
EasyChair Preprint
№ 3792

Prototype of Security Framework System Under
Big Data Challenges

Sliman El Abbadi, Abderrahim Marzouk, Adil Maarouf and
Amine Benmakhlouf

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 8, 2020

Prototype of security framework system under Big data

challenges

Sliman El Abbadi 1 and Abderrahim Marzouk 2

Adil Maarouf 2 and Amine Benmakhlouf 2

1 Computer, Networks, Mobility and Modeling laboratory, FST, Hassan 1st University,
2 Settat, Morocco

sliman.elabbadi@gmail.com, amarzouk2004@yahoo.fr,

benmakhloufamine@gmail.com

adil.maarouf@gmail.com

Abstract. With the incredible growth of Big data in real life, healthcare and in-

dustry, security of data is becoming even more critical layer concern sensitive

data.

In this paper we propose a security framework based on the experiences acquired by

carrying out vulnerability assessments of critical Big Data services. we summarize how

to prevent problems by showing many types of vulnerabilities that occur in real code

and what techniques can be used to prevent or mitigate them by use of some data

masking techniques and Complying with Security drivers a special use of MongoDB

as leader of NoSQL database

Keywords: Big Data, NoSQL, MongoDB, Data masking API, Data privacy.

1 Introduction

The layer of security system information has been kept relatively safe for many

years. Now completely changed when the business needs push to integrate the Big Data

into your information system (BI, Social Network, e-commerce, online banking, etc.)

Go-to-market strategy means that you will have more opportunities to collect hetero-

geneous data (structured, semi-structured, and unstructured formats) which that reside

on-promise, in the cloud environment or from many other sources IOT than ever.

The other side of the coin is that the architecture used to gather, analyse, and store

big data involves new vulnerabilities for the security system, this open new doors for

cybercriminals activity and malware. In the fact databases is the most valuable infor-

mation assets of most enterprises is core enterprise.

The security managers instantly feel nervous when the level C directors ask them

those questions: “Are we more secure today than we were before?”. “Can you control

what you cannot measure?” and “To measure is to know” [1]. The answers might only

be obtained if there is some system able to evaluate the security level of the running

system and present the assessment clearly, concisely, and most importantly, visually to

the administrators or the directors. Currently, there are some security products available

mailto:benmakhloufamine@gmail.com
mailto:adil.maarouf@gmail.com

2

on the market such as Guardium [5], SecureSphere [6], etc. and they do support in

measuring the security level of a database management system (DBMS) within their

specific standards. However, they require the running system to be equipped with ex-

pensive specialized hardware to operate properly. In this paper we propose a prototype

of security framework based on prevention concept to protect organizations sensitive

data from a complex and evolving threat landscape with assessment of security metric

by implementing a security policies and techniques like encryption, data masking. The

framework consists of three main modules:

Policy Module. Processes Module. Security metrics Module

The aim capabilities of system are be able to control and measure simultaneously the

security issues of different application layers. By auditing and analysing Data/Code on

the support and transfer of the data.

Easy way to Config flexibly database security metrics. To be complying with laws,

namely data privacy acts and regulations such as GDPR,SOX.etc

prevent or mitigate new vulnerabilities by use of some data masking techniques

This paper is organized as follows: section 2. Provides an overview of MongoDB as

NoSQL leader. Section 3. We discuss NoSQL security consideration such vulnerability

and threats of NoSQL database and explore some famous security issues present in

MongoDB. We Provides an overview of data masking architectures and techniques.

Section. 4 We propose the HLD architecture of proposed framework of security with

its different layers. Based on Flexible module of configuration, Finally, section 5. pre-

sents concluding remarks and the future work.

2 Overview of MongoDB database

Why present MongoDB? According to Q2 2019 report from research firm Forrester:

[2]. the firm recognizes that MongoDB is one of the leaders in the database as a

service identified in the report, which supports a wider set of use cases, automation,

scalability and high-end performance, and Security. Based on the evaluation of 27

criteria on SWOT of DBaaS providers. MongoDB has been recognized as a leader in

the market of the NoSQL database as a service. this is one of the main motivations for

choosing MongoDB in our use cases and the demos. we list some Strengths later then

will focus on the weakness of the security of MongoDB technology. To improve the

security module on MongoDB, we need to understand its architecture.

