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Abstract—This work investigates the application of machine 
learning for anomaly detection in control systems, focusing on 
autoencoders as a tool for identifying and analyzing anomalies. 
The relevance of the research is driven by the need to enhance 
cybersecurity and the reliability of systems managing critically 
important production processes. The developed approach 
allows not only to determine the presence of an anomaly but also 
to identify key parameters contributing to its occurrence. The 
results demonstrate the effectiveness of using machine learning 
to improve the safety and reliability of automated systems. The 
contribution of this work lies in the development of a 
methodology for interpreting autoencoder data, providing a 
deep analysis of the causes of anomalies in technological 
processes. 
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I. INTRODUCTION 

In the modern world, processing large volumes of data is 
becoming increasingly important as data analysis plays a key 
role in decision-making and trend forecasting. The automation 
of data extraction and processing is one of the main factors of 
success in various fields. The growth in data volumes requires 
the use of complex analysis methods, where artificial 
intelligence, machine learning, Big Data, and cloud 
computing play a crucial role [1,2]. These technologies enable 
efficient data processing, pattern detection, and future trend 
prediction, helping companies to enhance competitiveness 
and improve product quality. However, as data volumes 
increase, so does the complexity of their processing, 
presenting new challenges in the areas of data storage, 
analysis, and security. 

The performance of any system depends on its ability to 
operate within set parameter ranges, which may vary across 
different system sections or sensors. Key is the system's ability 
to function within these limits. Deviations indicating potential 
issues must be promptly detected and analyzed, whether they 
concern individual sensors or system sections [3]. Analyzing 
such deviations is crucial for system reliability and efficiency, 
involving identifying causes, assessing impact, and 
developing corrective measures to prevent future issues [4]. 

In the field of data analysis, there are various approaches 
to anomaly detection, including outlier detection and the 
search for novelty/out-of-distribution (OOD) detection [5]. 
Outliers are data points that stand out from the overall series 
and can be caused by noise or exhibit irregular behaviour [6]. 
The search for novelty and its subsequent study are critically 
important for the development of artificial intelligence (AI) 

algorithms, making them more informed and adaptable to new 
conditions. 

Novelty in data refers to objects that differ from those in 
the training sample and emerge afterwards, making them 
crucial for detection by machine learning models [7]. These 
systems can identify anomalies, including both singular and 
collective anomalies, that exceed established norms [6]. 
However, limiting learning algorithms to only analyzed data 
can reduce their ability to adapt to novelty, potentially leading 
to incorrect classification of new data as anomalous [8]. 
Novelty can arise from various scenarios, such as equipment 
failures or cyber-attacks, and presents a challenge for 
prediction and identification due to its wide range of forms 
and contexts [9,10]. 

Effective novelty forecasting in data requires analyzing 
large volumes of diverse information, including historical data 
on anomalies. This task involves identifying known types of 
anomalies and adapting to new patterns, necessitating the 
creation of flexible machine learning models for continuous 
learning. The study highlights the relevance of anomaly 
detection, reviewing methods and approaches, including 
statistical methods and machine learning, their advantages and 
limitations. Challenges in the field and the prospects for 
developing new algorithms to tackle the increasing volume of 
complex data are also discussed. 

II. ANOMALY DETECTION METHODS 

Research requires data with clear criteria for normal 
behavior to train algorithms and test hypotheses. Anomaly 
detection, a key element in many areas, involves identifying 
deviations from expected behavior [11-13]. Figure 1 shows 
the methods and approaches to anomaly detection and their 
classification. 

 

Fig. 1.  Scheme of Anomaly Detection Methods. 



Figure 2 presents a visual diagram that vividly 
demonstrates the various methods of detecting anomalies in 
data. The diagram includes the main approaches and 
algorithms used in the field of anomaly detection, providing a 
clear understanding of how these methods are classified and 
interact with each other. Let's consider some common 
methods of anomaly detection. 

 

Fig. 2.  Hierarchical Structure of Anomaly Detection Methods. 

A. Statistical Methods 

Statistical anomaly detection methods [14-15] are crucial 
for identifying deviations that may indicate problems, errors, 
or fraud, based on data's statistical characteristics. These 
methods assume most data follow a certain distribution, often 
Gaussian, identifying outliers as observations significantly 
diverging from this distribution. A common approach is 
statistical quality control [16], which analyzes production 
process characteristics to detect deviations, using indicators 
like mean, standard deviation, and variation coefficient. Let's 
consider some of them: 

Z-score or standard deviation. This statistical tool allows 
assessing how far a value in a dataset deviates from the mean, 
expressed in units of standard deviation [15,17]. It is very 
useful for identifying outliers or anomalous values in data. 

