
EasyChair Preprint
№ 8497

Combining CDCL, Gauss-Jordan Elimination, and
Proof Generation

Mate Soos and Randal Bryant

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 19, 2022



Proof Generation for CDCL Solvers Using
Gauss-Jordan Elimination
Mate Soos1 and Randal E. Bryant2 ∗

1 National University of Singapore
soos.mate@gmail.com

2 Computer Science Department
Carnegie Mellon University, Pittsburgh, PA, United States

Randy.Bryant@cs.cmu.edu

Abstract

Traditional Boolean satisfiability (SAT) solvers based on the conflict-driven clause-
learning (CDCL) framework fare poorly on formulas involving large numbers of parity con-
straints. The CryptoMiniSat solver augments CDCL with Gauss-Jordan elimination to
greatly improve performance on these formulas. Integrating the tbuddy proof-generating
BDD library into CryptoMiniSat enables it to generate unsatisfiability proofs when us-
ing Gauss-Jordan elimination. These proofs are compatible with standard, clausal proof
frameworks.

1 Introduction
Consider Boolean formulas over a set of variables X = {x1, x2, . . . , xn}. A k-way parity con-
straint, also known as an XOR constraint, is an equation of the form:

xi1 ⊕ xi2 ⊕ · · · ⊕ xik = p (1)

where the phase p can be 1 (odd parity) or 0 (even parity.)
Although Boolean satisfiability (SAT) solvers based on conflict-driven clause learning (CDCL)

have made steady improvements over the years, they fare poorly when the formula contains
large numbers of parity constraints.

As an example, Urquhart devised a family of unsatisfiable formulas, consisting entirely
of parity constraints, where both the number of variables and the number of clauses scale
quadratically with the size parameter m, but any resolution proof of unsatisfiability must scale
exponentially in m [27]. The smallest instance of this benchmark, having m = 3, consists of 153
variables and 408 clauses, encoding 102 three-way parity constraints. Kissat, a state-of-the-art
CDCL solver [3], fails to terminate after running on this formula for 16 hours, even with proof
generation disabled. On the other hand, by viewing constraints of the form of Equation 1 as
linear equations over integers modulo 2, applying Gaussian elimination to an unsatisfiable set
of parity constraints yields the infeasible equation 0 = 1 in polynomial time.

Several CDCL solvers have been augmented with constraint solvers that can apply Gauss-
Jordan elimination to parity constraints [12,13,17,24]. These solvers combine traditional clausal
reasoning with parity reasoning to improve their performance on both satisfiable and unsat-
isfiable formulas. They operate by first detecting the parity constraints encoded in the input
formula and delegating the parity constraints to the parity reasoning component, while retaining
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the remaining clauses for the clausal reasoning component. During execution, the two compo-
nents reason about their respective portions of the formula and coordinate via unit propagation
and conflict detection. This mechanism is sometimes referred to as “CDCL(T),” reflecting its
similarity to the handling of multiple theories by SMT solvers [9]. This approach can be ex-
tremely effective. For example, version 5.8.0 of CryptoMiniSat running on the Urquhart
formula with m = 3 detects that the formula is unsatisfiable in just one second. Even scaling
to m = 40, a formula that is over 200 times larger, with 33,120 variables and 88,320 clauses,
the program can detect that the formula is unsatisfiable in less than five minutes.

1.1 Proofs of Unsatisfiability for SAT Solvers
Recent generations of CDCL SAT solvers can produce a proof of unsatisfiability when they
encounter an unsatisfiable formula. Such a proof provides an independently checkable confir-
mation that the formula is truly unsatisfiable. Since 2016, entrants in the main track of the
annual SAT competition receive credit for an unsatisfiable result only when 1) they produce a
DRAT proof [28], and 2) this proof is successfully checked by a standard proof checker. Unsatis-
fiability proofs also ensure the integrity of the formal verification tools and mathematical proofs
that employ SAT solving. This is especially important when the results are intended to provide
assurances in high risk environments, such as aerospace, transportation, and cybersecurity.