2.1 MongoDB Concepts

The MongoDB belongs to the NoSQL family, developed in C ++. It is based on the

concept of a key-value pair. The document is read or written with the key. MongoDB

supports dynamic requests on documents. Being a document-oriented database, the data

is stored in the form of JSON, BSON style [3].

The MongoDB database is made up of a collection of collections that has no predefined

structure. The collection is like the table concept used in relational databases.

The collection in turn is made up of documents that are the records.

3

2.2 MongoDB architecture

Fig1: MongoDB architecture [11]

A) Mongos: is the interface between client and shard clusters. Mongos instance

should connect with Config servers to determine which shard should respond

to which query.

B) Config Server : The role of Config Server is to maintain connecting in a

redundant way with every other component of the DB because, it's contains

the metadata of chunk of the data in every shard to ensure mangos can respond

with requested data at any time.

C) Shard: Sharding: is distributing data across multiple achines by Scaling or

addressing the system growth of the mongoDB, it has two methods of scalling:

1-Vertical Scaling: increase the capacity resource of a single server (CPU

computing, More RAM, or increasing of storage space). 2-Horizontal Scal-

ing: distribute over multiple servers, by adding more servers to increase ca-

pacity as required.

D) Replica Set: Every shard is implemented as Replica set which is the cluster of

MongoDB that organised the automated failover and replication.

4

2.3 Advantages of NoSQL vs RDBMS.

• Scalability: Ease of scale out is the important aspect to consider NoSQL.

• Distributed data over Platform.

• Text search: This feature enables search data into application layer without effort.

• Fast and iterative Development platform support agile project Development.

• Uses internal memory for storing the working set, enabling faster access of data

• Integrated features: Features like Analytical platform, data visualization, event-
driven streaming data pipeline, text and geospatial search, graph processing, in-

memory performance, and security plugin are helping developers implement

without additional efforts of integration.

2.4 Strengths of MongoDB?

• Flexible Data Model: MongoDB supports Dynamic schema you can change your

data Model structure at any point (Conversion/mapping of application objects to

database objects not needed).

• Document Oriented Storage − Data is stored in the form of JSON documents.

• Index on any attribute

• Replication and high availability

• Auto-Sharding

• Rich queries

• Fast in-place updates

• Professional support by MongoDB

• Economical and Cost-effective: MongoDB is Cost-effective, and support and

maintenance are very economical to Compare to other database systems.

3 NoSQL Vulnerability and security over MongoDB

NoSQL databases may become susceptible to exploits once attackers are able to iden-

tify security threats or software unit weaknesses.

Insufficient or ineffective input validation, weak authentication, insecure communica-

tion, illegal access to unencrypted data, etc. are some issues of NoSQL vulnerability.

5

3.1 Authentication

MongoDB apps can use secure method to verify a client's identity by username and

password:

SCRAM-SHA-1: Salted Challenge Authentication Mechanism uses simple method

text-based usernames and passwords over a channel protected by transport layer secu-

rity (TLS).

MongoDB-CR: Like SCRAM, this method verifies a username and password

against an authentication database.

the passwords are encrypted, and a different hash is generated for each new session.

Enable X.509 certificate-based authentication,

Fig2: Deployment of X.509 certificate-based authentication over 3

node replicas set and a client [2].

MongoDB apps. can employ also external authentication protocols as well:

LDAP: Lightweight Directory Access Protocol using their centralized passwords.

Authentication providers allow users to log in with an email/password, an API

Key, or an external OAuth service. If the built-in providers don’t cover your use

case, you can integrate your own custom provider.

Tools authentication like Kerberos: This is a secret key authentication protocol

for server-client interactions. By using an access ticket to log in. But this is enabled

on enterprise edition.

6

3.2 Authorization/role-based security

Role-based access control (RBAC) is use role to control act While you can find well-

defined roles within MongoDB that can cover most users, custom roles can be created

as well.

A role essentially determines what permissions a user has and what he can access.

Other way there are available roles to use. Strong role limit access to the system

beyond it.

3.3 Auditing

MongoDB Enterprise offer the capability to audit mongod and mongos instances.

The auditor can track system activity for deployments with multiple users and ap-

plications. Administrators can configure auditing to write to the console, syslog,

JSON file or BSON file. But we can also use filters to restrict which events are

logged.