 𝑍 =
(௑ିఓ)

ఙ
, 

where X - value in the dataset, μ - the mean (expected 
value) of all values in the dataset, σ - the standard deviation of 
all values in the dataset. 

This method is especially effective in datasets where the 
distribution approximates a normal (Gaussian) distribution, 
and can be used for automated anomaly detection in large 
datasets across various applications. 

The outlier test refers to a method using the interquartile 
range (IQR) [15] to determine and identify outliers in data. 
This method is widely used in statistical analysis for anomaly 
detection. The ACS method is particularly useful because it is 
resistant to the outliers themselves - the calculation of 
quartiles is not as heavily influenced by extreme values as, for 
example, the arithmetic mean. This makes IQR a preferred 
choice for analyzing data with anomalies. Let's take a closer 
look at how it works. 

The ACS [15,18] is defined as the difference between the 
75th percentile (third quartile, Q3) and the 25th percentile (first 
quartile, Q1) in a dataset. The formula for IQR: 

 𝐼𝑄𝑅 = 𝑄ଷ −  𝑄ଵ 

Based on the IQR, boundaries for detecting outliers can be 
defined. Typically, the follow in grules are used [15]: the 

lower boundary is Q1 - 1.5×IQR, and the upper boundary is 
Q3 + 1.5×IQR. These boundaries help to identify values that 
are considered too low or too high compared to the main 
distribution of the data. Values that fall outside these 
boundaries are classified as outliers. This method is widely 
used in various fields for data preprocessing, to exclude or 
further investigate anomalous values before conducting 
further analysis. 

Histograms play a key role in data analysis, allowing for 
the visualization of the distribution of values in a dataset [19]. 
The main idea of this method is to build a histogram that 
divides the data into a series of intervals or "bins," and shows 
the frequency with which values fall into each of these bins 
[20]. This provides valuable insights about data distribution 
trends, enabling easy identification of areas where data are 
densely grouped, as well as detecting potential anomalies or 
outliers that deviate from the main bulk of the data. The use of 
histograms is particularly useful for preliminary analysis 
when a quick overview of the data distribution character is 
needed. However, this method has its limitations. One of the 
drawbacks is that histograms do not consider the correlation 
between different variables in the dataset. This means that in 
the presence of complex relationships between variables, 
which may affect whether a specific observation is 
anomalous, histograms may not provide a complete picture of 
the situation. Additionally, the choice of the number and size 
of bins can significantly influence the perception of data 
distribution, requiring the analyst to carefully adjust these 
parameters to ensure the most accurate and informative 
visualization. 

Control charts, developed by Walter A. Shuhart [21], are 
used for monitoring and analyzing processes. They help 
identify anomalies in data that differ from the usual behavior 
of the system, which may indicate the presence of safety 
threats or intrusions. In the context of cybersecurity, control 
charts are used to track network activity, access to system 
resources, or any other indicators that may evidence 
unauthorized activity or security breaches. The central line of 
the control chart reflects the average value of the parameter 
being analyzed [21], and the upper and lower control limits, 
usually set at a distance of ±3σ (where σ is the standard 
deviation), help determine when activity deviates from normal 
behavior [21]. Exceeding these limits may serve as a signal for 
further investigation to identify and mitigate potential threats. 

Regression analysis represents a powerful statistical tool 
[15,22] that finds wide application in cybersecurity for 
modeling and predicting system behavior. Using the linear 
regression equation 𝑦 =  𝑎𝑥 +  𝑏, where 𝑦 is the dependent 
variable we try to predict, 𝑥 is the independent variable based 
on which the prediction is made, 𝑎 is the slope of the line 
indicating the amount of change in 𝑦 for a change in 𝑥, and 𝑏 
is the 𝑦 -intercept, it is possible to analyze and predict various 
security aspects [22]. 

In cybersecurity, regression analysis determines 
relationships between certain network traffic frequencies and 
security incidents, identifies correlations between incident 
response times and their system impacts, or predicts 
vulnerabilities based on current threat trends. This approach 
enables security experts to analyze vast data volumes, 
uncovering hidden patterns and trends for more effective 
attack prevention and risk management. Determining 
parameters a and b in the regression equation, based on 



available data, facilitates quantitative assessments of 
relationships among various cybersecurity variables. 