Until now, generating clausal proofs while employing parity reasoning has been a major
challenge. Standard clausal proof frameworks, such as DRAT, are well matched to CDCL
solvers, but there has been limited success generating DRAT proofs while employing Gaussian
or Gauss-Jordan elimination. As a result, parity reasoning has not been used by entrants in
the main track of the SAT competitions in recent years.1

Given their inability to generate clausal proofs when using Gauss-Jordan elimination, most
current SAT solvers disable parity reasoning when they are directed to produce proofs and
instead rely purely on CDCL. In this mode, they fare no better than kissat on formulas
containing parity constraints, including the Urquhart formulas.

1.2 Related Work
Some have proposed the adoption of other proof frameworks to enable proof generation by parity
constraint solvers. For example, the VeriPB proof checker verifies proofs expressed in a logic
of pseudo-Boolean constraints [11]. Using this framework as a target, Gocht and Nördstrom
were able to integrate a Gauss-Jordan elimination solver into the MiniSat solver and have it
generate proofs of unsatisfiability [12,23]. In a similar vein, Barnett and Biere proposed a proof
framework based on binary decision diagrams (BDDs), where each proof step is guaranteed to be
checkable with polynomial complexity [2]. Their framework could also enable proof generation
from parity constraints. Getting the SAT community to adopt a new proof framework would
require establishing and documenting a new set of file formats and creating a collection of proof
checkers, preferably including ones that have been formally verified. Our approach has the
advantage that it builds on the well-established DRAT framework.

In prior work, we devised a fundamentally different approach for generating unsatisfiability
proofs when reasoning about pseudo-Boolean formulas, of which parity constraints are a special
case [5]. We do so by combining Gaussian elimination with a proof generator based on BDDs.
BDDs are especially effective for reasoning about parity constraints—the BDD representation

1The “nolimits” track allows for solvers to state that a formula is unsatisfiable without proof, and hence
solvers with Gauss-Jordan elimination have continued to participate in this track.
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Figure 1: BDD Representation of a 5-variable parity constraint. The representation is linear in
the number of variables for any ordering of the BDD variables.

of a k-way constraint has only 2k−1 nonterminal nodes regardless of the BDD variable ordering.
As an example, Figure 1 shows the BDD representation of the parity constraint

x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 = 1

The proof generator uses the ability to introduce extension variables into DRAT proofs, in
the style of extended resolution [16, 26]. An extension variable is added for each BDD node
generated, describing the logical relation between the node and its associated variable and
children nodes [6,15,22]. Each recursive step of a BDD operation is justified by a short sequence
of DRAT proof steps, with the effect that, when the Gaussian elimination solver detects an
infeasible parity constraint, the overall proof consists of a sequence of implication-preserving
clauses terminating with the empty clause. On the other hand, our BDD-based solver does not
do well for many of the formulas that are readily handled by CDCL solvers, and a third class
of problems requires both clausal and parity reasoning to detect that a formula is unsatisfiable.
Integrating the proof generating capabilities of BDDs into a CDCL(T) solver expands the range
of formulas for which it can generate unsatisfiability proofs.

