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Abstract. Many applications such as forensics, surveillance, satellite
imaging, medical imaging, etc., demand High-Resolution (HR) images.
However, obtaining an HR image is not always possible due to the limi-
tations of optical sensors and their costs. An alternative solution called
Single Image Super-Resolution (SISR) is a software-driven approach that
aims to take a Low-Resolution (LR) image and obtain the HR image.
Most supervised SISR solutions use ground truth HR image as a target
and do not include the information provided in the LR image, which
could be valuable. In this work, we introduce Triplet Loss-based Gen-
erative Adversarial Network hereafter referred as SRTGAN for Image
Super-Resolution problem on real-world degradation. We introduce a
new triplet-based adversarial loss function that exploits the information
provided in the LR image by using it as a negative sample. Allowing
the patch-based discriminator with access to both HR and LR images
optimizes to better differentiate between HR and LR images; hence, im-
proving the adversary. Further, we propose to fuse the adversarial loss,
content loss, perceptual loss, and quality loss to obtain Super-Resolution
(SR) image with high perceptual fidelity. We validate the superior per-
formance of the proposed method over the other existing methods on the
RealSR dataset in terms of quantitative and qualitative metrics.

1 Introduction

Single Image Super-Resolution (SISR) refers to reconstructing a High Resolution
(HR) image from an input Low Resolution (LR) image. It has broad applications
in various fields, including satellite imaging, medical imaging, forensics, security,
robotics, where LR images are abundant. It is an inherently ill-posed problem
since obtaining the SR image from an LR image might correspond to any patch of
the ground truth HR image, which is intractable. The most employed solutions
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RealSR dataset [6] DIV2KRK Dataset [7]

Fig. 1: True LR and corresponding bicubic downsampled LR image from ground truth
HR of the RealSR dataset [6] and DIV2KRK dataset [7]

are the supervised super-resolution methods due to the availability of ground
truth information and the development of many novel methods.

Reconstructing the HR image from LR input includes image deblurring, de-
noising, and super-resolution operations which makes the SISR a highly com-
plex task. Due to recent technological advances, such as computational power
and availability of data, there has been substantial development in various CNN
architectures and loss functions to improve SISR methods [1–5]. These models
have been primarily tested on the synthetic datasets. Here, the LR images are
downsampled from the ground truth HR images by using known degradation
model such as bicubic downsampling. For instance, Fig. 1 shows that the char-
acteristics like blur and that details of true and bicubic downsampled LR images
do not correspond exactly for both RealSR [6] and DIV2KRK dataset [7]. Such
differences can be attributed to underlying sensor noise and unknown real-world
degradation. Hence, the models perform well on those synthetically degraded
images, they generalize poorly on the real-world dataset [8]. Further, most of
the works have shown that adding more CNN layers does increase the perfor-
mance of the model by some extent. However, they are unable to capture the
high-frequency information such as texture in the images as they rely on the
pixel-wise losses and hence suffer from poor perceptual quality [9–12].

To address the issues mentioned above, the research community has also
proposed using Generative Adversarial Networks (GANs) for SISR task. The first
GAN-based framework called SRGAN [13], introduced the concept of perceptual
loss, calculated from high-level feature maps, and tried to solve the problem of
poor perceptual fidelity as mentioned before. Subsequently, numerous GAN-
based methods were introduced that have shown improvements in the super-
resolution results [13–15]. GANs are also used for generating perceptually better
images [13, 14, 16]. Motivated by such works, we propose SR using Triplet loss-
based GAN (SRTGAN) - a triplet loss-based patch GAN comprising a generator
trained in a multi-loss setting with a patch-based discriminator.

Our proposed method - SRTGAN gains superior Peak Signal-to-Noise Ra-
tio (PSNR) and competing Structural Similarity Index (SSIM) [17] values on
the RealSR dataset (real-world degradation) [6], which still cannot be consid-
ered a valid metric as they fail to capture the perceptual features. Hence, we
also evaluate our performance on the perceptual measure, i.e. Learned Percep-
tual Image Patch Similarity (LPIPS) [18] score. Our SRTGAN outperforms the
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other state-of-the-art methods in the quantitative evaluation of LPIPS and visual
performance on the RealSR dataset. It also provides superior LPIPS results on
the DIV2KRK dataset [7] (synthetic degradation). All our experiments on both
RealSR and DIV2KRK datasets are done for an upscaling factor of ×4. Even
though DIV2KRK happens to be a synthetic dataset, it has a highly complex
and unknown degradation model. Hence, our proposed method has been trained
and validated on these datasets proving the generalizability on the real-world
data.