Statistical methods used for time series analysis play a 
crucial role in forecasting and detecting anomalies in various 
fields, including cybersecurity. Methods such as moving 
averages and exponential smoothing allow for analyzing and 
predicting trends based on historical data, which can be 
critically important for preventing or timely responding to 
attacks and threats in the field of information security. 

However, the application of statistical methods in time 
series analysis encounters a number of limitations. In the 
context of cybersecurity, these limitations can affect the 
ability to promptly detect and respond to anomalous events or 
threats, requiring specialists to seek more advanced methods 
of analysis and monitoring. Therefore, it is important to 
integrate statistical methods with other approaches, such as 
machine learning and big data analysis, to increase the 
accuracy and efficiency of anomaly detection in modern 
technological and information systems. 

B. Machine Learning Methods 

Machine learning methods represent advanced approaches 
for detecting anomalies in technological processes and data, 
offering powerful tools for automatically identifying unusual 
patterns [23-24] that may indicate potential problems or 
threats. However, like any technology, they have their own 
characteristics and challenges. One of the key aspects of using 
machine learning for anomaly detection is that, although 
algorithms can effectively identify anomalous data [24], an 
important issue remains understanding why specific 
observations were classified as anomalous. This is because 
many machine learning models act as a "black box," 
especially in the case of complex algorithms such as deep 
learning. Understanding the influence of specific parameters 
on the results of the model can be difficult without additional 
analysis. 

Furthermore, tuning the model parameters is a critically 
important stage in the process of creating an effective anomaly 
detection system. Model parameters selected manually may 
require adjustments depending on the specifics of the data and 
the objectives of anomaly detection, which can become a 
challenge without sufficient experience and knowledge in the 
field of machine learning. 

In the context of cybersecurity and managing 
technological processes, using machine learning for anomaly 
detection offers significant advantages, including the ability to 
quickly process large data volumes and identify complex 
threats. However, the success of these systems largely 
depends on the correct choice of algorithms, parameter 
settings, and constant adaptation to changing conditions. 

Classification algorithms, such as One-Class SVM and 
Isolation Forest, are popular tools in the field of machine 
learning for detecting anomalies in data [25-26]. They offer 
unique approaches to identifying unusual patterns that may 
indicate significant deviations in the data or potential threats. 
Let's examine them in more detail: 

One-Class Support Vector Machines (One-Class SVM) 
[26] is a specialized machine learning algorithm used to 
determine whether new data is anomalous or normal. This is 
achieved by training the algorithm on data considered 
"normal" with the goal of isolating these data into a separate 
class. Successful operation of One-Class SVM requires 

careful data preparation and the selection of an appropriate 
kernel function so that the model can effectively separate 
"normal" data from potential anomalies, defining the 
separation boundary. 

Isolation Forest is an anomaly detection algorithm [26] 
based on the concept of isolating data points using an 
ensemble of isolation trees. It is effective in detecting 
anomalies because anomalous data is usually easier to isolate 
from the rest of the data. The algorithm randomly selects 
features and splits the data, building trees until each data point 
is isolated. Anomalous data typically gets isolated with fewer 
splits, resulting in a shorter path in the tree. Isolation Forest is 
well-suited for working with data containing noise or multiple 
clusters where traditional outlier detection methods might fail. 

Clustering algorithms play a crucial role in anomaly 
detection by allowing the grouping of data based on their 
similarities and highlighting those that do not conform to 
common patterns. Let's take a closer look at two popular 
clustering algorithms: k-Nearest Neighbors (k-NN) and 
DBSCAN [27]. 

The k-NN method assumes data of the same class are 
closer together, while anomalies are far from most normal 
data. For each object, the algorithm calculates the distance to 
its k nearest neighbors. If the distance to the neighbors exceeds 
a threshold, the object may be an anomaly. k-NN is simple to 
implement and can be effective for small datasets. However, 
its performance may degrade for high-dimensional data or 
complex structures due to the "curse of dimensionality." The 
method also requires choosing the optimal number of 
neighbors and threshold, which may not be trivial. 

