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Abstract—The constant growth of data and its importance
to drive Machine Learning and Big Data is pushing storage
systems towards ever increasing I/O bandwidth and lower
latency requirements. In recent years, the Non Volatile Memory
Express (NVMe) standard has enabled SSD drives to deliver
high I/O rates by allowing the storage to be connected directly
via the fastest available interconnect to the processing chip.
In parallel, the adoption of FPGAs in data centers is creating
opportunities to accelerate various applications and/or Oper-
ating System (OS) operations. While, FPGAs in data centers
have been connected via PCIe to mostly x86 servers, we have
now also available heterogeneous SoCs with multi-cores and
FPGAs integrated on the same die and connected by an on-
chip interconnect.

In this paper, we present how to rethink and accelerate
NVMe performance on heterogeneous SoC with integrated
FPGAs providing a first research insight on the performance
benefits of such an approach. We provide an analysis of the
Linux block I/O layer and showcase the relationship between
the system’s performance and its I/O implementation. Conse-
quently, we introduce an FPGA-based fast path which acceler-
ates the access to the NVMe drive. Our comparative evaluation
demonstrates that our FPGA-based FastPath achieves up to
71% lower latency and up to 5x higher I/O performance against
the baseline system on a Zynq development board.

Keywords-NVMe; SSDs; FPGA; Linux Block I/O; Heteroge-
neous Systems

I. INTRODUCTION

Modern storage technologies, such as the NVMe standard,
leverage high throughput interconnects (i.e. PCIe) providing
significant I/O performance improvements for modern SSDs.
Although NVMe SSDs have become ubiquitous in data
centers, still exists performance bottlenecks to be tackled.
The majority of the bottlenecks derive from the Operating
System (OS) storage I/O software stack (e.g. file system
& Direct I/O, Block I/O, NVMe driver), which has been
designed and optimized following the traditional assumption
that processing cores deliver higher performance than any
peripheral I/O device [1].

Optimizing the I/O software stack inside the kernel is a
specialized task, requiring OS expertise and understanding
the different layers of this stack. For example, an I/O
transaction from the application user space to a block
device, includes multiple steps of delegating or copying data
throughout stack (e.g. from user to kernel memory and from
kernel memory to disk). In addition, following the reverse

path of an I/O request, the hardware device should also
communicate with the processing cores to mark successful
completion of operations, or to notify about specific failures.

In parallel to the deployment of NVMe, the adoption of
FPGAs in data centers is creating opportunities to accelerate
various applications or OS functionality [2]. While FPGAs
in data centers have been traditionally connected via PCIe
to mostly x86 servers, there is also a trend of heterogeneous
SoCs with multi-cores and FPGAs integrated on the same die
and connected by an on-chip interconnect (e.g. Xilinx Zynq
family and Intel/Altera Stratix 10 SoC, including future
products prototyped by Intel HARP using Xeon class multi-
cores and facilitated by EMIB).

Given these trends, recent work [3], [4] has started to
investigate how to combine FPGA-based accelerators with
Flash storage, to improve both energy efficiency and perfor-
mance.

A natural question that arises regarding these heteroge-
neous SoCs is whether we can use the integrated FPGA
not only for accelerating various applications, but also for
accelerating OS functionality [5]. And if so, how could we
combine and delegate both acceleration and OS functionality
onto the FPGA fabric bypassing the multi-core processing
system?

This paper addresses this research question by introducing
FastPath. FastPath offloads the existing slow-performing
operations of the I/O software stack of the Linux kernel onto
the FPGA, pursuing a direct wire-speed link between appli-
cations and NVMe SSDs. Hence, we manage not only to
achieve performance improvements, but to potentially enable
“on-device-edge” computations where data can be streamed
and processed from/to storage without any processing core
intervention. This paper makes the following contributions:

• Analyzes the performance inefficiencies of the Linux
software I/O stack on an ARM-FPGA SoC and de-
scribes how they affect NVMe performance.

• Describes FastPath, our low overhead solution for ac-
celerating I/O operations by eliminating the slow I/O
interactions.