Our key contributions in this work can therefore be listed as:
• We propose a new triplet-based adversarial loss function that exploits the
information provided in the LR image by using it as a negative sample as
well as the HR image which is used as a positive sample.

• A patchGAN-based discriminator network is utilized that assists the defined
triplet loss function to train the generator network.

• The proposed SR method is trained on a linear combination of losses, namely
the content, multi-layer perceptual, triplet-based adversarial, and quality as-
sessment. Such fusion of different loss functions leads to superior quantitative
and subjective quality of SR results as illustrated in the results.

• Additionally, different experiments have been conducted in the ablation
study to judge the potential of our proposed approach. The superiority of
the proposed method over other novel SR works has been demonstrated from
the undertaken quantitative and qualitative studies.

The structure of the paper is designed in the following manner. Section 2 consists
of the related work in the field. Section 3 includes the proposed framework,
the network architecture, and loss formulation for training the Generator and
Discriminator networks. The experimental validation is presented in Section 4,
followed by the limitation and conclusion in Section 5 and 6 respectively.

2 Related Works

A Convolutional Neural Network (CNN) based SR approach (referred as SR-
CNN) was proposed by Dong et al. [2], where only three layers of convolution
were used to correct finer details in an upsampled LR image. Similarly, FSR-
CNN [4] and VDSR [19] were inspired by SRCNN with suitable modifications to
further improve the performance. VDSR [19] is the first model that uses a deep
CNN and introduces the use of residual design that helps in the faster conver-
gence with improvement in SR performance. Such residual connection also helps
to avoid the vanishing gradient problem, which is the most common problem
with deeper networks. Inspired by VDSR [19], several works [5, 13, 20–22] have
been reported with the use of a residual connection to train deeper models. Apart
from a residual network, an alternative approach using dense connections has
been used to improve SR images in many recent networks [3,23,24]. The concept
of attention was also used in several efforts [20,25] to focus on important features
and allow sparse learning for the SR problem. Similarly, adversarial training [26]
has been shown to obtain better perceptual SR results. Ledig et al. introduced
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adversarial learning for super-resolution termed as SRGAN [13], which shows
perceptual enhancement in the SR images even with low fidelity metrics such as
PSNR and SSIM. Recent works such as SRFeat [16] and ESRGAN [14], which
were inspired by SRGAN, have also reported improvements in the perceptual
quality in obtaining SR images. A variant of GAN, TripletGAN [27] demon-
strated that a triplet loss setting will theoretically help the generator to con-
verge to the given distribution. Inspired by TripletGAN, PGAN [28] has been
proposed, which uses triplet loss to super-resolve medical images in a multistage
manner.

The limitation of the majority of the work mentioned above is the use of
artificially degraded training data, such as bicubic downsampling. The CNNs
typically fail to generalise well on the real-world data, because real-world degra-
dation is considerably different than bicubic downsampling (see Fig. 1). The
supervised approaches need real LR-HR pairs in order to generalise to real-
world data, which is challenging. For recovering real-world HR images, Cai et
al. [6] introduced the RealSR dataset and a baseline network called Laplacian
Pyramid-based Kernel Prediction Network (LP-KPN). Thereafter, several re-
search works for SR have been conducted on the RealSR dataset, considering
factors from real data into account. [29–35].

Further, Cheng et al. suggested a residual network based on an encoder-
decoder architecture for the real SR problem [30]. A coarse-to-fine approach was
used by them, where lost information was gradually recovered and the effects of
noise were reduced. By adopting an autoencoder-based loss function, a fractal
residual network was proposed by Kwak et al. [35] to super-resolve real-world
LR images. At the outset of network architecture, an inverse pixel shuffle was
also proposed by them to minimise the training parameters. Du et al. [33] sug-
gested an Orientation-Aware Deep Neural Network(OA-DNN) for recovering of
images with high fidelity. It is made up of many Orientation Attention Mod-
ules(OAMs) which are designed for extracting orientation-aware features in dif-
ferent directions. Additionally, Xu and Li have presented SCAN, a spatial colour
attention-based network for real SR [34]. Here, the attention module simultane-
ously exploits spectral and spatial dependencies present in colour images. In this
direction, we provide a novel framework based on triplet loss in the manuscript
inspired by [27] to enhance the perceptual quality of SR images on the realSR
dataset.