DBSCAN (Density-Based Spatial Clustering of 
Applications with Noise) is a clustering algorithm that groups 
points based on their density connectivity [28] and is capable 
of detecting clusters of arbitrary shapes as well as separating 
noise and anomalies. The algorithm starts with a random 
point, identifies all points in its "neighborhood" based on 
specified parameters (eps and MinPts), and, if the point has 
enough neighbors, it becomes part of the cluster. The process 
is repeated until all points are visited. DBSCAN is excellent 
for data with noise [28] and can detect anomalies as outliers 
not belonging to any cluster. However, the algorithm may face 
challenges when dealing with data where clusters vary in 
density since choosing global parameters for eps and MinPts 
may not simultaneously suit all clusters. Additionally, the 
algorithm can be computationally expensive for very large 
datasets. 

Algorithmic methods are important tools for finding 
interesting patterns and associations between different 
elements in large datasets. They are particularly useful in 
anomaly detection tasks, allowing the identification of 
unusual or infrequently occurring combinations of data that 
may indicate anomalies. Let's delve into three mentioned 
algorithms: Apriori, FP-Growth, and ECLAT [29-30]. 

The Apriori algorithm iteratively discovers frequently 
occurring sets of elements, starting with one-element sets and 
gradually increasing the size of sets. At each step, the 
algorithm uses sets found in the previous step to generate new 
candidate sets of larger size [31]. It then determines their 
frequency of occurrence and filters out sets whose frequency 
is below a specified threshold. 



FP-Growth (Frequent Pattern Growth) uses a tree structure 
to efficiently store frequently occurring combinations [29-30]. 
It compresses the database into an FP tree, which is then used 
to generate frequent items without the need to generate 
candidates. 

ECLAT (Equivalence Class Clustering and bottom-up 
Lattice Traversal) operates by transitioning from a vertical to 
a horizontal data representation, utilizing the concept of 
equivalence classes [29-30]. It searches for associative rules 
by performing a bottom-up traversal of the lattice of nested 
sets, enabling efficient identification of frequently occurring 
items. The advantage of ECLAT lies in its ability to process 
data efficiently without repeated scanning and with minimal 
memory requirements. It is faster than Apriori but may be less 
efficient compared to FP-Growth when dealing with very 
large datasets. 

Unsupervised learning algorithms are pivotal for anomaly 
detection, enabling data analysis without predefined labels. 
Among such algorithms, Principal Component Analysis 
(PCA) and the Local Outlier Factor (LOF) [31] hold special 
significance, each with its applications and limitations. The 
PCA transforms original data features into orthogonal 
principal components [31]. These components are ordered so 
that the first few capture most of the variance in the data. 
When using PCA for anomaly detection, the extent to which 
data deviates from the first few principal components is 
analyzed. Large deviations may indicate anomalies. The 
Mahalanobis distance is used to measure the degree of 
deviation of each data point from the model constructed using 
principal components. If this distance for a point exceeds a 
predefined threshold, the point may be considered anomalous. 
The LOF assesses local data density [31]. It compares the 
density of each object's surroundings with the densities of its 
neighbors. Objects with significantly lower density than their 
neighbors are considered outliers. LOF is well-suited for 
detecting anomalies in data with varying density and complex 
structure, where anomalous points may not be as explicitly 
delineated [32]. 

Neural networks are powerful tools in the field of machine 
learning, especially when it comes to anomaly detection in 
data [33]. Their ability to learn and generalize complex 
patterns makes them ideal for identifying deviations that may 
indicate potential issues or unusual states in various processes 
and systems. Let's explore the main types of neural networks 
used for anomaly detection: 

Autoencoder (AE) is trained to reconstruct input data after 
compressing it into a smaller hidden space [34]. The 
efficiency of signal reconstruction on new, normal data is 
high, while for anomalous data, the reconstruction results are 
typically poorer, enabling anomaly detection. Careful 
selection of hyperparameters and training on normal data are 
required for accurate anomaly detection. 

LSTM (Long Short-Term Memory) networks are capable 
of processing and remembering information over long periods 
[34], making them ideal for analyzing time series and 
detecting anomalies based on historical data. They are 
particularly useful in conditions of unbalanced and dependent 
time series, where it's crucial to account for both short-term 
and long-term dependencies. 

GAN (Generative Adversarial Network) are trained to 
generate data similar to the normal data, while a discriminator 
tries to distinguish between real and generated data [35]. 

Anomalies can be detected by analyzing how well new data 
can be reproduced or differentiated by the network. They are 
suitable for anomaly detection by creating data that differs 
from the learned distribution of normal data. 

SOM (Self-Organizing Map) are used for clustering data 
in a lower-dimensional space while preserving the topological 
properties of the original space [35]. Anomalies can be 
identified by analyzing the distances between nodes and 
clusters. They are effective for data visualization and 
clustering, which allows for the detection of anomalies as 
points that deviate from common clusters. 