Philip and Rebola-Pardo devised a method to generate DRAT proofs when manipulating
parity constraints [21]. Their approach maintains clausal representations of parity constraints,
using auxiliary variables to ensure that the representation of a k-ary constraint uses O(k)
clauses. With each step of a constraint solver, their method generates a proof that the clausal
encoding of the newly generated constraint is logically implied by the encodings of the argument
constraints. The auxiliary variables in the new constraint become extension variables in the
proof. Operationally, this approach is similar to proof-generating BDD-based solvers, where
extension variables are added for every BDD node generated. Their work is specialized to parity
constraints, whereas ours can be applied to other classes of pseudo-Boolean constraints [5].
Gocht and Nördstrom incorporated this method into their extended version of MiniSat [12].
Although they were able to generate proofs for benchmark circuits that would be intractable
for pure CDCL solvers, they found that the checking time did not scale very well. We speculate
that this is due to the poor performance of the standard checker drat-trim [28] on formulas
with large numbers of extension variables, a shortcoming that we also experienced.
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1.3 Contributions
In this work, we describe our recent experience integrating the proof-generating capabilities
of BDDs into the Gauss-Jordan (G-J) solver component of CryptoMiniSat, a highly tuned
CDCL(T) solver. We do so using tbuddy [4], a proof-generating BDD library that was imple-
mented by extending the buddy [19] BDD package.2 Tbuddy generates proof steps to justify
the unit propagations and conflicts inferred during G-J elimination. This capability was added
via a loose integration, with only one new data structure added to CryptoMiniSat.

A bigger challenge was in generating proofs that can be checked efficiently. Drat-trim, the
standard checker for DRAT proofs [28], cannot handle the large proofs generated by tbuddy,
and especially their heavy use of extension variables. Fortunately, we were able to achieve
acceptable performance with a checker for the hybrid FRAT proof format [1], where many of
the proof steps, including all steps generated by tbuddy, are annotated with hints, greatly
simplifying the operation of the checker. Although FRAT proofs use a different file format
than the standard DRAT format, the associated checker frat-rs can generate detailed proofs
in the same LRAT format [14] as does drat-trim. In this way, both checkers can make use
of the variety of available LRAT proof checkers, including several that have been formally
verified [14,25].

This paper describes the integration of tbuddy into CryptoMiniSat and provides an
experimental evaluation using two families of benchmark problems.

2 Solver/Prover Integration
For parity constraint P having the form shown in Equation 1, let Var(P ) = {xi1 , xi2 , . . . , xik}
consist of the variables in the constraint and Phase(P ) = p be the phase. The sum of constraints
Pa and Pb is also a parity constraint Pc, written as Pc = Pa⊕Pb, with Var(Pc) = Var(Pa)4Var(Pb)
(their symmetric difference) and Phase(Pc) = Phase(Pa)⊕ Phase(Pb).

Let φ denote the set of input clauses and P1, P2, . . . , Pm denote the set of parity constraints
embedded in the input formula. For S ⊆ {1, 2, . . . ,m}, let Σ(S) denote the parity constraint
formed by summing all constraints Pi such that i ∈ S. A literal ` is either a variable or its
complement, with its phase being 1 in the former case and 0 in the latter.

When integrated into a CDCL framework, Gauss-Jordan elimination provides a way to
systematically sum parity constraints and thereby detect conflicts and unit propagations implied
by the constraints [13, 17]. Suppose that the state at some point in the search is characterized
by a trace given by as a conjunction of literals `1∧ `2∧· · ·∧ `k. A conflict arises when there is a
sum Σ(S) such that 1) the variables in Σ(S) are a subset of the variables occurring in the trace,
and 2) the phase of Σ(S) does not match what would be obtained by summing the phases of
the corresponding trace literals. A unit propagation arises if all but one of the variables in Σ(S)
occurs in the trace, and the implied literal is either this variable or its complement, such that
the sum of the phases of the literals matches that of the constraint. Both of these inferences
can be characterized by a reason clause C. For a conflict, C is the conflict clause, consisting
of the complements of some subset of the literals in the trace. In other words, satisfying φ
requires contradicting at least one assignment in the trace. For unit propagation, C consists of
the complements of some of the trace literals plus the literal being inferred by unit propagation.
In other words, any satisfying assignment to φ compatible with the trace must also satisfy the
implied literal.

2Tbuddy is available at https://github.com/rebryant/tbuddy-artifact.
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Adding proof generation for parity constraints to CryptoMiniSat requires three new ca-
pabilities: 1) generating proof steps justifying that the initial parity constraints are encoded in
the input formula, 2) tracking the subset of parity constraints S that give rise to each reason
clause C, and 3) generating proof steps to justify reason clause C based on those constraints.