Although there have been previous attempts to incorporate the triplet loss
optimization for super-resolution such as PGAN [28], which progressively super-
resolve the images in a multistage manner, it has to be noted that they are
specifically targeted to medical images, and in addition, the LR images used are
obtained through a known degradation (such as bicubic sampling) and blurring
(Gaussian filtering). Thus, it fails to address real-world degradation. Using the
triplet loss, the proposed patch-based discriminator can better distinguish be-
tween generated and high-resolution images, thereby improving the perceptual
fidelity. To the best of our knowledge, the utilization of triplet loss to the real-
world SISR problem has not been explored before. We, therefore, propose the
new approach as explained in the upcoming section.
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3 Proposed Method

Fig. 2 shows the detailed training framework of our proposed method. The pro-
posed supervised SR method expects the LR and its corresponding ground truth
HR image as the input. It performs super-resolution on the LR image using the
generator network, which is trained in a multi-loss setting using a fusion of losses
namely content, perceptual, adversarial, and quality assessment. As depicted in
Fig. 2, the content Loss is calculated as L1 loss (pixel-based difference) between
the generated(SR) and ground truth(HR) images. It assists the generator in pre-
serving the content of ground truth HR. As the generator network is trained in
an adversarial setting with the discriminator, we use a triplet-based GAN loss,
which also boosts the stability of the learning. Apart from the GAN loss, we
incorporate multi-layer perceptual loss, which is calculated as L2 loss between
the features of HR and SR, obtained from a pre-trained VGG network as sug-
gested in SRGAN [13]. Moreover, we also use a quality assessment loss based on
Mean Opinion Score (MOS) for improving the perceptual quality of generated
images [22]. The validation of each setting in the framework is demonstrated in
the ablation section later.

Fig. 2: The training framework of our proposed method - SRTGAN.

Generator Network (G): The design of generator network is shown in
Fig. 3, which was published in [36]. The architecture can be divided into Feature
Extraction (Low-level Information Extraction (LLIE), High-level Information
Extraction (HLIE)) and Reconstruction (SR reconstruction (SRRec)) modules
based on their functionality. The LLIE module is initially fed with LR input
(ILR) for extracting the low-level details (i.e., Il). It consists of a convolutional
layer with kernel size 3 and 32 channels. This can be expressed mathematically
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Fig. 3: Generator network [36].

as,
Il = fLLIE(ILR). (1)

The edges and fine structural details present in the LR image are extracted
by the HLIE module using the low-level information Il. HLIE module comprises
of 32 Residual-In-Residual (RIR) blocks, one 3×3 convolutional layer, and have
one long skip connection. The long skip connection here stabilizes the network
training [13,14,22,36]. Each RIR block is created using three residual blocks and
a skip connection with a 1×1 convolutional layer. The Residual Block comprises
of four 3 × 3 convolutional layers with a serially attached Channel Attention
(CA) module. Using the statistical average of each channel, each channel is
independently re-scaled via the CA module [20]. As depicted in Fig. 3, skip
connections are also used in residual blocks, which aids in stabilizing the training
of deeper networks and resolving the vanishing gradient problem. The output
from HLIE module can be expressed as,

Ih = fHLIE(Il). (2)

Now, feature maps with high-level information (i.e. Ih) are passed to the SR
Reconstruction (SRRec) module, which comprises of 1 up-sampling block and 2
convolutional layers. This helps in mapping Ih to the required number of channels
needed for output image (ISR). This can be stated as follows:

ISR = fREC(Ih), (3)

where the reconstruction function of the SRRec module is fREC . The nearest
neighbour is used to perform a 2× upsampling with a 3× 3 convolutional layer
and 32 feature maps in each up-sampling block. Finally, a convolutional layer is
used to map 32 channels into 3 channels of SR image in the generator network.
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Discriminator (D) Network: We further use a PatchGAN [37] based dis-
criminator network to distinguish foreground and background on a patch with
scale of 70 × 70 pixels. The proposed architecture is shown in Fig. 4. It is de-
signed by adhering to the recommendations made in the work of PatchGAN [37].
It consists of five convolutional layers with strided convolutions. After each con-
volution, the number of channels doubles, excluding the last output layer which
has a single channel. The network uses a fixed stride of two except for the second
last and last layer where the stride is set to 1. It is noted that a fixed kernel
size of 4 is used for all layers throughout the discriminator network. Further,

Fig. 4: Discriminator Network. Here, n stands for the number of channels, while S
represents stride.

each convolutional layer except the output layer uses leaky ReLU activation and
padding of size one. All intermediate convolutional layers except the first and
last layer use Batch Normalisation.

