
EasyChair Preprint

№ 494

An approach of collecting performance anomaly

dataset for NFV Infrastructure

Qingfeng Du, Yu He and Tiandi Xie

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 8, 2018



An approach of collecting performance anomaly
dataset for NFV Infrastructure

Qingfeng Du, Yu He, Tiandi Xie, Kanglin Yin, and Juan Qiu

School of Software Engineering, Tongji University
Software Engineering RD Centre, Jishi Building, Tongji University

Shanghai, China
https://github.com/XLab-Tongji

{du cloud, rainlf, xietiandi, 14 ykl, Juan qiu}@tongji.edu.cn

Abstract. Network Function Virtualization(NFV) technology is widely
used in industry and academia. Meanwhile, it brings a lot of challenges
to the NFV applications’ reliability, such as anomaly detection, anomaly
location, anomaly prediction and so on. All of these studies need a
large number of anomaly data information. This paper designs a method
for collecting anomaly data from Infrastructure as a Service(IaaS), and
constructs an anomaly database for NFV applications. Three types of
anomaly datasets are created for anomaly study, including datasets of
workload with performance data, fault-load with performance data and
violation of Service Level Agreement(SLA) with performance. In order
to simulate an anomaly in a production environment better, we use Ku-
bernetes to build a distributed environment, and to accelerate the oc-
currence of anomalies, a fault injection system is utilized. Our aim is
to provide more valuable anomaly data for reliability research in NFV
environments.

Keywords: Anomaly database· NFV· Kubernetes· IaaS· Clearwater·
Performance monitoring· Fault injection.

1 Introduction

Network Function Virtualization(NFV) is becoming more and more popular.
Many Communication Service Providers(CSP) have begun to migrate applica-
tions to Network Functions Virtualization(NFV) environment[1]. Detection of
anomaly and anomaly location is very important for providing better network
services. It is necessary to predict anomalies in some special circumstances. It
needs to analyze the rules and connections in a large number of anomaly data.
But in production environment, the cost of collecting these data is expensive. So
it is meaningful to collect these anomaly data for research in the experimental
environment.



2 Qingfeng Du, Yu He, Tiandi Xie, Kanglin Yin, and Juan Qiu

At present, there are many databases for anomaly data, such as KDD CUP
99 dataset1, NAB dataset2, Yahoo Webscope S5 dataset3, and so on. All of these
could be a benchmark for evaluating algorithms for anomaly detection. But these
datasets also exist some restrictions, like single label, data redundancy and so
on. On this basis, we collect anomaly data from three different perspectives.

In NFV environment, the cause of the failure is not single. In order to describe
different exceptions more accurately, the multiple types of fault tags are neces-
sary. Our method uses fault injection system to specify fault types of anomaly
data, making datasets more suitable to deal with the problem of multiple clas-
sification in machine learning[2].

In addition, the malfunction of system resources can also lead to system
anomaly happen, the pressure of users on system workload will also lead to
system anomaly behavior[3]. In production environment, increase of users may
be an important factor leading to anomaly service compared to the occurrence of
hardware anomaly events. Our method also collects anomaly data under different
workload.

In NFV applications, the typical quality of service index is Service Level
Agreement(SLA)4. When a violation of SLA occurs, it represents an anomaly
service. Our method also collects performance data under different SLA level.
It helps researcher to analyze the relationship between a occurrence of SLA
violation and performance data of IaaS in a system.

At last, we propose several machine learning models based on supervised
learning to detect SLAs of VNFs and anomaly in IaaS. And compare the exper-
imental results of each model. The result of the comparison between the models
show that our anomaly database has a certain reference value in the anomaly
detection with VNFs Environment.

The paper is organized as follows: Section 2 introduces the technical back-
ground and our related work in the construction of the anomaly database. Sec-
tion 3 introduces the architecture of the data collection. Section 4 shows the
implementation of our experiment. Section 5 provides a classical case study of
Clearwater project5, gives a detailed description of the building of the anomaly
database. And at last, we summarizes the contribution and discuss the future
work in Section 6.