The first and third capabilities are provided by tbuddy, while the second involves adding
a tracking capability to CryptoMiniSat.

2.1 Trusted BDDs (TBDDs)
The tbuddy package supports trusted BDDs (TBDDs) as its core data structure. A trusted
BDD represents a Boolean function that is guaranteed to yield 1 for any assignment that
satisfies the input formula. Each trusted BDD u̇ is represented by 1) root node u in the BDD
data structure, 2) extension variable u associated with BDD node u, and 3) a series of proof
steps leading to a step for the unit clause [u], indicating that any assignment that satisfies the
formula must also assign 1 to u. Performing a sequence of TBDD operations leading to the
generation of trusted BDD Ṫ0, where T0 is the terminal BDD node for constant 0, has the
effect of generating a sequence of proof steps leading to the empty clause. Tbuddy supports
several key operations on TBDDs [4]:

conjunction has argument TBDDs u̇ and v̇. It generates a TBDD ẇ representing the con-
junction of the functions represented by BDDs u and v.

upgrade has as arguments trusted BDD u̇ and regular BDD v. It upgrades v to TBDD v̇
based on a proof that u→ v.

clause justification has as arguments trusted BDD u̇ and clause C. It generates one or more
proof steps leading to a step consisting of clause C based on the implication u→ C.

2.2 Justifying the Initial Parity Constraints
CryptoMiniSat uses heuristic methods to detect parity constraints encoded in clausal form.
When it detects an input parity constraint Pi over k variables, it has tbuddy generate a
TBDD representation u̇i of Pi. To do so, tbuddy simply adds the 2k−1 clauses encoding Pi

to the proof. Each of these should follow from some subset of the input clauses by reverse unit
propagation (RUP), and therefore the proof checker can add the necessary hints to the proof.
Based on these, tbuddy uses its conjunction operation to form a TBDD v̇ representing the
conjunction of the added clauses. It also directly generates a BDD representation ui of Pi,
having the form shown in Figure 1, but with the specified set of variables and the specified
phase. It then uses v̇ to upgrade ui to TBDD u̇i. In most cases, u and v are identical, and so
the implication is a tautology.

2.3 Tracking Constraint Origins
The standard implementation of G-J elimination in CryptoMiniSat [23] need not track which
of the original parity constraints contribute to a conflict or propagation. Instead, it can directly
derive the reason clause from its parity matrix, the representation of parity constraints it main-
tains during Gauss-Jordan elimination. In order to add tracking, the modified code keeps a
binary shadow matrix M , having dimension n× n for a parity matrix with n rows. At startup,
M is initialized to the identity matrix. The shadow matrix, as its name implies, shadows the
operations on the parity matrix. When two rows are swapped in the parity matrix, the shadow
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matrix also swaps rows, and when two rows are summed, the shadow matrix also sums the
corresponding two rows. Hence, at all times, entry i, j of M is set to 1 under the condition
that, in forming what is now constraint i, initial constraint j was added an odd number of
times. (Observe that summing a constraint an even number of times effectively cancels it out.)
With the shadow matrix, the program can determine the origin of a row of the parity matrix
when it causes conflict or unit propagation. The shadow matrix can be stored and manipulated
with the same bit-vector representation used for the parity matrix.