The use of neural networks for anomaly detection offers a 
flexible and powerful approach, capable of adapting to various 
types of data and application scenarios. It's important to 
emphasize that successful application of these methods 
requires a deep understanding of the data specifics and 
process, as well as careful selection and tuning of model 
parameters. Combining different approaches can enhance the 
effectiveness of anomaly detection, providing a more reliable 
and accurate identification of potential problems. 

III. RESULT AND DISCUSSION 

Automated control systems (ACS) play a key role in 
various industries, enhancing efficiency and reducing costs. 
However, their increasing use raises vulnerabilities to 
cyberattacks that can have serious consequences. 
Vulnerabilities may arise from software errors, architectural 
flaws, and unauthorized access, making system components 
targets for attacks. A particular problem is the inadequate 
protection of network protocols, many of which are outdated 
in terms of cybersecurity, allowing malicious actors to 
intercept and modify data, potentially disrupting equipment 
operation and management processes. ACS connected to 
corporate networks or the internet for remote access increase 
the risk of cyberattacks. Vulnerabilities in network 
infrastructure can be exploited to affect operations. Even 
isolated ACS are at risk from data carriers or internal threats 
like malicious employees. A comprehensive approach 
combining technical and organizational measures is essential 
for ACS security. 

This study proposes the use of Autoencoders (AEs) for 
detecting anomalies in technological processes, with a key 
aspect being not just the identification of anomalies but 
understanding their causes. AEs effectively detect anomalies 
by analyzing deviations of reconstructed data from the 
original. However, one of the primary tasks is to identify 
specific features or parameters that caused the anomalies. This 
requires the development of additional algorithms or 
techniques capable of analyzing and interpreting the AE's 
results to determine which changes in the data are critical. 

One approach to addressing this issue involves applying 
machine learning or deep learning techniques that can analyze 
relationships between various parameters in the data and 
identify those most strongly associated with anomalies. For 
example, classification or clustering algorithms could be used 
to analyze data processed by an autoencoder to identify groups 
of features characteristic of abnormal states. 

Another approach involves using Explainable Artificial 
Intelligence (XAI) techniques, which can help interpret the 
results obtained from complex deep learning models like AEs. 
XAI methods can provide insights into which features 
contribute most significantly to the model's decision-making 



process, allowing for the identification of parameters 
associated with anomaly detection in the case of AEs. 

Interpreting the results obtained from AEs in large-scale 
Industrial Control Systems (ICS) indeed poses a significant 
challenge due to the complexity and volume of data generated 
by numerous sensors and mechanisms. These systems can 
encompass thousands or even millions of different parameters, 
making the analysis of anomalies particularly challenging for 
understanding and interpretation. Using simulated data to 
assess anomaly detection systems, especially in cybersecurity 
and industrial monitoring, is crucial. It helps refine models 
before applying them to complex real-world data. 
Autoencoders, trained on normal behavior data without 
anomalies, effectively detect deviations when exposed to real 
data. This approach reduces false positives by learning the 
characteristics of normal behavior. After training on simulated 
data, the model's quality assessment occurs by checking its 
ability to accurately reconstruct input data. This step is critical 
to ensure that the model is sensitive enough to anomalies 
without losing the ability to correctly interpret normal data. 

Next, applying the model to real data opens the possibility 
for the practical use of AEs in anomaly detection. Here, the 
key point is the analysis and interpretation of the results that 
the model provides when encountering potential threats or 
non-standard operating conditions of the system. Using a 
model trained on data without anomalies, with appropriate 
hyperparameters, allows for the precise identification of 
moments when deviations from usual behavior occur, which 
is the basis for detecting attacks or technical malfunctions. 

The importance of this approach is amplified when 
comparing the model's predictions with data containing 
anomalies. This allows for an assessment of how effectively 
the model can detect real incidents, and how accurately it can 
predict potential threats based on its training. Calculating the 
errors or losses between the input data and its reconstruction 
by the model provides insight into the quality of data 
reconstruction and sensitivity to anomalies. 

The structure of an autoencoder, which includes an 
encoder for compressing input data into a hidden 
representation and a decoder for reconstructing data from this 
representation, plays a key role in the training process and 
anomaly detection. By training to minimize the reconstruction 
error, it aims to reproduce the input data as accurately as 
possible, while being highly sensitive to any deviations that 
may indicate issues within the system. 