2 Background and Related Work

With the development of Internet applications and the maturity of hardware vir-
tualization, The emergence of Infrastructure as a Service (IaaS) [4] provides the
underlying hardware support for this architecture. It makes network providers

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2https://github.com/numenta/NAB
3https://webscope.sandbox.yahoo.com/catalog.php?datatype=s
4https://en.wikipedia.org/wiki/Service-level agreement
5http://www.projectclearwater.org/



Title Suppressed Due to Excessive Length 3

do not need care about the details of the underlying hardware devices, and con-
centrate on providing upper level services.In this context, Virtual Network Func-
tions (VNFs) represent any virtual execution environment configured to provide
a given network service. VNFs are often structured in several components each
one hosted on single VMs.

The existing anomaly databases collect a lot of anomaly data in different
fields. KDD CUP 99 dataset is used for network attack diagnosis. Each of its
data records whether or not it has been attacked at the moment. It means that
there are only one label in dataset, normal or anomaly.

Even Mahbod Tavallaee and his collaborator further optimized KDD CUP 99
dataset called NSL-KDD, it still has the same limitations[5]. This paper provides
a disturbance system to specify the type of fault load to analyze the influence
of different fault types on the performance of the tested system.

Markus Thill present a comparative study where several online anomaly de-
tection algorithms are compared on the large Yahoo Webscope S5 anomaly
benchmark[6]. But the yahoo Webscope S5 dataset is more suitable for time
series analysis. It continues to have some limitations for the classification of dif-
ferent faults. We present a new approach to collecting performance data that
with fault label. It has more advantages in the classification problem of anomaly
detection.

In this paper, we integrate common single fault time series analysis prob-
lems and multiple fault classification problems in complex systems, propose cor-
responding performance data collection system and disturbance system. Then
establish varied dataset in our anomaly database, Provide reference for fault
analysis in different scenes. The details is shown in our site6.

3 Architecture of data collection

This section outlines the framework of our performance data collection. In order
to accurately collect data that with a fault type label, the framework consists
of three systems, target application system (target system), disturbance system
and performance monitoring system (monitoring system), as shown in Figure 1.

3.1 Target system

Target system is a NFV application system, which is software implementations
of network functions that can be deployed on a network functions virtualiza-
tion infrastructure (NFVI). NFVI is the totality of all hardware and software
components that build the environment where VNFs are deployed.

3.2 Disturbance system

The core function of the disturbance system is fault injection[7][8], it is used
to accelerate the occurrence of anomaly events in the target system, such as

6https://github.com/XLab-Tongji



4 Qingfeng Du, Yu He, Tiandi Xie, Kanglin Yin, and Juan Qiu

Fig. 1. Architecture of the performance data collection

hardware performance bottlenecks, SLA violation and so on. In this paper, we
use linux system stress tool called stress-ng[9] to simulation system pressure to
achieve fault injection function.

In order to produce different types of disturbance to the system, we use
different types of fault injection in the target system:

– CPU stress fault
– MEMORY stress fault
– IO stress fault

Every type of fault injection will consume the system resources as much as
possible to ensure the occurrence of anomaly events.

In most situations, anomaly diagnosis of platforms or systems is often di-
rected against single point failure[10]. So we use a strategy to ensure that only
one type of disturbance occurs on only one virtual machine at the same time.

When fault injection occurs, the disturbance system will record the log of the
fault injection at the same time, including the start time, the duration, the type
of fault and the target virtual machine. After the monitoring system collects
performance data, the logs can be used to tag the performance data.

3.3 Monitoring system

There are many kinds of mature IaaS layer monitoring schemes at present, like
Zabbix7, Nagios8, Cacti9. Considering our experimental environment and mon-

7https://www.zabbix.com/
8https://www.nagios.org/
9https://www.cacti.net/



Title Suppressed Due to Excessive Length 5

itoring project items, we use Zabbix to monitor the system and collect perfor-
mance data online.