Example. Let us take as initial parity constraints {P1 := x1 ⊕ x2 = 1, P2 := x1 ⊕ x3 =
0, P3 := x1⊕ x2⊕ x3 = 1}. Then the initial matrix M0 and corresponding shadow matrix S0 is
as follows. Notice that the last column of M0 contains the phase values. Since M0 has 3 rows,
S0 is the 3× 3 identity matrix:

M0 =


x1 x2 x3
1 1 0 1
1 0 1 0
1 1 1 1

 S0 =


P1 P2 P3

1 0 0
0 1 0
0 0 1


The G-J elimination algorithm now takes the 1st row of M0, and sums it into the 2nd and 3rd
rows of M0 in order to eliminate the non-zero values in the first column of M0 for all but the
first row. Let’s call the resulting matrices M1 and S1:

M1 =


x1 x2 x3
1 1 0 1
0 1 1 1
0 0 1 0

 S1 =


P1 P2 P3

1 0 0
1 1 0
1 0 1


Notice that S1’s 2nd row now reads 110, i.e. M1’s 1st row can be reconstructed via P1 ⊕ P2.
Similarly, S1’s 3rd row reads 101, i.e. M1’s 3rd row can be reconstructed via P1 ⊕ P3. In this
way, by mirroring row swap and row sum operations, Sn can always be used to read out which
original parity constraints need to be summed obtain the corresponding constraint in Mn.

2.4 Justifying Reason Clauses
Each reason clause C must be justified based on a subset S of the initial parity constraints.
This involves forming a TBDD representation v̇ of the sum constraint Σ(S) and then using
v̇ to justify C. Given TBDDs u̇a and u̇b representing parity constraints Pa and Pb, tbuddy
can generate a TBDD representation u̇c of parity constraint Pc = Pa ⊕ Pb. It does so by the
following steps. First, it conjuncts u̇a and u̇b to form TBDD ẇ. Then, it generates the BDD
representation uc for Pc, having the same form as shown in Figure 1. Finally, it upgrades uc

to TBDD u̇c via a proof of the implication w → uc.
The BDD representation w of the conjunction of constraints Pa and Pb can be of size

Θ(ka · kb), where ka and kb are the number of nonzero coefficients in Pa and Pb, respectively.
On the other hand, the BDD representation uc of their sum will be of size O(ka + kb). Since
the sizes keep growing over multiple elimination steps, the resulting savings in BDD operations
(and therefore proof steps), can be considerable.

The TBDD representation for the sum of constraints S is generated by performing pairwise
sums. Since the BDD representation of a constraint with k variables has 2k − 1 nodes, it is
important to sum the constraints in a way that preserves sparseness (i.e., keeping the number
of variables in the constraints low) among the intermediate results. Tbuddy does so with a
greedy selection policy that at each step sums the pair of constraints Pa and Pb that minimizes
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the size of Var(Pa)4Var(Pb), with ties broken randomly. This can be done efficiently using a
priority queue and incremental updating.

Finally, the clause justification operation adds the reason clause C to the proof based on
TBDD v̇, representing the sum of the constraints. A single RUP step suffices for a reason clause
arising from a parity constraint.

Once the TBDD representation of a sum of constraints has been used to justify a reason
clause, it can be dereferenced, allowing the tbuddy garbage collector to reclaim nodes and to
delete some of the proof clauses. This dereferencing is done only when the row of the parity
matrix is modified. As a result, a given row can be used to justify multiple reason clauses.

3 Experimental Results

We have performed experimental evaluations for several families of unsatisfiable formulas that
are especially challenging for CDCL solvers. We compared different operating modes of Cryp-
toMiniSat to tbsat, a BDD-based solver built on top of tbuddy. Tbsat has its own
Gauss-Jordan elimination solver, and it can combine parity reasoning with bucket elimina-
tion [10, 15, 20], a systematic way to reduce a set of BDDs to one of the two possible terminal
nodes via a sequence of conjunctions and quantifications [4, 7].

We found that the standard drat-trim proof checker performs poorly on proofs generated
by tbuddy, due to the large number of RAT lemmas used to define extension variables. Instead,
we modified CryptoMiniSat to generate proofs in FRAT format [1], with over 50% of the proof
clauses generated by CryptoMiniSat and 100% of those generated by tbuddy having hints.
The associated frat-rs verifier can make use of these hints, while also generating hints for the
other clauses.

