The model is trained on all labeled instances:
feature and label views. After quering for an unlabeled instance,
a model prediction result is generated based on output probability
distribution. Each instance x; = {f{, f3,...f.,y'} in labeled set
D® = {21, 22, ...z} is represented in a feature space F' consisting
of a feature space and its class label 3. The size of D* is denoted
by s and x; denoted the ith instance in DE. The prediction can be
denoted as a mapping function from the feature space F' to the class
label space Y which can be expressed as;

px): F—Y (8)

The query strategy used in this work is based on the value of f; dis-
cussed in equation 6. Instances are ranked based on the value f; with
top ranked instances being the most appropriate to label. Budget an-
notator is used to pick classes which has maximum predicted prob-
ability as if they were true labels. For CNN implementation we use
entropy regularization, this way we are able to separate low density
between classes. High confidence samples from D¥ are selected and
then assign predicted labels to them. For I*"* category we define the
budget label y; as follows;

y" = argmax(p(yi = l[zi;0z,y ) ©

Under the current distribution p(y; = l|z;; 6) each possible instance
(x1,?) from the selected instances D™ will be labeled with label



yi. When y; = 1, x; is regarded as a high confidence sample. The
model update strategy is to learn a model based on the information
provided by model weights computed from model validation of the
performance. The Algorithm 2 describes the Budget Active Learning
(BAL) with budget annotation.

Algorithm 2: Efficient Budget Active Learning (BAL).

1 Input: labeled instance set D, unlabeled instance set DY,
a budget m;

2 Output: model ©;

3 © < getModel (D);

4 while |DY| < m do

5 for each z; in DY do
6 Ui <— fu(il’l),

7 ci + fe(xs);

8 z* < argmax(u, c);
9 D « ¢,

10 for each i in DV do

1 x < argmaxf;(z);
DE « DH U {z};

13 yi <+ getLabel(D™);

14 DY <« DY\ {y:};

15 DY « DY U {y:};

16 © + getModel (DF);

12

—

7 return ©;

BAL is designed to train a classification model using a small la-
beled population sample proportion. At first the BAL is trained using
the initial set of labeled data DT, using the initial weights for pre-
trained models and random initialized weights for untrained models.
In Algorithm 2, the labeling is defined by the budget m with model
updates after each iteration (lines 4-16). Instance evaluation is done
to identify the most informative and representative instance to label
(lines 5-8). This evaluation returns the high confidence instances DH
selected from the unlabeled population (lines 10-12). For each of the
selected instance, its label is queried and consequently the labeled set
is updated. The model selection strategy is updated with the learned
parameters after every iteration.

4 EXPERIMENTS

To examine the efficiency of the proposed algorithm, we have con-
sidered public available datasets and state-of-the-art models.

4.1 Datasets

Three public available datasets namely CIFAR10 [26], Street View
House Numbers (SVHN) [30] and plant-seedling-V2 [14] datasets
are used. The statistical information of the datasets are summarized
in Table 1. For large datasets (CIFAR10 and SVHN), in regards to
their size, we split the data into two sets; 20% as labeled set and 80%
as unlabeled set. Half of the labeled set is randomly sampled as the
training set, and the remaining as the validation set. The testing sam-
ples for each of the dataset is as shown in the table. For the other
dataset (plant-seedling-V2), due to its very small size, 40% was ran-
domly sampled as labeled set and 70% as the unlabeled set. In both
cases, we tried to minimize the size of the training data, in order to

demonstrate the efficiency of our budget AL method. For all data in-
put, resize and normalize transformation was done in order to match
the models input sizes and shapes.

Table 1. Selected datasets used in this work.

Data #instance  #label #train  # validation  # testing
CIFAR10 [26] 50k 10 Sk Sk 10k
SVHN [30] 73k 10 Tk 7k 26k
plant-seedling-V2 [14] 6539 12 1k 807 807

4.2 Fine-tuning Network Parameters

In order to suite the pretrained network to the dataset classes, the
last layer (softmax layer) is truncated and replaced with a layer that
matches the dataset classes. Back propagation is performed to fine-
tune the pretrained weights. 10 model updates were carried out with
a training batch size of 32 and and a learning rate of 0.05. The num-
ber of model updates is sufficient to demonstrate the classification
performance and efficiency of our method over the other methods.
The training rate is carefully considered to ensure a good training
stability and generalization is achieved.