Zabbix is an enterprise open source monitoring software for networks and
applications with C/S model, the zabbix agent is installed in the VMs. The situ-
ation shows that agent monitoring is more accurate than agent-less monitoring,
and can more accurately describe the performance model of a system[11].

The Table 1 shows the performance model in our approach. Zabbix agents
will collect these metrics from VMs, and store them in it’s MySQL database.
We also offer a JAVA application to download these performance data throw
RESTful API from Zabbix server.

Table 1. Zabbix monitoring metrics

Metric name Description Metric name Description

net.if.in[] Network interface discovery: Incoming network traffic vfs.fs.inode[/var/lib/docker/aufs,pfree] Free inodes on /var/lib/docker/aufs (percentage)
net.if.out[] Network interface discovery: Outgoing network traffic vfs.fs.inode[/var/lib/kubelet,pfree] Free inodes on /var/lib/kubelet (percentage)
proc.num[,,run] Number of running processes vfs.fs.inode[/var/lib/rancher/volumes,pfree] Free inodes on /var/lib/rancher/volumes (percentage)
proc.num[] Number of processes vfs.fs.size[/,free] Free disk space on /
system.cpu.intr Interrupts per second vfs.fs.size[/,pfree] Free disk space on / (percentage)
system.cpu.load[percpu,avg1] Processor load (1 min average per core) vfs.fs.size[/,total] Total disk space on /
system.cpu.load[percpu,avg15] Processor load (15 min average per core) vfs.fs.size[/,used] Used disk space on /
system.cpu.load[percpu,avg5] Processor load (5 min average per core) vfs.fs.size[/boot,free] Free disk space on /boot
system.cpu.switches Context switches per second vfs.fs.size[/boot,pfree] Free disk space on /boot (percentage)
system.cpu.util[,idle] CPU idle time vfs.fs.size[/boot,total] Total disk space on /boot
system.cpu.util[,interrupt] CPU interrupt time vfs.fs.size[/boot,used] Used disk space on /boot
system.cpu.util[,iowait] CPU iowait time vfs.fs.size[/var/lib/docker/aufs,free] Free disk space on /var/lib/docker/aufs
system.cpu.util[,nice] CPU nice time vfs.fs.size[/var/lib/docker/aufs,pfree] Free disk space on /var/lib/docker/aufs (percentage)
system.cpu.util[,softirq] CPU softirq time vfs.fs.size[/var/lib/docker/aufs,total] Total disk space on /var/lib/docker/aufs
system.cpu.util[,steal] CPU steal time vfs.fs.size[/var/lib/docker/aufs,used] Used disk space on /var/lib/docker/aufs
system.cpu.util[,system] CPU system time vfs.fs.size[/var/lib/kubelet,free] Free disk space on /var/lib/kubelet
system.cpu.util[,user] CPU user time vfs.fs.size[/var/lib/kubelet,pfree] Free disk space on /var/lib/kubelet (percentage)
system.swap.size[,free] Free swap space vfs.fs.size[/var/lib/kubelet,total] Total disk space on /var/lib/kubelet
system.swap.size[,pfree] Free swap space in % vfs.fs.size[/var/lib/kubelet,used] Used disk space on /var/lib/kubelet
system.swap.size[,total] Total swap space vfs.fs.size[/var/lib/rancher/volumes,free] Free disk space on /var/lib/rancher/volumes
vfs.fs.inode[/,pfree] Free inodes on / (percentage) vfs.fs.size[/var/lib/rancher/volumes,pfree] Free disk space on /var/lib/rancher/volumes (percentage)
vfs.fs.inode[/boot,pfree] Free inodes on /boot (percentage) vfs.fs.size[/var/lib/rancher/volumes,total] Total disk space on /var/lib/rancher/volumes
vfs.fs.inode[/boot,pfree] Free inodes on /boot (percentage) vfs.fs.size[/var/lib/rancher/volumes,used] Used disk space on /var/lib/rancher/volumes
vm.memory.size[available] Available memory vm.memory.size[total] vm.memory.size[total]

4 Implementation

This section presents the implementation of our test bed environment. It includes
infrastructure, kubernetes platform, monitoring system, attacker system and the
clearwater-docker NFV application running in kubernetes platform, as shown in
Figure 2.