The proposed approach to determining the contribution of 
each parameter to an anomaly when using AEs highlights the 
importance of understanding the dynamics of reconstruction 
errors in the context of multidimensional data. In the process 
of training the autoencoder, the focus is on minimizing the 
data reconstruction error, directing attention to the use of a 
loss function based on Mean Squared Error (MSE). The MSE 
loss function, denoted as Lmse, plays a crucial role in 
optimizing the training process of the autoencoder, providing 
a mechanism for assessing the quality of the model's data 
reconstruction. 

The formula for 𝐿𝑚𝑠𝑒 is as follows: 

 𝐿𝑚𝑠𝑒 =
1

𝑛
∑ (𝑥𝑖 − 𝑥ො𝑖)

2𝑛
𝑖=1  

where𝑛 is the total number of parameters (dimensions) in 
the data, 𝑥௜ represents the true value of the i-th parameter, and 
𝑥ො௜ is the predicted value of the i-th parameter, reconstructed 
by the autoencoder. 

Based on the assumption that an anomaly might be caused 
by only a small subset of all parameters, it's crucial to identify 
which specific parameters contribute most significantly to the 
anomaly. The introduction of a vector 𝑔, indicating the degree 
of contribution of each parameter to the anomaly, allows for 
more detailed analysis of how changes in parameter values 
affect the anomaly assessment by the model. If the value of a 
parameter increases relative to its normal state, the 
corresponding element in vector 𝑔 becomes positive, and vice 
versa. 

The minimization task proposed for determining the 
degree of contribution of each parameter to the anomaly aims 
to reduce the MSE, which, in turn, should lower the overall 
anomaly score provided by the autoencoder as the parameter 
values approach their normal operating values. This is suitable 
for filtering out those parameters that are truly important for 
detecting and interpreting anomalies, reducing the likelihood 
of misinterpretation due to the influence of anomalies on 
reconstruction errors across all measurements. Thus, this 
approach not only improves the accuracy of anomaly 
detection but also promotes a deeper understanding of the 
contribution of individual parameters to the emergence of 
anomalous situations. 

Interpreting the operation of an autoencoder in the context 
of anomaly detection represents a key aspect when analyzing 
data from complex control systems. An autoencoder trained 
on training data without anomalies incorporates architectural 
components such as an input layer, several fully connected 
layers, normalization layers, and activation functions. This 
ensures its ability to efficiently learn and generate accurate 
reconstructions of input data. Minimizing the mean absolute 
error and using the MSE as a metric to assess the quality of 
the reconstruction, along with the application of early 
stopping, helps prevent overfitting. 

To interpret the results of the autoencoder and identify 
features that most influence anomalies, the gradient descent 
method is applied. This method allows calculating how 
changing each input feature affects the reconstruction error, 
which is valuable information for localizing and 
understanding the causes of anomalies. After training on data 
in a normal state, the weights in the autoencoder are frozen to 
investigate the model's response to data corresponding to the 
moment of an attack. 

The interpretation process involves feeding a portion of 
the test data representing the moment of attack into the trained 
autoencoder, after which the MSE between the reconstructed 
outputs and the original inputs is calculated. Then, using 
gradient descent, those input features whose change most 
significantly affects the reconstruction error are identified. 
This approach not only helps to detect anomalies but also 
allows understanding which specific changes in the data are 
most significant for their occurrence. Such an approach can be 
particularly useful for diagnosing and preventing future 
attacks in cybersecurity systems. 

Thus, the use of AEs in cybersecurity represents a complex 
but extremely promising approach to ensuring the safety and 
reliability of industrial systems. It allows not only to detect 
potential threats but also to analyze their nature to develop 



effective measures to prevent attacks and technical 
malfunctions in the future. 

IV. CONCLUSIONS 

During the study, it was found that anomalies can occur 
anytime and anywhere in the process, simultaneously 
affecting various system stages. This significantly 
complicates their detection and localization. Moreover, the 
technological process can be disrupted not only by attacks 
from malicious actors but also by other reasons, such as 
equipment malfunctions, incorrect settings of sensors and 
equipment parameters, and changes in parameters caused by 
force majeure circumstances. All these events negatively 
impact the production process, highlighting the relevance of 
applying machine learning methods for timely detection of 
anomalies and determining their causes. The use of machine 
learning allows not only detecting anomalies in real-time but 
also predicting potential threats, minimizing the risk of critical 
situations and ensuring reliable protection of production 
processes. 
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