Audit Events and Filter

Once enabled, the auditing system can record the following operations [4]:

schema (DDL),

replica set and sharded cluster,

authentication and authorization, and

CRUD operations (requires auditAuthorizationSuccess set to true).

3.4 Threats over code and data Consistency

The most Vulnerabilities match with Data/code using MongoDB are:

A- Injection Attack: The MongoDB API expect BSON (binary JSON) calls and

includes a secure BSON query assembly tool. However, JSON and javaScript

un-serialized allow an attacker to manipulate data and execute commands and

achieve non expected purposes.

Fig.3 Solution for NoSQL injection in password field/inside query

statement.

https://docs.mongodb.com/manual/reference/glossary/#term-syslog
https://docs.mongodb.com/manual/core/auditing/#transactions
https://docs.mongodb.com/manual/reference/parameters/#param.auditAuthorizationSuccess

7

B- DoS Attack: DoS attacks are possible in MongoDB. By default, MongoDB

does not require authentication and authorization is not configured to work

with this attack. With valid user credentials an attacker does not have to be ad-

ministrator to carry out the attack.

C- WSS Attacks (WebSockets over SSL/TLS) [4]: attacks against WebSockets

become impossible if the transport is secured. MongoDB allows developers to

write JavaScript code may bypass security authentication or steal sensitive in-

formation.

D- Unencrypted File storage system: by default, MongoDB has data files are

unencrypted. It should automatically encrypt/decrypt these datasets. It means

that any active or passive attacker or unauthorized user can easily access the

file system and retrieve the valuable or secret information. To reduce this, the

application should explicitly encrypt/decrypt any confidential data before up-

dating/retrieving into/from the databases [7].

MongoDB being vulnerable for those attack [8] one approach to prevent these is

through careful code dynamic analysis and/or static analysis. But it may have high false

positive rates and presents difficulty for full read. While dynamic analysis tools/meth-

ods appeared to be extremely valuable for the identification/detection of injection at-

tacks [9], these should be changed as per recognize the specific vulnerabilities of

NoSQL.

3.5 Data masking architectures and techniques

Based on prevention concept we should use Some functions to protect organizations

sensitive data from a complex and evolving threat landscape with assessment of secu-

rity metric by implementing a security policies and techniques like data masking. The

aim of data masking is to find sensitive data or PII in unstructured sources using mul-

tiple search techniques.

Use the search results to provide rectification simultaneously or separately, remove, or

fix the PII to be compliant with data privacy

A- Principles of data masking:

There are five principles:

A-1) Masking must not be reversible: whatever you mask the data it should never be

possible to reverse it back to its original form.

A-2) Resemblance of the original data even after masking the results of data masked

must be representative of the source data should have so that application, can function

normally after masking.

A-3) Referential integrity must be maintained for system event data masking

A-4) Only mask non-sensitive data if it can be used to recreate sensitive data because

it is not necessary to mask everything in your database

A-5) Masking must be a reproducible process: for a different staging environment:

the development, quality assurance and test data must represent the constantly evolving

production data as faithfully as possible. It must be an automated, inefficient, costly,

and ineffective process.

8

B- Data masking architectures:

There are two mainly type of data masking used in the design of data masking soft-

ware:

The fly server to server data masking: the data does not exist in target database

server prior to masking. The masking rules are applied during the transfer of data from

source to target. This architecture is note suitable for some applications as any error in

the process can interrupt the transfer of the data.

In-situ Data masking architecture: clone of database to be masked is created by

some other means and the data masking process will simply operate on the cloned target

database.

C- The techniques of data masking:

Substitution: this technique consists of randomly replacing the original data in a

column with information that looks similar but completely unrelated to the original

data.

Shuffling: this technique uses the existing data for masking. Replacing of the exist-

ing vales in rows will be done by moving the values between rows in such a way that

the no vales are presents in their original rows. Its look like substitution but the main

disadvantage, which is reliance on an algorithm can be detrained, then the data can be

easily unshuffled.

Number and Date variance this technique varies the existing values by certain

range order to mask them

Nulling out or deletion: this technique is simple to removes the sensitive data by

deleting a column and replacing them with NULL values.

Masking Out: this technique sanitizes sensible data by replacing certain specified

characters with mask characters like a credit card number should be masked test envi-

ronment.