4.1 Infrastructure

The virtualized platform is a VMWare ESXI machine with 64 CPUs, 128GB
memory and 2TB disk. It can provide multiple virtual machines on a physical
machine. In this paper, we create 10 VMs on it. Every VM has 2 CPUs, 8GB
memory and 20GB disk. VMs are connected through a 1000Mbps virtualized
network. The VMs has the docker environment with version 17.03.2-ce that can
deploy most docker container in it.



6 Qingfeng Du, Yu He, Tiandi Xie, Kanglin Yin, and Juan Qiu

4.2 Kubernetes

Kubernetes is a powerful container management platform. We use it to deploy
the Clearwater project as described below. Here we use the Rancher scheme10

to deploy kubernetes platform on the VMs. The reason is it can easily deploy
the kubernetes platform. The installation steps are described as following:

1. Confirm that the network between the virtual machines just created is work-
ing;

2. Select a host as the rancher server host and deploy the latest version of
rancher docker image on it;

3. Waiting for the rancher server is running Correctly, access the rancher server
page from the 80 port of the host;

4. Create a new environment for test bed based on kubernetes template;
5. Add all other VMs in this environment and wait rancher server add them to

kubernetes platform automatically.

Fig. 2. Deployment of the test bed

4.3 Monitoring and attack system

The monitoring system consists of zabbix server host and zabbix agents. Zabbix
agents were installed on each VM when they were created and connect to zabbix

10https://rancher.com/



Title Suppressed Due to Excessive Length 7

server through the web page configurations. When the connection is set up, the
agent will began to collect performance data and report them to the server at a
set time interval.

Attacker host is also an independent host. It will execute the attack scripts
which we provided to perform fault injection into VMs.

4.4 NFV application

The NFV application is a distributed computing system running NFV applica-
tion. Here we utilise the Clearwater project. It is an open source implementation
of an IMS for cloud platforms. It provides SIP-based (Session Initiation Protocol)
voice and video calling, and messaging applications. It implements key standard-
ized interfaces and functions of an IMS (except a core network) which enable
industries to easily deploy, integrate and scale an IMS[3]. Clearwater project is
consequently well suited for NFV related studies, it consists of about 10 com-
ponents, every component plays its own unique functions in the system, and
the relationship between components is shown as Figure 3. Due to the docker
deployment scheme, every Clearwater docker container is configured to allow
unlimited use of host resources.

Fig. 3. Architecture of the clearwater project



8 Qingfeng Du, Yu He, Tiandi Xie, Kanglin Yin, and Juan Qiu

Bono (Edge Proxy): The Bono nodes form a horizontally scalable SIP
edge proxy providing both a SIP IMS Gm compliant interface and a WebRTC
interface to clients. Client connections are load balanced across the nodes. The
Bono node provides the anchor point for the clients connection to the Clearwater
system, including support for various NAT traversal mechanisms. A client is
therefore anchored to a particular Bono node for the duration of its registration,
but can move to another Bono node if the connection or client fails.

Sprout (SIP Router): The Sprout nodes act as a horizontally scalable,
combined SIP registrar and authoritative routing proxy, and handle client au-
thentication and the ISC interface to application servers. The Sprout nodes also
contain the in-built MMTEL application server.