• Details the prototype implementation of FastPath on an
ARM-FPGA SoC.

• Evaluates FastPath against standard I/O benchmarks
showcasing up to 5x performance increase and 71%
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Figure 1: The NVMe architecture on SoCs with integrated FPGAs.

reduction in total latency.
The paper is organized as follows: Section II describes

the I/O software stack for NVMe block devices analyzing
each layer of the stack. Section III presents the FastPath ar-
chitecture of the NVMe system running on an ARM-FPGA
system. Section IV describes the evaluation methodology
and experimental results. Finally, Sections V and VI present
the related work and the concluding remarks of this paper,
respectively.

II. THE NVME SYSTEM ARCHITECTURE

NVMe is a recent SSD standard [6], [7] designed to
leverage the high throughput PCIe interconnect enabling
scalable solutions in highly demanding systems such as data
centres. Data centres, typically based on server aggregation
and virtualization, aim for efficient resource utilization by
multiplexing several virtual instances on the same physical
servers. Unlike the conventional time sharing techniques, the
NVMe standard follows a different approach allowing up to
64K pairs of hardware queues for accessing the block device
(by sending I/O requests to the device disk controller).
Furthermore, the submission/completion scheme of NVMe
requests is configurable and allows multiple cores to share
one completion queue, leading to more efficient memory
utilization [8]. Although the default NVMe architecture
includes up to 64K pairs of submission and completion
queues, several research papers propose isolation schemes
of write and read queues in order to improve performance
[9].

The NVMe architecture is a two-layer architecture in
which a software stack processes user requests and submits
them to the storage device via the NVMe driver. Figure

1a depicts the baseline NVMe architecture highlighting the
most important parts of each layer. At the software layer,
user applications, through the File System or Direct I/O,
submit requests (Step 1) to the Block I/O which end up
at the NVMe driver (Step 2). The driver, in turn, retrieves
those requests, creates corresponding NVMe commands
and submits them to the controller in order to be served
(Step 3). The controller, through memory via the Root
Complex (RC) IP of the FPGA, reads the commands from
predefined memory addresses and serves the requests (Step
4). The predefined memory locations are allocated during
initialization, where the NVMe driver creates in-memory
queues from which the controller can fetch commands. In
addition to a pair of administrative queues, the driver creates
N queue pairs, where N equals the number of cores of
the system. Each individual pair consists of a submission
and a completion queue where submission and completion
commands are respectively enqueued. Finally, the design of
this system aims high scalability as all cores are able to
process I/O requests in parallel.

The I/O software stack executes on the processing cores
of the system, and communicates with the controller through
the physical PCIe root port (in our system the PCIe root port
resides in the FPGA). Accordingly, the controller uses the
PCIe root port to write completion responses to the main
memory.

A. Block I/O Overview

The Linux Operating System (OS) manages the NVMe
SSDs as any other block device in the system. Therefore,
the associated Linux device driver is developed with respect
to the I/O software stack. Any application (e.g. dump disk



-dd, or a user program) can read/write data from/to the disk
by using either a File System or directly through a system
call (e.g. ioctl, read, write).

Typically, applications run in user mode, which is a
system mode with limited permissions compared to the OS.
On the contrary, OS kernels are built in an administrative
mode that enables them to access and administrate all system
devices. Therefore, every OS, including Linux, offers various
system call functions that allow them to perform device
operations on behalf of the requesting applications. More-
over, several Application Programming Interfaces (APIs)
have been used as abstraction layers to perform the user level
requests to the OS kernel. The file system is such a layer in
the storage system, allowing any application to access data
within a block device without interacting directly with the
physical sectors and logical block addresses.

The Block I/O (BIO) subsystem is a software layer in
the Linux OS that performs I/O requests onto block devices
[10]. In essence, it is responsible for communicating and
manipulating I/O requests from applications to the storage
devices providing a single entry point from the upper levels
to the lower levels of the software stack. In particular, BIO
provides error handling, profiling, and fair scheduling in
order to improve performance. Finally, following the trend
of modern multicore systems, the BIO subsystem has been
also evolved to support multiple request queues [11]. This,
in turn, increased the potential of emerging storage systems
that leverage the PCIe interface; previously limited by the
legacy kernel I/O stack.