3.1 Urquhart Formulas

Urquhart’s formulas [27] consist of sets of parity constraints based on undirected graphs in
a manner similar to a construction of Tseitin [26]. There is a variable associated with each
edge, and the formula contains an even or odd parity constraint for each node over its incident
edges. Each edge occurs in two constraints, and so the formula will be unsatisfiable as long as
the sum of the node phases is odd. We used a benchmark generator written by Li [18] that
is parameterized by both the graph size m and a value p with 25 ≤ p ≤ 75 indicating the
percentage of nodes that are assigned odd parity.

As mentioned earlier, even a minimum instance of these formulas, having m = 3, is beyond
the reach of today’s CDCL solvers. Applying Gaussian elimination to these constraints, on the
other hand, yields the infeasible constraint 0 = 1, and so they are readily handled just using
parity constraint reasoning. We have also shown that a BDD-based solver has polynomial
scaling on these formulas when using bucket elimination [4, 7].

We generated Urquhart Formulas for hardness parameter m ranging from 3 to 15 and
with phase percentage parameter p ranging from 26 to 70. Tests were performed on AMD
Ryzen 9 5950X processors with a time limit of 3600 seconds per run. The solving and verification
times for the two solvers are shown in Table 1. The rightmost column shows the time required
by frat-rs to check the proofs generated by CryptoMiniSat plus tbuddy. As can be seen,
the Urquhart formulas pose no challenge for either solver, and the time to check the proofs are
comparable to their generation times. Tbsat’s performance advantage over CryptoMiniSat
on these benchmarks can be attributed to its use of a sparse representation for parity constraints
and that the problem can be solved purely by parity reasoning.
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m Tbsat lrat-check CMS frat-rs
lrat enabled of tbsat Gauss-J Verify

Gauss-J Bucket-Elim Gauss-J Bucket-Elim with FRAT CMS Proof

3 0.00 0.00 0.69 0.69 0.03 0.06
4 0.01 0.01 0.69 0.69 0.10 0.17
5 0.03 0.03 0.69 0.69 0.24 0.40
6 0.05 0.05 0.69 0.69 0.46 0.84
7 0.07 0.07 0.69 0.69 0.87 1.66
8 0.10 0.10 0.69 0.69 1.44 2.96
9 0.13 0.13 0.69 0.69 2.08 4.34

10 0.16 0.17 0.69 0.69 3.33 7.30
11 0.20 0.21 0.69 0.69 5.37 12.26
12 0.25 0.26 0.69 0.69 5.00 11.73
13 0.31 0.30 0.69 0.69 7.25 16.61
14 0.37 0.36 0.69 0.69 10.36 23.96
15 0.43 0.43 0.69 0.69 14.10 34.47

Table 1: Average times to solve and to verify Urquhart Formulas with Tbsat and Crypto-
MiniSat+tbuddy

3.2 Learning Parity with Noise
Learning Parity with Noise (LPN), also known as the minimal disagreement parity problem,
is a well known hard problem for CDCL SAT solvers. Crawford contributed several instances
of formulas for this problem as part of the original SATLIB benchmark suite [8]. We wrote
a new generator for this problem,3 since Crawford’s generator is no longer available. From
a satisfiability solving perspective, these formulas combine a set of parity constraint with a
cardinality constraint. As a consequence, Gauss-Jordan elimination does not lead directly to
an infeasible constraint, but it can serve a useful role in reasoning about the parity constraints,
while the clausal reasoning component deals with the cardinality constraint.