Dime (Diameter gateway): Dime nodes run Clearwaters Homestead and
Ralf components.Homestead (HSS Cache) provides a web services interface to
Sprout for retrieving authentication credentials and user profile information. It
can either master the data (in which case it exposes a web services provisioning
interface) or can pull the data from an IMS compliant HSS over the Cx interface;
Ralf provides an HTTP API that both Bono and Sprout can use to report billable
events that should be passed to the CDF (Charging Data Function) over the Rf
billing interface.

Vellum (State store): Vellum is used to maintain all long-lived state in the
deployment. It does this by running a number of cloud optimized, distributed
storage clusters including Cassandra,etcd,Chronos and Memcached.

Homer (XDMS): Homer is a standard XDMS used to store MMTEL ser-
vice settings documents for each user of the system.

Ellis: Ellis is a sample provisioning portal providing self sign-up, password
management, line management and control of MMTEL service settings.

As introduced before, the Bono, Sprout, and Homestead are the Core modules
in the Clearwater project, they are working together to control sessions initiated
by users. So our data collection work is mainly focused on these three modules.

When experiment begins, Clearwater is running normally to generate normal
data, or running overloaded to generate anomaly data. When system is running
normally, the attacker host can execute attack to disturb system to produce
anomaly data and record the log. While the monitoring system is monitoring
the VMs performance metrics and collect all normal and anomaly data on it to
establish the database.

5 Case study

This section introduces a classic Clearwater case study. On the basis of the nor-
mal operation of system, disturbed the system by overload work stress and fault
injection respectively to produce the anomaly dataset. And select the machine
learning algorithm with better performance in anomaly detection[12][13][14][15]
to verify the availability of datasets.



Title Suppressed Due to Excessive Length 9

In order to produce a normal workload, use the official recommended tools
clearwater-sip-stress-coreonly 11. It can control the working stress of the system
by specifying three parameters as:

– subscriber count: the number of subscribers to emulate;
– duration: the number of minutes to run stress for;
– –multiplier: Optional parameters, multiplier for the VoLTE load profile (e.g.

the default is 1 means 1.3 calls and 24 re-registers per sub per hour; passing
2 here will mean 2.6 calls and 4 re-registers per sub per hour).

We chose 500 subscribers, 60 minutes and 450 multiplier for experiment,
At this point, the system can reach a 100% successful call rate. When the work
stress continues to increase, the successful call rate began to decline. So we mark
this point as a engineering level point x, it means the system has running in full
workload under the current configuration.

5.1 Workload module

As described above, we use engineering level point x as a standard to produce
workload. Test the performance data of the system under 0.8x, 1X, 1.5x, 2x and
2.5x pressure respectively. The structure of collected dataset is shown in the
table 2.

5.2 Faultload module

In this paper, we forces on the single point fault, it means at the same time, there
is only one type of fault be injected into one VM. 0.8x engineering level is chosen
to be the normal system running workload to easily observe the anomaly repre-
sentation generated by fault injection. The process of fault injection is shown in
Figure 4.

Within a specified time period, the fault injecting program will select a Select
random fault type, a random target virtual machine, and a random injection
period to start a disturbance process. This process will continue until the total
of time which fault injection consumed reaches the stipulated time period. As
described in Algorithm 1.

The disturbance system also records the injected log while injecting the fault.
The key information includes timestamp, fault type, target host and injection
duration. As Algorithm 2 described, We use the fault injection log to indicate
which fault injection stage each performance data record belongs to, like normal,
cpu fault, memory fault or io fault. The result of data process is shown in Table
3.