B. NVMe Driver and Controller

The NVMe driver is the software layer between the
BIO layer and the NVMe controller, which is responsible
for synthesizing NVMe commands for each incoming I/O
request from the BIO layer.

The NVMe driver is using a number of pages (Physical
Region Pages - PRP) of the system memory to write or
read data to and from the disk, respectively. Once the PRPs
are successfully mapped, the NVMe command is ready to
get synthesized. Besides the PRPs, an NVMe command
is comprised of the starting logical block address (slba)
which is the logical location within the block device, the
length of the current transaction, and an opcode (divided
into administrative and I/O).

After successfully locking the I/O queue, a pending com-
mand is copied into the I/O queue’s memory, and the tail
of the queue is written to the doorbell register, as a way to
inform the NVMe controller. After ringing the bell, the block
device starts processing the I/O request and the NVMe driver
starts polling (unless it is interrupt driven) the corresponding
completion queues, in a round robin way. Once a successful
response arrives in the completion queue, the driver unmaps
the allocated memory and returns a successful message to
the BIO layer.
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Figure 2: The average latency of the baseline system for 4KB block
size in microseconds (µs).

The NVMe controller resides in the device and is respon-
sible for the correct operation of the Flash drive. Operations
performed by the controller include:

1) Queue structure configuration.
2) Execution of the submitted commands.
3) Translation of the logical block address to the physical

block address in the Flash memory.
4) Error detection of the cells in the Flash drive.
5) Sending a response back to the driver for the suc-

cessful or unsuccessful completion of the requested
operation.

C. Performance limitations

The current Linux I/O software stack adds extra overhead
when accessing block devices (e.g. NVMe drives) due to the
numerous software layers that submission and completion
commands must follow (including a number of expensive
system calls). Figure 2 provides an insight of this overhead
as measured on the Xilinx Zynq-7000 SoC, that consists of
two ARM Cortex A9 processors and an FPGA, running the
standard Flexible I/O (fio) benchmark [12] (typically used
in assessing I/O performance).

As shown in Figure 2, for all configurations of read/write
and sequential/random operations, the actual time of the
device latency accounts only for 9-10% of the total latency.
This means that up to 91% of the total execution time of
a single I/O request is spent in submitting and completing
the I/O request. Excluding the time spent in the device,
the remaining time is distributed amongst the SYSCALL
(SUBMIT I/O) to the BIO layer, the processing taking
placing at the BIO layer in the kernel (KERNEL), and
the device driver (DRIVER). Although, in our platform
(32bit ARM Cortex A9 processors) the overhead is further
exacerbated due to the low IPC, even in higher performing
x86 systems this overhead can be up to 50% of the total
execution time [13].



Table I: The FastPath API.
API Description

fastpath *fp= fastpath_alloc(int size); Allocates disk space, maps a DMA buffer
into the application’s virtual address space,
and returns a fastpath object.

fastpath_write(fastpath *fp, void *buffer, int size, FP_FLAGS); Sends an I/O write request.
fastpath_read(fastpath *fp, void *buffer, int size, FP_FLAGS); Sends an I/O read request.
fastpath_polling(fastpath *fp); Blocks until all requests are fulfilled.
fastpath_free(fastpath *fp); Releases the allocated disk space.

III. FASTPATH: AN NVME FPGA-ACCELERATED
SYSTEM

As demonstrated in Section II-C, the I/O software stack
servicing NVMe requests adds a significant performance
overhead on modern SSDs. Therefore, bypassing or accel-
erating this stack is of paramount importance in achieving
wire-speed performance.

FastPath, our novel NVMe FPGA-accelerated system,
attempts to solve this problem by: 1) bypassing the Linux
software stack by designing and exposing an API to the
user level that enables applications to place NVMe requests
directly to the FPGA, and 2) implementing the BIO and
driver logic into the FPGA for acceleration, achieving a near
wire-speed performance from the time an NVMe request is
received up until it is fulfilled.