4.3 Models

Table 2 presents six state-of-the-art Deep Networks models that
have comparative few model parameters (M) expressed in million.
While Deep Networks provide state-of-the-art prediction accuracy
to many Machine Learning tasks, it comes at a high computational
cost [39]. Model with more parameters (i.e. bigger networks and
learnable parameters) is slower than a model with less parameters.
The experiments were done using three of these models which have
achieved best performance in ILSVRC and have lower parameters
number (Inception-V3, DenseNet-169 and SqueezeNet). Instead of
only training an entire CNN from scratch (with random initialization)
we considered also transfer learning in order to leverage the training
and then use ConvNet as an initialization and a fixed feature extrac-
tor for the task. In our experiments, we have used pretrained models
given by Pytorch v1.3.0. In this section we will briefly discuss the
architectures of the selected models.

Table 2. Deep Networks models comparison on ImageNet [7].

Model Input Size M Top-1Acc (%) Top-5 Acc (%)
Inception-V1 [41] 224x224 5 70 90
Inception-V2 [20] 224x224 5 74 92
Inception-V3 [42] 299x299 24 78 94
Inception-V4 [40] 299x299 46 80 95
DenseNet-169 [16] bf224x224 14 76 93
SqueezeNet [12] 224x224 3 68 88

GoogLeNet, a 2014 ILSVRC winner, was inspired by LeNet but
implemented a novel Inception module. Their Inception module per-
forms series of convolutions at different scales and subsequently con-
catenate the results. This module is based on several very small con-
volutions in order to drastically reduce the number of parameters.
There has been tremendous efforts done to improve the performance
of this architecture: a) Inception-V1 [20] which performs convolu-
tion on an input, with 3 different sizes of filters (1x1, 3x3, 5x5);
additionally, max pooling is also performed; the outputs are concate-
nated and sent to the next Inception module; b) Inception-V2 [20]



and Inception-V3 [42] factorize 5x5 convolution to two 3x3 convo-
lution operations to improve computational speed; although this may
seem counter intuitive, a 5x5 convolution is 2.78 times more expen-
sive than a 3x3 convolution; so stacking two 3x3 convolutions in fact
leads to a boost in performance; ¢) In Inception-V4 and Inception-
ResNet the initial set of operations were modified before introducing
the Inception blocks. The figures 2, 3 and 4 show the prediction accu-
racy comparison between our approach and other baseline methods
on previously cited models.

When Deep Networks start converging, a degradation problem
is exposed, with the network depth increasing, accuracy gets sat-
urated and then degrades rapidly. Deep Residual Neural Network
(ResNet), a logical extension of DenseNet [16] created by Kaiming
et al. [15] introduced a novel architecture with insert shortcut con-
nections which turn the network into its counterpart residual version.
This was a breakthrough which enabled the development of much
deeper networks. The residual function is a step in which the net-
work learn how to adjust the input feature map for higher quality
features. Following this intuition, the network residual block authors
proposed a pre-activation variant of residual block, in which the gra-
dients can flow through the shortcut connections to any other earlier
layer unimpeded. Each ResNet block is either 2 layer deep (used in
small networks like ResNet 18, 34) or 3 layer deep (ResNet 50, 101,
152). It achieves a top-5 error rate of 3.57% which beats human-
level performance. DenseNet which is a logical extension of ResNet,
brings improved efficiency by concatenating each layer feature map
to every successive layer within a dense block [16]. This allows later
layers within the network to directly leverage the features from ear-
lier layers, encouraging feature reuse within the network. For each
layer, the feature-maps of all preceding layers are used as inputs, and
its own feature-maps are used as inputs into all subsequent layers,
this helps alleviate the vanishing-gradient problem, feature reuse and
reduce number of parameters.

Nowadays with use of Internet of Things and Cloud Computing,
there is constant communication between the servers and the clients.
This brings a need for a smaller sized model with similar or improved
efficiency as the state of the art models. SqueezeNet [19] achieves
AlexNet-level accuracy with 50x fewer parameters [7]. Addition-
ally with model compression technique one can achieve 510 times
smaller than AlexNet compression. In order to reduce the number of
parameters by 9 times, a 3x3 filters are replaced with 1x1 filters. Sub-
sequently, number of input channels is reduced to 3x3 filters. Finally,
the feature map is down-sampled in order to have larger activation
maps.