Quality Assessment (QA) Network: Inspired by [36], a novel quality-
based score obtained from QA Network is employed which serves as a loss func-
tion in training. The design of QA network is shown in Fig. 5, which is inspired
by the VGG. The addition of the QA loss in the overall optimization enhances
the image quality based on human perception as the QA network is trained to
mimic how humans rank images based on their quality. Instead of using a single
path to feed input to the network, two paths have been employed in this case. To
proceed forward, both of these features are subtracted. Each VGG block has two
convolutional layers, the second of which uses a stride of 2 to reduce the spatial
dimensions. The network uses Global Average Pooling (GAP) layer instead of
flattening layer to minimize the trainable parameters. At fully connected layers,
a drop-out technique is used to overcome the issue of over-fitting. The KADID-
10K [38] dataset, consisting of 10, 050 images, was used to train the QA network.
The dataset has been divided in 70%-10%-20% ratio for train-validate-test pur-
poses respectively during the training process.

3.1 Loss Functions

As depicted in Fig. 2, the generator is trained using a fusion of content loss
(pixel-wise L1 loss), GAN loss (triplet-based), QA loss, and perceptual loss.
Mathematically, we can describe the loss of generator by the following formula:

Lgen = λ1Lcontent + λ2LQA + λ3L
G
GAN + λ4Lperceptual. (4)
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Fig. 5: The architecture of QA network [36].

The values of λ1, λ2, λ3 and λ4 are set empirically to 5, 2× 10−7, 1× 10−1 and
5× 10−1, respectively.

The Discriminator network is trained using triplet-based GAN loss. This can
be expressed as,

Ldisc = λ3L
D
GAN (5)

where λ3 is emperically set to 1× 10−1.
Both LG

GAN and LD
GAN are defined in Eqn. 9 and 10 respectively.

The content loss in Eqn. 4 has been used to preserve the content of the ground
truth, which is an L1 loss between ground truth HR (i.e., IHR) and generated
image SR (i.e., ISR), and same can be expressed as,

Lcontent =

N∑
∥G(ILR)− IHR)∥1, (6)

where N denotes the batch size in training, and G represents the function of
generator.

∑N
[·] denotes an average operation across all images in the mini-

batch. The perceptual loss Lperceptual is used here for improving the perceptual
similarity of the generated image with respect to its ground truth, which can be
expressed as,

Lperceptual =

N∑[ 4∑
i=1

MSE(F i
HR, F

i
SR)

]
. (7)

Here, MSE(a, b) represents Mean Square Error (MSE) between a and b, F i:
Normalised features taken from layers[i] and layers = [relu12, relu22, relu33,
relu43]. Here, layers is the list of four layers of VGG-16 used for the calculation
of perceptual loss [10]. Such loss is calculated as the MSE between the normalized
feature representations of generated image (FSR) and ground truth HR (FHR)
obtained from a pre-trained VGG-16 network. It is not dependent on low-level
per-pixel information that leads to blurry results. Instead, it depends on the
difference in high-level feature representations which helps to generate images
of high perceptual quality. In addition, the idea of using multi-layer feature
representations adds to its robustness. To further improve the quality of SR
images based on human perception, a Quality Assessment (QA) loss is also
introduced. It rates the SR image on a scale of 1-5, with a higher value indicating
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Fig. 6: Comparison of background patch in LR and HR images.

better quality. This predicted value is used to calculate the QA loss i.e., LQA,
which is expressed as [36],

LQA =

N∑(
5−Q(ISR)

)
, (8)

where Q(ISR) represents the quality score of SR image from the QA network.
The GAN loss used here is a triplet-based loss function to a patch-based

discriminator. An image can be simplified consisting of 2 parts, Background
and Foreground; according to human perceptions, we rate images to be higher
quality based on the foreground, which is the focus of the image. On the other
hand, the background between LR and HR images is hard to differentiate as
shown in Fig 6. A background patch with a vanilla GAN would be similar to the
discriminator perceptually, hence forcing the output for the same to be real/fake
could lead to a high erroneous loss and cause instability and noise in training.
However, in the case of foreground patches, the idea of vanilla GAN will work
well. To solve this problem, we introduce the use of triplet loss: instead of forcing
the discriminator output for HR and SR to be opposite labels, we calculate
the loss using the relative output produced by the discriminator for HR, LR,
and SR images. We formulate this as triplet loss optimization comprising of
3 variables - positive, negative and anchor. The distance between the anchor
and the positive is minimised by the cost function, while the distance between
the anchor and the negative is maximised. For the generator, the anchor is
defined as the generated SR image (ISR), the positive as the ground-truth HR
image (IHR), and the negative as the up-sampled LR input (n(ILR)), where n
is the bicubic upsampling factor. The positive and negative are interchanged for
training the discriminator. Thus, the triplet-based GAN losses for generator and
discriminator can be defined as,