FastPath has been designed with the following main
objectives:

1) Avoid any data copying which can decrease the effi-
ciency of the system.

2) Minimize the total latency of the baseline system by
bypassing completely the Linux kernel.

3) Preserve compatibility, by allowing the baseline sys-
tem to co-exist with the FPGA FastPath system.

4) Accelerate the submission and completion paths by
offloading the functionality to the FPGA, bypassing
completely both the Block I/O layer and the driver.

5) Support multi-threading enabling concurrent applica-
tions to access the NVMe drive securely.

The current version of FastPath has been designed with
raw performance in mind. Therefore, it does not implement
yet any filesystem underneath, but focused on a high-
performance direct read/write path to the NVMe SSDs in
a raw form. This approach is mostly suited for applications
that require disk persistence such as in-memory databases.
The following subsections describe in detail the various
components that comprise FastPath.

Listing 1: The definition of the fastpath struct type

t y p e d e f s t r u c t {
char ∗ dma address ;
i n t f p i d ;
i n t b l o c k s i z e ;

} f a s t p a t h ;

A. Disk Allocation and Release

Applications that require read/write access to the
NVMe drive must explicitly request disk space. The
fastpath_alloc function, shown in Table I, accepts as
input parameter the size of the requested disk space, and
returns a descriptor fp_id of type fastpath (shown in
Listing 1).

The fastpath struct is composed of the following three
fields:

1) dma_address: A pointer to the DMA address for
direct read/writing to the disk, avoiding any extra data
copying.

2) fp_id: A unique incremental identifier of the current
disk partition.

3) block_size: The block size of the requests. Ini-
tially this field is empty and is populated by the user
prior to calling the FastPath read/write I/O functions.
This way we can have a flexible block size per-request.

The fastpath_alloc function may fail either due to
inability to allocate a logical partition or to communicate
with the FastPath IP on the FPGA. In case of failure (denoted
by a returned NULL), the application has to repeat the same
call again. Finally, the release of an allocated partition is
performed by the fastpath_free function.

B. Memory Allocation

In contrast to the baseline system, FastPath enables zero
copy of data during disk I/O, by mapping DMA buffers
into the virtual address space of the applications. Every
FastPath Submit module (described later in Section III-D),
that resides in the FPGA, has an assigned DMA buffer. For
write operations, the data to be written on disk are placed
into the DMA buffer, associated with the FastPath IP, and
sent to the disk drive. Similarly for read operations, the data
fetched from the disk are placed into the DMA buffers where
applications can directly access it. In addition, the addresses
of the DMA buffers are used as the Physical Region Pages
(PRPs) during NVMe command creation.

The DMA buffers are pre-allocated in the driver’s memory
address space during the initialization phase of the device.
As shown in Figure 1b (Step 1), when the application
calls the fastpath_alloc function, the FastPath library
internally performs an mmap system call (Step 2) to the
Linux kernel to map the buffers into the application virtual
memory (this is the only system call performed in FastPath).
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The invoked mmap function is a custom implementation
inside the NVMe driver that allows us to expose the DMA
buffers to the FastPath library. However, this function is
never exposed to the user and is called transparently by the
FastPath library upon initialization.

C. NVMe Request Submission

In FastPath, the submission of requests to the NVMe
device is performed directly to the FPGA, bypassing
completely the OS stack (Figure 1b, Step 3). As de-
picted in Figure 1b, applications can submit requests di-
rectly to the FastPath controller in the FPGA, through
the fastpath_read/fastpath_write functions (Ta-
ble I). These functions accept as arguments: 1) a pointer to
the fastpath struct, 2) a pointer to the buffer where the
user’s data is read/written from/to, 3) the size of the request,
and 4) the FP_FLAGS.