In order to collect the anomaly SLA data, the workload module and faultload
module work together to disturbance the system. We calculate the SLA level of
the system from the percentage of successful requests(PSR). When PSR ≥ 90%,
means the system is in good condition, marked as level 2. When 50% ≤ PSR ≤

11https://clearwater.readthedocs.io/en/stable/Clearwater stres testing.html



10 Qingfeng Du, Yu He, Tiandi Xie, Kanglin Yin, and Juan Qiu

Fig. 4. Fault injection process

Algorithm 1 Fault Inject Controller

Input: vm list, inject type list,
duration list, duration

1: timer = 0
2: while timer < duration do
3: inject vm = random(vm list)
4: inject type = random(inject type list)
5: inject duration = random(duration list)
6: timer+ = inject duration
7: inject(vm, inject type, inject duration)
8: sleep(pause)
9: end while

90%, means the system is in unhealthy condition, marked as level 1. When
PSR ≥ 50%, means the system is in bad condition, mark as level 0. The structure
of dataset is shown in Table 4.

Table 2. Dataset A

Timestamp Vm1-metric2 Vm1-metric1 ... Vm2-metric1 Vm2-metric2 ... Vm3-metric1 Vm3-metric2 ... Workload level

1521448560 70% 73% ... 69% 77% ... 66% 69% ... 1
1521448565 73% 73% ... 68% 75% ... 70% 74% ... 1

... ...
1521458230 98% 99% ... 97% 100% ... 95% 97% ... 2

5.3 Dataset verification

This part introduces four widely used machine learning algorithms, namely, sup-
port vector machine, nearest neighbor, naive Bayes and random forests. And use
them to locate outliers in the system performance data.



Title Suppressed Due to Excessive Length 11

Algorithm 2 Data Labeled Controller

Input: performance data, injection log
1: labeled data = []
2: while performance data.has next()! = null do
3: data = performance data.next()
4: data label = label(data, injection log)
5: labeled data.append(data label)
6: end while

Table 3. Dataset B

Timestamp Vm1-metric2 Vm1-metric1 ... Vm2-metric1 Vm2-metric2 ... Vm3-metric1 Vm3-metric2 ... Normal CPU MEMORY IO

152263940 70% 73% ... 69% 77% ... 66% 69% ... 1 0 0 0
152263945 73% 73% ... 68% 75% ... 70% 74% ... 1 0 0 0
152263950 73% 100% ... 69% 79% ... 72% 73% ... 0 1 0 0

... ...
152267680 71% 74% ... 70% 75% ... 99% 72% ... 0 0 0 1

Table 4. Dataset C

Timestamp Vm1-metric2 Vm1-metric1 ... Vm2-metric1 Vm2-metric2 ... Vm3-metric1 Vm3-metric2 ... SAL level

1521448560 90% 72% ... 92% 74% ... 85% 91% ... 2
1521448565 85% 77% ... 83% 75% ... 73% 88% ... 1

... ...
1521458230 66% 68% ... 92% 89% ... 87% 79% ... 0

Table 5. Validation results of anomaly dataset

Service Measure Nearest Neighbors SVM Naive Bayes Random Forset

Precision 0.98 0.89 0.95 0.97
Dataset A Recall 0.97 0.88 0.93 0.96

F1-score 0.97 0.87 0.93 0.98

Precision 0.93 0.90 0.96 0.99
Dataset B Recall 0.92 0.91 0.95 0.98

F1-score 0.93 0.89 0.97 0.99

Precision 0.94 0.87 0.89 0.98
Dataset C Recall 0.97 0.93 0.91 0.96

F1-score 0.96 0.92 0.94 0.97



12 Qingfeng Du, Yu He, Tiandi Xie, Kanglin Yin, and Juan Qiu

There are 737 records in dataset A and dataset B, we employed the first 80%
of them as the train set, having trained the learning methods, the rest 20 percent
are used as test set to validate the algorithm model. The validation result are
shown in Table 5.

The results show that the accuracy, recall rate and F1-sroce of each model
reach a higher value. And because of the multi classification problem of the
dataset, the random forest model achieves the best results.