LG
GAN =

N∑[
MSE(D(ISR), D(IHR))−MSE(D(ISR), D(n(ILR))) + 1

]
(9)

LD
GAN =

N∑[
MSE(D(ISR), D(n(ILR)))−MSE(D(ISR), D(IHR)) + 1

]
(10)

Here, MSE(a, b) represents mean square error between a and b; n denotes up-
sampling factor. This triplet based GAN loss teaches the Generator to generate
sharp and high-resolution images by trying to converge SR embeddings D(ISR)
and HR embeddings D(IHR) and diverge SR embeddings with LR embeddings
D(n(ILR)), which are obtained from the Discriminator. Simultaneously, it also
trains the patch-based Discriminator to distinguish the generated SR image from
the ground-truth HR. The background patch as discussed before is similar for
LR and HR images. Applying this triplet-based GAN loss patch-wise, improves

9



Fig. 7: Comparison of the results obtained through our proposed method-SRTGAN
(with QA network and Triplet loss) Vs without incorporating QA Network or Triplet
Loss on (A)-RealSR dataset [6] and (B)-DIV2KRK dataset [7]

the adversary as it allows the discriminator to better distinguish the main sub-
ject(foreground) of SR and HR images, which helps in generating images with
better perceptual fidelity.

4 Experimental Results

4.1 Training Details

Using our proposed framework, we conduct supervised training on the RealSR
dataset [6]. In this dataset, the focal length of a digital camera has been adjusted
to collect LR-HR pairs of the same scene. To incrementally align the image pairs
at various resolutions, an image registration method is developed. Our proposed
network has been trained on 400 such images from the RealSR dataset and ad-
ditionally it has been validated on 100 LR-HR image pairs provided in the same
dataset. Finally, DIV2KRK [7] and test set of RealSR dataset [6] are employed
for testing purposes. The LR images are subjected to several augmentations dur-
ing the training phase, including horizontal flipping, rotation of 0◦ or 90◦, and
cropping operations.The total trainable parameters of generator and discrimi-
nator networks are 3.7M and 2.7M , respectively.

Additionally, we also employ QA network-based loss to enhance the quality
of generated images. This method has been referenced from the work of [36].
Our proposed triplet loss optimization improves the visual appearance of the SR
images to make them more realistic.

4.2 Ablation Study

We demonstrate the experimental support for incorporating the triplet loss and
QA network in this section. Quantitative and Qualitative assessment conducted
on the RealSR dataset [6], are shown in Table 1 and Fig. 7, respectively. Our
method yields superior SR outcomes on both synthetic and real-world data (Re-
alSR dataset). The proposed method with QA network and Triplet Loss per-
forms better (see Table 1) when compared to the performance obtained using
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Table 1: Quantitative evaluation of SRTGAN (with QA Network and Triplet Loss)
Vs without incorporating these modules on the RealSR dataset [6].

Method PSNR ↑ SSIM [17]↑ LPIPS [18]↓
w/o Triplet Loss (Vanilla GAN Loss) 25.879 0.72199 0.37095
w/o QA Network 16.126 0.39542 0.51217
Proposed 26.47283 0.754585 0.283878

Table 2: Quantitative evaluation of SRTGAN with other state-of-the-art SR methods
on RealSR and DIV2KRK dataset
Method PSNR ↑SSIM [17] ↑LPIPS [18] ↓PSNR ↑SSIM [17] ↑LPIPS [18] ↓