Regarding the FP_FLAGS, FastPath currently supports
direct or indirect calls (FP_DIRECT flag) and synchronous
or asynchronous requests (FP_BLOCKING flag). These two
flags can be combined resulting in four different combi-
nations of I/O requests. If the FP_DIRECT flag is set,
the application can use the DMA buffers directly through
the dma_address field of the fastpath struct. If the
FP_DIRECT is not set, the FastPath library will internally
perform a memcpy of the data pointed by buffer to the
DMA buffers. The FP_BLOCKING flag indicates whether
the application will block until all requests are completed. If
set, the fastpath_read/fastpath_write functions
will not return until all requests are served. Otherwise,
they will return immediately leaving to the programmer the
ability to inquire about the successful request completion,
by using the fastpath_polling function.

D. FastPath Logic

As shown in Figure 1b, the FPGA hosts the Xilinx
AXI-mapped PCIe Root port, alongside with the FastPath
IP block. The FastPath IP block consists of three mod-
ules (FastPath_Submit, FastPath_Complete, and

FastPath_Control) illustrated in Figure 3. Finally, all
hardware blocks have been designed in the Bluespec hard-
ware description language.

The FastPath_Control module receives I/O requests
from the applications through the FastPath API (Figure
1b, Step 3) and forwards them to the rest of the FastPath
modules. The FastPath_Submit module is responsible
to form the NVMe commands and submit them onto the
NVMe submission queue. The FastPath_Complete, on
the other hand, polls the completion queue to signal the
completion of a request as well as reports statistics to the
FastPath API regarding the latency of the total request.
The submission and completion queues are in memory
data structures that hold NVMe commands and completion
entries respectively. These queues are accessed by the NVMe
controller of the SSD and their corresponding base addresses
and doorbells are assigned during the initialization phase of
the device driver.

The FastPath_Control module, as shown in Figure
3a, holds a request FIFO queue and serves two roles. The
first is to accept from the FastPath API NVMe requests
and forward them to the FastPath_Submit module.
This allows us to have multiple FastPath IP blocks (de-
pending on the size of the FPGA) and implement any
scheduling algorithms at this stage. The second role is to
bookkeep the number of NVMe commands that have to
be completed in order to signal a completion message for
a specific request (please note that the mapping between
NVMe requests to NVMe commands is 1...N based on the
configuration). Every submitted request is forwarded by the
FastPath_Control module in the Submit FIFO of the
FastPath_Submit module, as shown in Figure 3b. For
every forwarded request, the Command Accumulator
is updated to submit the desired number of commands.
Accordingly, the number of pending commands is passed
to the NUM CMDS REG in the FastPath_Complete
module, as shown in Figure 3c.

The FastPath_Submit module manipulates the mem-



ory for I/O requests in a 4KB1 unit size, and performs the
following actions:

• Synthesizes the NVMe commands based on
the arguments of the fastpath_read and
fastpath_write API functions (Synthesis phase in
Figure 3b). An NVMe command is a 512-bit wide field
that contains information about the submitted operation
(e.g. read/write), the DMA address of the data to be
processed, the starting logical block address in the
volume, and a command identifier. The command
identifier is used to indicate a data dependency
between two commands. If the device support NUMA-
optimized NVMe drivers [8], the command identifier
will be combined with the submission queue identifier,
to distinguish the commands submitted by different
queues.

• Submits NVMe commands onto a specific NVMe
queue stored in memory (Submission phase in Figure
3b). The tail of the depicted circular queue is stored in
a register and is updated according to the actions of the
NVMe driver. Whenever the tail reaches the depth size
of the queue, it resets to the start.

• Notifies the NVMe controller about the pending sub-
mission (Doorbell phase in Figure 3b). This is achieved
by storing the new tail in the “doorbell” register, which
is a memory mapped PCI register (unique for each
submission queue).

The FastPath_Complete module (Figure 3c) is re-
sponsible for:

• Polling the completion queue until the submitted com-
mands of a request have been finished. Similarly to
the submission queue, the completion queue is also
circular. The head of the completion queue is stored in a
register which is updated based on the new completion
entries.

• Calculating and reporting time statistics.
Finally, contrary to the conventional system which is using

an interrupt-driven mechanism to complete the I/O requests,
the FastPath architecture implements a polling completion
method for the two following reasons: a) it keeps the
processor completely uninvolved in the I/O process, and b)
avoids any traffic occurred by the interrupt controllers.