Hashing: this technique is not a form of encryption; tough it does use cryptography.

Hashing replace data and creates a hash string out of it, there are three important way

to hash:

The same data will always produce the same hash string.

It is impossible to reverse it back to the original data. Given knowledge of only the

hash, it’ s infeasible to create another string of data that will create the same hash/ the

most important use of hashing is protecting passwords. If system store a password hash

instead of a password, it can check an incoming password by hashing that and seeing if

hash match. It is not possible to use the hash to authenticate. Another common use of a

hash is authentication otherwise clearly transmitted data using a shared key secret.

4 Proposed framework of security under Big data challenges

Any efficient security software must ensure that business needs and IT strategy are

aligned. As such, enterprise information security architecture track information tracea-

bility from the business strategy down to the underlying technology.

9

4.1 Security business model

To understand in dept the security solution proposed, we must follow information on

business security model

Fig.4 Business security model of framework

In this model there are three main areas:

Security drivers: the three major drivers for security work are:
Laws & regulations - These are something than a company must comply with like

GRPD.

Business objectives - Security supports these business objectives by protecting sys-

tems and data that is used in the business processes. E.g. Business objective is to have

on-line bank 24/7. Security objective is to keep systems up and available, be it by keep-

ing them free of malware that could disrupt or slow IT systems.

Security threats – Act of cyber security against laws & regulations and business ob-

jectives.

Security management (the main part)

In this area we have three modules that enable company to achieve objectives defined

in the drivers’ section.

Policy framework is a set of policies, standards and guidelines that describe how the

company addresses information security drivers. All together these define security con-

trols that are available for a company to implement.

a. Policies – describe high level to detail policy statements, Security Control Objectives

(typically using words should and must). The key objective of the security policy doc-

ument is the alignment with the business objectives and drivers.

b. Standards – detail of Security controls that should be implemented to support indi-

vidual policy statements. With relationship 1:N. One policy statement can be imple-

mented by multiple security controls. Then a link to a policy, the security professionals

will hardly justify why the password needs to be 12 characters and change every 45

10

days. The controls should be selected from an internationally accepted catalogue of

controls.

c. Artefacts – It is all very well to have statements like “must be authenticated” but

how is that done in practice by an engineer that needs to configure the system? I have

learned that architecture standardization is the key to the success of any company. Same

applies to security.

Processes framework

This process executes the security control in a policy or standard is a process, no ex-

ceptions. This is where people and technology come into play. some process is sup-

ported by people and most are supported by technology. However, the efficient com-

pany must track a link between any human process and technology corresponding con-

trol in the Policy framework up to the business objective.

Security metrics framework

Security professionals should be able to measure the status of security controls, com-

pliance with own policies and effectiveness of security processes. The key metrics here

is to take a security policy statements and measure each team against them; output a

nice balanced scorecard for security.

Stakeholders

The stakeholders need to assure that what has been promised is being delivered. More

importantly the security managers need to show the value of security to business. We

should ask them what their concerns are and show them how you are addressing the

concerns. Then send a report to them that relates to their area and concerns. Always get

them on your side!

4.2 Security logical model

Fig.5 Logical Model of framework

Each component uses an API as interface

There are Four principal layers as mention in figure 5, Each layer of framework is

Subsystem IOTT (input output tools and technics). Note that a Laws component in

11

three layers when laws compliance is enforced this component will ensure that the data

transmitted through it to the upper layer will conform to the required laws.

1) Visualization layer: interacts with users, receives user requests as INPUT and se-

lects suitable presentation to show the final score as OUTPUT. in the most visual way,

using many graphs and reports. There would be lots of types of graph such as pie chart,

bar chart, line chart, etc. and lots of types of reports such as daily report, weekly report,

monthly report, or quarterly report and so on.

2)Metric Layer is a concept of a sub system or standard of measurement define how

well security service are. So, the metric is the heart of the framework we use techniques

and tools and without metrics, the system is defunct or no longer able to measure the

level of security attends.

The metrics value is saved into the database. Users can create new metrics To per-

form calculation a need of a metrics parser which can parse the metric content to get all

the essential data such as the input, output data type, where the metric processing cores

are stored, etc. Besides, Metrics Parser is not directly in charge of calculating but it will

call web services other libraries at run time.