6 Conclusion and Future work

In this paper, we describe an approach to deploy NFV application Clearwater
projects through the Kubernetes platform. On this basis, we use disturbance
application system and monitoring system to collect performance data of IaaS
layer devices under NFV application scenario to build anomaly database. Three
categories of anomaly datasets with specified label are collected, includes work-
load with performance data, faultload with performance data and SLA level with
performance data. The details of the anomaly database can be accessed on our
website12.

Through some widely used machine learning algorithm, we verify these datasets
and get high accuracy. This means these datasets have some reference value for
anomaly detection. In the future, we will try more anomaly scenes and cause
anomaly reasons, and build corresponding anomaly datasets to analyze them.
We hope to be of certain guiding significance for the detection of anomaly in
different scenes.

References

1. J. Liu, Z. Jiang, N. Kato, O. Akashi, and A. Takahara. Reliability evaluation for
nfv deployment of future mobile broadband networks. IEEE Wireless Communi-
cations, 23(3):90–96, June 2016.

2. Mathijs Pieters and Marco Wiering. Comparison of machine learning techniques
for multi-label genre classification. In Benelux Conference on Artificial Intelligence,
pages 131–144, 2017.

3. Carla Sauvanaud, Kahina Lazri, Mohamed Kaâniche, and Karama Kanoun.
Anomaly detection and root cause localization in virtual network functions. In
Software Reliability Engineering (ISSRE), 2016 IEEE 27th International Sympo-
sium on, pages 196–206. IEEE, 2016.

4. Sushil Bhardwaj, Leena Jain, and Sandeep Jain. Cloud computing: A study of
infrastructure as a service (iaas). International Journal of engineering and infor-
mation Technology, 2(1):60–63, 2010.

5. Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A detailed
analysis of the kdd cup 99 data set. In Computational Intelligence for Security and
Defense Applications, 2009. CISDA 2009. IEEE Symposium on, pages 1–6. IEEE,
2009.

12https://github.com/XLab-Tongji/ADNFVI



Title Suppressed Due to Excessive Length 13

6. M. Thill, W. Konen, and T. Bck. Online anomaly detection on the webscope s5
dataset: A comparative study. In 2017 Evolving and Adaptive Intelligent Systems
(EAIS), pages 1–8, May 2017.

7. Roberto Natella, Domenico Cotroneo, and Henrique S Madeira. Assessing depend-
ability with software fault injection: A survey. ACM Computing Surveys (CSUR),
48(3):44, 2016.

8. Jeroen Delvaux and Ingrid Verbauwhede. Fault injection modeling attacks on 65
nm arbiter and ro sum pufs via environmental changes. IEEE Transactions on
Circuits and Systems I: Regular Papers, 61(6):1701–1713, 2014.

9. Colin King. Stress-ng, 2018.
10. Yiping Wang and Xiaoyong Li. Achieve high availability about point-single failures

in openstack. In 2015 4th International Conference on Computer Science and
Network Technology (ICCSNT), volume 01, pages 45–48, Dec 2015.

11. R. Aversa, N. Panza, and L. Tasquier. An agent-based platform for cloud ap-
plications performance monitoring. In 2015 Ninth International Conference on
Complex, Intelligent, and Software Intensive Systems, pages 535–540, July 2015.

12. A. L. Buczak and E. Guven. A survey of data mining and machine learning methods
for cyber security intrusion detection. IEEE Communications Surveys Tutorials,
18(2):1153–1176, Secondquarter 2016.

13. Félix Iglesias and Tanja Zseby. Analysis of network traffic features for anomaly
detection. Machine Learning, 101(1-3):59–84, 2015.

14. Amey Kulkarni, Youngok Pino, Matthew French, and Tinoosh Mohsenin. Real-
time anomaly detection framework for many-core router through machine-learning
techniques. ACM Journal on Emerging Technologies in Computing Systems
(JETC), 13(1):10, 2016.

15. Sarah M Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher
Leckie. High-dimensional and large-scale anomaly detection using a linear one-class
svm with deep learning. Pattern Recognition, 58:121–134, 2016.