E. FastPath API and Programmability

FastPath has been designed with programmability and
portability in mind. Therefore, the software component of
the system has been developed as a thread-safe standard
C library (“libfnvme”) that interfaces with user programs
via the API shown in Table I, and has been validated
against multithreaded workloads. The library abstracts away

1Please note that the disk block size is device specific; ranging from
512B to 8KBs in our case. FastPath currently supports only 4KB with
future plans to extend it to various block sizes.

Table II: System configuration.
Processor Core Dual-core ARM Cortex-A9 MPCore @667 MHz
FPGA Device Xilinx Zynq-7000 SoC (Device Name: Z-7035)

L1 Cache 32 KB Instruction, 32 KB Data per processor
L2 Cache 512 KB

On-Chip Memory 256 KB
External Memory 1 GB DDR3
DMA Channels 8 (4 dedicated to Programmable Logic)

PCI Express Xilinx Root Complex IP operating at 125 MHz
(PCIe-Gen2 speeds, up to 8 lanes)

NVMe Storage Samsung PM953 SSD 480 GB NVMe 1.1
(attached via U.2 connector)

Operating System Linux Kernel 4.4
fio fio-2.99

Table III: NVMe I/O request latency on FastPath and baseline
systems.

Latency (µs)
seq-read rand-read seq-write rand-write

Baseline 328.9 321.8 350.6 352.3
FastPath 105.4 105.7 100 100.67

implementation details from the user and exposes only a
lightweight API that allows easy integration with existing
applications in a safe and secure manner (e.g. only 8 lines
of code modified in order to run the fio benchmark with
FastPath).

IV. PERFORMANCE EVALUATION

We prototyped FastPath on an ARM SoC that consists
of a dual-core Cortex A9 MPcore processor and an FPGA.
Table II, contains the detailed characteristics of our testbed.
The Flexible I/O tester benchmark (fio) [12] is used for
both the validation and evaluation. In particular, the libaio
engine is used to generate asynchronous I/O traffic (reads
and writes) to the Flash drive. The FastPath architecture
is operating at 125 MHz, which is the reference clock
frequency generated by the Xilinx Root Complex IP. The
Root Complex IP occupies 12.1% of the logic resources of
the FPGA, while the FastPath IP block occupies 12.4%. In
addition, the FastPath IP block employs 33.7% of the slices
as memory.

Please note that we could potentially add multiple Fast-
Path IP blocks. However, the lack of software parallelism
(due to having a dual core processor) and the fact that the
Root Complex IP has only one port to the memory, would
not enable us to perform scalability studies.

Finally, both the baseline system and FastPath are evalu-
ated on the same ARM SoC (Table II) in order to provide a
fair comparison and the presented results are the geometric
means of 15 iterations over 1 MB2 of data per configuration.

A. Performance Analysis

1) Latency: The latency is measured as the time spent to
submit an I/O request, forward it to the NVMe controller,
process it, and complete. In essence, it is the time taken after
issuing a request until it is completed.

2We also experimented with larger data sizes but we did not notice any
performance differences.
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Table III presents the total latency for all types of op-
erations on 4KB block size requests (averaged over 15
iterations) for both the baseline and FastPath systems. As
shown in Table III, FastPath improves the total latency of
read and write operations by up to 67% and 71%, respec-
tively. The reason is that FastPath optimizes the submission
and completion paths of the baseline system, described
in Section II-C, by accelerating them on the FastPath IP
block. In the submission path, the SYSCALL (SUBMIT
I/O) is replaced by a lightweight copy of the request into
the FastPath_Control module, while in the completion
path the BIO and the driver layers of the kernel are replaced
by the FastPath_Complete module. Please note that
Table III and Figure 2 show only the latency (submission to
completion), excluding the time spent to create I/O requests
in order to achieve more precise comparisons.

2) Bandwidth: Figure 4 illustrates the I/O bandwidth for
both FastPath and the baseline system. We evaluate the
bandwidth for various block sizes, starting from 4KB (equal
to the kernel’s page size) up to 128KB.