The problem is parameterized by values n, m, and k. There are m parity constraints defined
over a set of n solution variables s1, s2, . . . , sn, plus a set ofm corruption variables r1, r2, . . . , rm.
Each parity constraint Pi depends on some randomly chosen subset of the solution variables,
plus corruption variable ri. An instance is generated so that for a target solution, consisting
of a randomly generated bit sequence a1, a2, . . . , an, a subset of n − k of the constraints will
be satisfied when the solution variables are set to the target solution and with their associated
corruption variables ri set to 0, while k of them require ri = 1 for the target solution to satisfy
the constraint. That is, k of the equations have been “corrupted” by flipping their phases. An
at-most-k constraint is placed on the corruption variables, and thus the target solution will
satisfy the formula, as can other solutions, as long as at most k constraints are corrupted. The
standard LPN formulas are satisfiable, but by imposing the condition that at most k − 1 of
the corruption bits can be set to 1, the formula will generally (but not necessarily) become
unsatisfiable.

For each value of n from 20 to 35, we generated 20 instances of LPN formulas, setting
m = 2n. Each constraint in each formula was corrupted at random with probability 0.125,
causing the number of corrupted constraints k in each of the formulas to vary, but having

3Available at https://github.com/rebryant/mdp-benchmark.
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n UNSAT CryptoMiniSat CryptoMiniSat CryptoMiniSat frat-rs
without G-J with G-J with G-J+tbuddy avg (s)

T.O. PAR-2 no verification T.O. PAR-2

20 15 0 4.59 0.03 0 1.00 0.94
21 10 0 4.29 0.03 0 1.06 1.64
22 13 0 20.67 0.05 0 2.41 3.98
23 14 0 31.96 0.05 0 2.79 2.55
24 16 0 113.09 0.05 0 3.40 4.51
25 11 0 257.20 0.14 0 9.45 20.51
26 14 0 908.71 0.25 0 17.70 28.63
27 13 5 2401.46 0.31 0 22.91 42.79
28 8 5 2184.10 0.73 0 38.39 42.95
29 8 10 3800.17 1.27 0 70.64 159.45
30 14 12 4696.38 1.70 0 101.98 289.13
31 15 13 5120.66 3.07 0 194.07 726.44
32 12 15 5519.15 3.09 0 216.26 553.69
33 10 16 6167.31 6.71 0 364.75 1996.44
34 12 18 6631.76 19.99 5 2169.01 1391.08
35 9 18 6493.04 14.79 5 2144.69 1922.08

Table 2: Applying different configurations of CryptoMiniSat to LPN formulas. There were
20 instances for each value of n. The verification times are shown only for UNSAT instances.
Columns labeled “T.O.” indicate the number of cases that exceeded the 3600-second time limit.

average value n/4. These choices match the parameters suggested by Crawford. The formulas
were then passed to both CryptoMiniSat and tbsat to be solved, and the resulting proofs
were respectively passed to lrat-check and frat-rs to verify.

For CryptoMiniSat, we ran these on Intel 2xE5-2690v3 CPUs with 24GB RAM allocated
for each run, a time limit of 3600 seconds. For tbsat, we ran these on a Ryzen 9 5950x with
4GB allocated for each run, a time limit of 3600s, and a proof size limit of 230 clauses. The
proof size limit was set based on our experience with the lrat-check checker. Allowing larger
proofs would only generate unwieldy files and create proofs that are too large to be checked.

CryptoMiniSat and frat-rs performance Table 2 shows the performance of several different
ways to apply CryptoMiniSat to these formulas, with the associated PAR-2 scores4. As is
shown, the number of unsatisfiable formulas for each value of n ranges from 8 (40%) to 16
(80%). Without Gauss-Jordan elimination, CryptoMiniSat starts hitting the time limit with
n = 27 and does so for 90% of the formulas once n reaches 34. As a result, the PAR-2 times
trend toward the limiting value of 7200. On the other hand, using Gauss-Jordan elimination
and without concern for proof generation, all of the benchmarks could be solved in under 20
seconds.