3) Auditing layer communicates with the last Databases layer gets their data, refines

and sends them to Metrics layer to carry out metrics calculation. The Logger will com-

municate with databases to acquire the data which might have to go through Laws to

ensure law compliance. When the data reaches Analyzer, it is refined and handed over

to Formatter to reformat in some standards for Metrics layer to use later.

Fig.6 API building block for both Logical/busines Model of framework

The Old operational systems run the business activities already optimized for read-

write processing like in DWH (and marts) While ideal for the logical/business model

is to have an API building block able to analyse new challenges of business activities,

this ongoing process must run continuously in a production environment to offer real-

time predictions or prescriptions.

So, the informational area square drive the business process when the data are opti-

mized for write-once / read-many processing.

Be sure that both operational systems and apps are today built on high-performance,

production-ready in both RDBMS and Nosql (such as documents, key-value stores and

graphs), are the preferred environment to handle the production phase of analytics, as

shown in Figure 6 show API building block for both Logical/busines Model with

12

characteristics of new approach Analysis of these issues must be done in the context of

the function and features of existing and anticipated technology in both data storage

and processing. Some commercial APIs offer capability key insights into a process-

oriented view of this environment and allows us to step back from an overly storage

centric assessment. E.G. [12] API CoSort for metadata and advanced resource exploi-

tation speed job design and data delivery. Sort, join, aggregate, and load 10x faster than

SQL and 6x faster than ETL tools.

5 Conclusion

This paper shows an architecture of proposed framework of security with its different

layers. Based on API building block as flexible module of configuration. The

aim is to fix new threats and limit vulnerabilities issues of big data system in

real time. We can improve security performance in big data by using machine

learning, blockchain system especially with integration of IOT device or by

combining these three approach-es in Hadoop Distributed File System which is

the base layer in Hadoop, where it contains large number of blocks. These

approaches are introduced to overcome certain issues occurs in the name node

and in Data node. In Future these approaches are also implemented in other

layers of Hadoop Technology.

6 References

1. A. Jaquith: “Security Metrics: Replacing Fear, Uncertainty and Doubt”, ISBN: 0321349989, Addison-

Wesley Professional, 2007

2. MongoDB“https://www.mongodb.com/collateral/forrester-wave-database-as-a-service?” (2020)

3. Ciprian Octavian Truică, Alexandru Boicea, Ionut Trifan, “CRUD Operations in MongoDB,” Interna-

tional Conference on Advanced Computer Science and Electronics Information, pp. 347-348, 2013

4. https://docs.mongodb.com/manual/core/auditing/#transactions

5. IBM Guardium web: https://www.ibm.com/fr-fr/marketplace/guardium-data-protection-for-big-data.

6. Securesphere product: http://www.imperva.com/products/securesphere.

7. Lior Okman, Nurit Gal-Oz, Yaron Gonen” Security Issues in NoSQL Databases” 2011 IEEE 10th In-

ternational Conference on Trust, Security and Privacy in Computing and Communications 2011.

8. Ron, Aviv, Alexandra Shulman-Peleg, and Emanuel Bronshtein, "No SQL No Injection? Examining

NoSQL Security", In Proceedings of the 9th Workshop on Web 2.0 Security and Privacy (W2SP), Vol.

1, 2015.

9. Ron, Aviv, Alexandra Shulman-Peleg,”analyse and mitigation of NoSQL injection” IEEE security and

Privacy 14.2, 2016.

10. Charmi “Encrypting Data of MongoDB at Application level” Advances in Computational Sciences and

Technology Volume 10, Number 5 (2017) pp. 1199-1205.

11. MongoDB “https://digitalvarys.com/introduction-to-mongodb/” (2020)

12. IRI « https://www.iri.com/products/cosort » (2020)

https://www.mongodb.com/collateral/forrester-wave-database-as-a-service?
https://docs.mongodb.com/manual/core/auditing/#transactions
https://www.ibm.com/fr-fr/marketplace/guardium-data-protection-for-big-data
http://www.imperva.com/products/securesphere
https://ieeexplore.ieee.org/author/38316758900
https://ieeexplore.ieee.org/author/38296922600
https://ieeexplore.ieee.org/xpl/conhome/6120120/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6120120/proceeding
https://digitalvarys.com/introduction-to-mongodb/
https://www.iri.com/products/cosort