As shown in Figure 4, FastPath achieves higher through-
put than the baseline configuration ranging from 160 MBps
(rand-write) to 575 MBps (rand-read). Similarly to the
speedup results, the increase in bandwidth is due to the
elimination of all the expensive system calls to the kernel
I/O stack, as well as the acceleration of the creation and
issue of the NVMe commands performed on the FPGA.

The maximum advertised bandwidth of the particular SSD
we used in our experiments is 1GBps for read operations and
800MBps for write operations [14]. That means that FastPath
is currently at 40% of the theoretical maximum bandwidth.
The gap in performance is mainly attributed to the slow 32
bit ARM core used during request creation. We tested our
hypothesis by implementing a custom microbenchmark that

issues pre-generated I/O requests onto the FPGA (bypassing
libaio), and we managed to achieve I/O bandwidth close
to 800 MBps. We anticipate that even with this overhead,
when FastPath ported to high end x86 systems [15], as well
as when multiple FastPath IP blocks are placed into the
FPGA, we will manage to achieve “out-of-the-box” near
wire-speed performance.

3) I/O Operations per Second (IOPS): The number of
IOPS, a common metric for assessing SSD performance, is
the number of block sized I/O requests performed within a
second and is strongly connected to both the latency and the
block sizes of the system; lower latency leads to more I/O
requests served by the system within a time window.

Figure 5 presents the IOPS for all configurations and
various block sizes for both FastPath and the baseline
system. As shown, FastPath achieves, at least five times
more IOPS for read and write operations. Furthermore, we
notice that the number of IOPS decreases when the block
size increases. This is because the fulfilment of the same
data size with larger block sizes can lead to lower number
of IOPS since a smaller number of I/O requests are created
within a second.

Finally, please note that both the IOPS and the bandwidth
are linked to the performance of the processor since the time
spent to create I/O requests is factored into the results; as
per the fio methodology of reporting performance numbers.

V. RELATED WORK

A first group of related work can be classified as Near
Data Processing (NDP) [16] to FPGA acceleration of large
scale data [17], [18]. FastPath differs from the aforemen-
tioned approach by targeting OS code, rather than applica-
tion code and by accelerating I/O requests to NVMe SSDs
on FPGAs.

A second category of related work has focused on ac-
celerating the kernel’s I/O software stack. For example,
Caulfield et al. [19] proposed to bypass the BIO layer
and implemented a separate driver, as a way to increase
performance. Lee et al. [9] presented a novel queue isolation
scheme, considering the write interference and increasing
the read performance in heavy read workloads. Bjørling
et al. [11] redesigned the BIO layer in order to enable
scalability and exploit the spare hardware capabilities by
implemented multi-queue support. Nonetheless, FastPath
differs from these approaches by bypassing completely the
kernel’s software I/O stack and offloading the functionality
directly onto the FPGA, taking advantage of modern SoCs.

Finally, a last group of related work has exposed APIs,
aiming to enable direct access to the NVMe from the user
space [13], [20], [21]. Although these approaches manage
to bypass a significant part of the kernel’s software stack,
extra user space code is required in order to perform various
functionalities such as command creation and scheduling.



FastPath, on the other hand, attempts to offload and accel-
erate the whole process onto the FPGA, which not only
improves performance but also enables the implementation
and pipelining of extra functionalities (e.g. encryption, de-
cryption, sorting, user defined functions) directly into the
data path between the disk drive and memory, bypassing
completely the CPU.

VI. CONCLUSIONS

In this paper we introduced FastPath: an FPGA-based
solution for accelerating NVMe-based SSDs. After we il-
lustrated the performance bottlenecks of current kernels’
I/O software stacks, we presented the design and our
first prototype implementation. The evaluation of FastPath
against standard I/O benchmarks demonstrated up to 5x
higher IOPS and up to 71% lower latency than the baseline
implementation.

In the future we plan to investigate user defined function-
ality on the FPGA. At the moment FastPath supports raw
I/O transactions since the focus of this paper is to examine
the I/O performance and not the file system functionality.
We plan to investigate the best match between file systems
and FastPath.
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