The measurements for CryptoMiniSat in combination with tbuddy were performed by
running the solver with proof generation enabled, regardless of whether or not the formula
was satisfiable. The combination enables proof generation for much larger problems than is
possible with pure CDCL. The solver exceeded the time limit only for n ≥ 34. Compared to
having no proof generation, it exacts a significant performance penalty. The increased time

4PAR-2 scores are used in the SAT competitions to measure performance. Each benchmark contributes a
score that is the number of seconds used to solve it, or in case of a timeout or memory out, twice the timeout
in seconds. The average score for all benchmarks is then calculated, giving PAR-2.
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N UNSAT tbsat G-J lrat-check
P.O. PAR-2 avg (s)

20 15 0 0.18 0.38
21 10 0 0.55 0.22
22 13 0 0.37 0.14
23 14 0 0.43 0.11
24 16 0 0.36 0.13
25 11 0 4.49 0.17
26 14 0 1.54 0.21
27 13 0 16.19 0.25
28 8 0 42.51 0.25
29 8 0 69.72 0.44
30 14 2 756.12 0.60
31 15 1 387.51 0.69
32 12 3 1104.10 0.64
33 10 2 792.41 1.15
34 12 4 1489.05 3.24
35 9 4 1565.19 2.32

Table 3: Applying tbsat in Gauss-Jordan mode to LPN formulas. There were 20 instances
for each value of n. The verification times are shown only for UNSAT instances. The column
labeled “P.O.” indicates the number of instances for which the generated proof exceeded 230

clauses.

could be partly due to the loose integration of our implementation. Tbuddy must start fresh
in summing a subset of the parity constraints every time a new parity matrix row is used to
generate a reason clause, even if many elements of the subset have been summed previously.
A tighter integration, however, would require major rewriting of the already-complex parity
reasoning code.

The final column shows the average times for running frat-rs for the cases where the
formula is unsatisfiable and CryptoMiniSat is able to complete its execution. Overall, the
performance is acceptable, but frat-rs can take around 3× more time to check a proof than
was required to generate it. In these proofs, tbuddy provides hints for each of its proof steps,
and CryptoMiniSat does so for over 50% of them, and so it seems like it should be possible
to improve the checker performance.

Tbsat and lrat-check performance Table 3 shows the performance of tbsat with Gauss-
Jordan elimination and lrat proof generation applied to the LPN formulas. As before, the
number of unsatisfiable formulas for each value of n ranges from 8 (40%) to 16 (80%). A separate
program detects parity constraints in the CNF representation and generates a schedule for
tbsat identifying each constraint and the set of clauses that give rise to it [5]. Tbsat lacks any
variable ordering heuristics, and so the user must supply a variable ordering to achieve good
performance on these formulas. Our ordering for these formulas is as follows: the variables
encoding the at-most-one constraints, the corruption variables, the auxilliary variables for the
parity constraints, and finally the solution variables.

Overall, Tbsat ran significantly faster than CryptoMiniSat on these formulas, even ac-
counting for the performance difference of the execution platforms. On the other hand, it was
less stable. Even for formulas as small as n = 30, it could encounter a single conjunction
operation that would cause so many BDD operations that the proof generator exceeded the
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limit of 230 clauses. By contrast, CryptoMiniSat performance was very stable until it started
exceeding the time limit once n reached 34. The generated proofs, however, could reach 100 GB
for both solvers. Checking the LRAT proofs generated by tbsat ran much faster than did the
checking of the FRAT proofs generated by CryptoMiniSat. All of the problems that tbsat
could solve without overflowing the proof clause counter ran in under 1200s. Indeed, the PAR-2
scores would improve if the timeout limit were reduced.

4 Conclusion

CDCL solvers have a major weakness in their handling of parity constraints. Augmenting CDCL
with Gauss-Jordan elimination is well established, but this capability has so far lacked the ability
to generate proofs of unsatisfiability. Our work shows that standard clausal proof frameworks
suffice, with BDDs providing a bridge between parity reasoning and proof generation. We hope
that others will explore the CDCL(T) framework, while maintaining the important capability
of generating unsatisfiability proofs.
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