4.4 Results

The proposed approach was implemented on NVIDIA Tesla P100
GPU. Using few model update iterations, our method demonstrates
impressive prediction accuracy over the other Deep AL methods. In
the experiments losses and accuracies per model update were moni-
tored while comparing the following Deep Active Learning baseline
methods:

e Budget AL (BAL): our proposed method.

e Core-Set AL (CSAL): method proposed in [36] which defines
the AL problem as a competitive sample core-set selection which
is then applied to a CNN in a batch setting.

o Deep Bayesian Active Learning (DBAL): a Bayesian framework
proposed in [11] for high dimensional data which considers Deep
Learning problem of dependence on big amount of data.
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Figure 2. Prediction comparison on CIFAR10 dataset.

e Adversarial AL for Deep Networks (AAL): a margin based ap-
proach proposed in [8] for Deep Networks with intention of re-
ducing the number of queries to the oracle during training.

Impressive performance is recorded by the methods on the pretrained
models as compared to the un-trained models. In general, from the
results the pretrained DenseNet and Inception models on CIFAR10
leverage much better than SqueezeNet on same dataset. This means
that the model weights for DenseNet and Inception model leverage
better that those of SqueezeNet to this type of dataset. On all the
training instances, BAL performs better than all other baseline active
learning methods as shown in Figure 2. On the un-trained models
the prediction performance seem to edge up as the model selection
strategy gets updated.

On SVHN dataset, all Deep Active Learning methods performs
poorly except on un-trained DenseNet and Inception models. The
performance on these models improves after the fifth model up-
date. This is so because initially the models weights do not perform
well with this dataset but after several self tuning there is improved
prediction accuracy. Following the poor performance exhibited in
SquezeNet on both CIFAR10 and SVHN data, we did not conduct
experiments with SqueezeNet on the plant-weed detection problem.
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Figure 3. Prediction comparison on SVHN dataset.

4.4.1 Plant Weed Detection

Agriculture is a critical for human survival and it remains a major
driver of many economies around the world. With increase demand
for food and other agricultural production challenges, there is sure
need to improve on production output. Current agricultural machine
vision solutions are faced with accurate and reliable large scale weed
detection. In this section we present a plant seedling weed detection
problem using a plant-seedling-V2 dataset [14]. The plant-seedling
dataset contains 6539 images from 960 RGB unique seedlings of
plants belonging to 12 species at different growth stages with a phys-
ical resolution of 10 pixels/mm. Because of small dataset available,
15% of the set was used for training our algorithm for weed iden-
tification and 12% used for validation, the rest of the data used as
unlabeled dataset. In addition, in an effort to avoid overfitting the
convolutional base of the networks was frozen and its output used in
the classifier.

In Figures 4(a) and 4(c) we compare our method with other
Deep Active Learning methods in both pretrained Inception-V3 and
DenseNet-161 models on plant-seedling dataset. The results indicate
the efficiency of our method as compared to performance of other
Deep AL methods discussed. Our method is able to adapt better
with the pretrained parameters and quickly provide better prediction.
Figures 4(b) and 4(d) show the performance on the untrained ver-
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Figure 4. Prediction comparison on plant-seedling-V2 dataset.

sions of the models on the same dataset. Using the initial pretrained
parameters to initialize the models yields to better prediction accu-
racy quickly within few model updates. The main results are shown
in Figures 2. and 3. Overall, BAL (in blue line) is able to outper-
form other Deep AL methods on major datasets including the plant-
seedling dataset. By comparing our method with other methods, we
notice an apparent increase in classification accuracy which indicate
that using both instance uncertainty and correlation measure is more
efficient. BAL is able to pick the most representative candidate point
from the unlabeled population. In addition, from the plant-seedling
shown in Figure 4, we observe the superiority of our method tends to
be more obvious even when the number of instances is small. Its clear
that our method can generalize better than other discussed methods
by selecting the most representative instances with only few queries.

5 CONCLUSION

The main objective of AL is to label the most informative instance in
order to achieve high prediction accuracy with minimum cost. Use
of AL in recent technologies is an active research area with efforts to
improve on the prediction accuracy while using less data. In this pa-
per, we propose a Budget Active Learning method for cost-effective
training of Deep Networks. Instead of training from scratch with ran-
dom initialization, a pretrained model parameters can be used to ini-
tialize a model to a new target task by fine tuning with a few actively
queried examples, thus significantly reducing the cost of designing
the network architecture and cost of labeling a large training set.
Using Budget Active Learning, our model was able to achieve up
to 85% prediction accuracy quickly using little amount (from 10 to
20%) of data as training data as compared to conventional AL meth-
ods on Deep Network Models.
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