DIV2KRK [7] Dataset RealSR [6] Dataset

Bicubic 23.89 0.6478 0.5645 25.74 0.7413 0.4666

ZSSR [39] 24.05 0.6550 0.5257 25.83 0.7434 0.3503

KernelGAN [7] 24.76 0.6799 0.4980 24.09 0.7243 0.2981

DBPI [40] 24.92 0.7035 0.4039 22.36 0.6562 0.3106

DAN [41] 26.07 0.7305 0.4045 26.20 0.7598 0.4095

IKC [42] 25.41 0.7255 0.3977 25.60 0.7488 0.3188

SRResCGAN [15] 24.00 0.6497 0.5054 25.84 0.7459 0.3746

Proposed 24.17 0.6956 0.3341 26.47 0.7546 0.2838

the framework without those modules. This is quantitatively evaluated on var-
ious distortion metrics like PSNR and SSIM and perceptual measures, such as
LPIPS. The SR images produced using our proposed approach with QA network
and Triplet Loss are also perceptually better when compared to without adding
these modules, which is shown in Fig. 7. It has been observed that our method
without QA Network generates blurry output and variation in the natural color
of the image. Our framework when optimized using vanilla GAN loss(instead of
triplet loss), closely resembles the colour as anticipated in the real world, but
fails to sharpen the edges, causing blurring. The proposed method’s advantage
may be observed in its ability to produce SR images with an adequate level
of sharpening around the edges and preserving the color-coding of the original
image. Here, by observing Fig. 7, one may quickly determine the perceptual
improvement from our proposed strategy.

4.3 Quantitative Analysis

The PSNR and SSIM values, which are the accepted measurements for the SR
problem, are often estimated for comparison of the results between different
approaches. These metrics, however, do not entirely justify the quality based
on human perception. Therefore, we also estimate a full-reference perceptual
quality assessment score known as LPIPS [18]. A low LPIPS score indicates a
better visual quality.

The comparison of all three metrics on the DIV2KRK [7] and RealSR datasets
[6] is presented in Table 2. On both datasets, SRTGAN outperforms other novel
approaches on LPIPS metric, demonstrating the proposed method’s superiority
in terms of perceptual quality. Our proposed approach also performs superior
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(a) Results on RealSR dataset [6].

(b) Results on DIV2KRK dataset [7].

(c) Results on DIV2KRK dataset [7].

Fig. 8: Qualitative evaluation of SRTGAN with other state-of-the-art methods on
RealSR and DIV2KRK dataset

to other methods on PSNR metric, whereas performs competitively in terms of
SSIM, on the RealSR dataset [6]. SRTGAN also performs quite competitively
in terms of PSNR and SSIM on the synthetic dataset - DIV2KRK [7]. The
perceptual metric, LPIPS obtained using our proposed approach is significantly
better for both datasets (see Table 2).

4.4 Qualitative Analysis

In this section, we show the efficacy of SRTGAN through visual inspection.
We qualitatively evaluate the SR performance on one image of RealSR dataset
(Fig. 8a) [6] and two sample images of DIV2KRK dataset (Fig. 8b and 8c) [7]. In
addition, we also make comparison with other novel works such as KernelGAN

12



[7], ZSSR [39], DBPI [40], DAN [41], IKC [42], and SRResCGAN [15]. These SR
results demonstrate that SRTGAN significantly reduces the amount of noise in
the SR image and improves image clarity in comparison to other novel methods.
In additon, SRTGAN can produce colours similar to the ground truth, while
competing methods like IKC and KernelGAN over-boosts the colours in the
generated images.

Our proposed method - SRTGAN produces SR images of better quality and
with fewer noise artifacts than existing state-of-the-art methods. The quanti-
tative assessment of several quality metrics (see Table 2) and the perceptual
quality acquired on various datasets (see Fig. 7- 8c) support this conclusion.

5 Limitations

The proposed work obtains better results on real-world data; however, we note
certain limitations as well. The network is stable only when fine-tuned for all the
losses. As we can observe in Fig. 7, the removal of the QA loss leads to unde-
sirable outputs. Thus, fine-tuning of each loss is an expensive process. Another
limitation for using the current model is that the generator and discriminator
are trained in a supervised manner and hence it requires true HR-LR image
pairs which can be difficult to obtain as this will need the same image to be
clicked by cameras of two different resolutions. However, our work can be easily
extended to unsupervised approach, as the core idea of generative modeling is
to treat such unsupervised problems in a supervised manner.

6 Conclusion

We have proposed an approach to the SISR problem based on TripletGAN
that fuses the novel triplet loss and no-reference quality loss along with the
other conventional losses. We further modify the design of discriminator to be a
patch-based discriminator for improving image quality at the scale of local im-
age patches. The triplet loss uses both high-resolution and low-resolution images
and hence, it captures the essential information required in the SR image. Apply-
ing patch-wise triplet loss improves the adversary as it allows the discriminator
to better distinguish the main subject(foreground) of SR and HR images, which
helps in generating images with better perceptual fidelity. Through experiments,
we have demonstrated that SRTGAN can super-resolve images by a factor of ×4
with improved perceptual quality than other competing methods.
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