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We first prove that any [conjunctive/disjunctive] 3-valued pa-
raconsistent logic with subclassical negation (3VPLSN) is de-
fined by a unique{modulo isomorphism} [conjunctive/disjun-
ctive] 3-valued matrix and provide effective algebraic criteria
of any 3VPLSN’s beingsubclassical|beingmaximallyparacon-
sistent|having no (inferentially) consistent non-subclassical ex-
tension implying that any [conjunctive/disjunctive]|conjunctive/
both disjunctive and subclassical/refutingDouble Negation Law|
conjunctive/disjunctive subclassical 3VPLSN’s is subclassical
if[f] its defining 3-valued matrix has a 2-valued submatrix|is ma-
ximally paraconsistent|has a theorem but no consistent non-sub-
classical extension. Next, any disjunctive 3VPLSN has no proper
consistent non-classical disjunctive extension, any classical ex-
tension being disjunctive and relatively axiomatized byResolu-
tion rule. Further, we provide an effective algebraic criterion
of a [subclassical] 3VPLSN with lattice conjunction and disj-
unction’s having no proper [consistent non-classical] extension
but that which is relatively axiomatized byEx Contradictione
Quodlibet rule [and defined by the product of any defining 3-
valued matrix and its 2-valued submatrix]. Finally, any disjunc-
tive 3VPLSN with classically-valued connectives has an infinite
increasing chain of finitary extensions.
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1 INTRODUCTION

Perhaps, the principal value ofuniversal logical investigations consists in
discovering uniform transparent points behind particular results, originally
provedad hoc, to be resulted ininductiveelaborating general theories ex-
plaining those points with preferable covering new instances to demonstrate
the deductivepower of developed theories. This thesis is the main method-
ological paradigm of the present study.

On the other hand, appearance of any non-classical (in particular, many-
valueed) logic inevitably raises the problems of studying both the logic itself
and those related to it (including its extensions) with regard to such points
as their (relative) axiomatizations as well as sound and, especially, complete
semantics. In this connection, the [axiomatic] maximality of various kinds of
the logic under consideration — in the sense of absence of proper [axiomatic]
extensions satisfying a certain property held for the given logic — becomes
especially acute.

In particular, when dealing with aparaconsistent(viz., refuting theEx
Contradictione Quodlibetrule) logic, the issue of itsmaximal paraconsis-
tencyin the sense of absence of any proper paraconsistent extension becomes
especially acute. Such strong version of maximal paraconsistency — as op-
posed to the weakaxiomaticone (regarding merelyaxiomaticextensions)
discovered in [13] forP 1 — was first observed in [7] for thelogic of paradox
LP [6] and then forHZ [3] in [9] and has been proved for arbitrary con-
junctive subclassical(viz., having a classical extension) three-valued para-
consistent logics in the reference [Pyn 95b] of [7] as well as comprehensively
studied for arbitrary four-valued expansions of a four-valued logic in [12]
with providing its effective — in case of finitely many connectives — alge-
braic criterion properly inherited by theirfour-valuedexpansions. In this
paper, we provide an equally effective algebraic criterion of the maximal
paraconsistency of three-valued paraconsistent logics with subclassical nega-
tion [fragment] properly inherited by theirthree-valuedexpansions, while any
such logic isaxiomaticallymaximally paraconsistent. As a consequence, we
prove that any conjunctive/both subclassical and disjunctive/refuting theDou-
ble Negation Lawthree-valued paraconsistent logic with subclassical nega-
tion is maximally paraconsistent. In particular, anythree-valuedexpansion
of LP/HZ/P 1 is maximally paraconsistent.

Likewise, when dealing with non-classical (in particular, many-valued)
logics, their connections with the classical (two-valued) one deserves a par-
ticular emphasis. In particular, this concerns the property of a non-classical
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logic’s being subclassical equally comprehensively studied within the frame-
work of four-valued expansions ofDB4 in [12] with its equally effective al-
gebraic criterion very similar to that found here within the context of conjunc-
tive/disjunctive three-valued paraconsistent logics with subclassical negation.
(Here, we adapt [12]’s abstract conception ofclassicallogic).

Nevertheless, the most culminating part of the paper concerns a much
more advanced issue of exploration of overall lattices of extensions of three-
valued paraconsistent logics with subclassical negation going back to the
works [8] and [9] as well as [11] that have advanced much the maximal
paraconsistency results forLP , HZ as well as bothLA [1] and its bounded
expansion towards proving the fact the lattices of their extensions form four-
element chains, the greatest/least consistent proper extension being relatively
axiomatized by either theModus Ponensrule for thematerial implication/the
Ex Contradictione Quodlibetrule and being classical/defined by the direct
product of any defining three-valued matrix and its two-valued submatrix.
On the other hand, such does not hold for arbitrary (even both subclassical,
conjunctive and disjunctive) three-valued paraconsistent logics with subclas-
sical negation, a most representative example beingP 1 [13] having infinitely
many (even finitary) extensions, proved here for arbitrary disjunctive three-
valued paraconsistent logics with subclassical negation and classically-valued
connectives,P 1 being a term-wise definitionally minimal instance of such a
kind. This inevitably raises the question: what does unify the above miscel-
laneous instances? In this connection, it is remarkable that, though the work
[11] has unifiedHZ,LA and its bounded expansion, the very first instance of
such a kind — the logic of paradoxLP — has proved beyond the mentioned
general study. Therefore, thus far, the problem raised remained still open.
Here, we solve it within the framework of three-valued paraconsistent log-
ics with subclassical negation as well as chain-lattice-based conjunction and
disjunction with providing an effective — in case of finitely many connec-
tives — criterion of having the mentioned structure of extensions uniformly
covering both the above and some interesting new instances.

The rest of the paper is as follows. Section 2 is a concise summary of
basic issues underlying the paper. Then, in Section 3 we elaborate quite
useful generic tools concerning weakly conjunctive matrices with a single
non-distinguished value as well as both an enhancement of the conception
of equality determinant going back to [12] and axiomatic [resp., disjunctive]
extensions of logics defined by [finitely many finite disjunctive] matrices. In
Sections 4, 6, 7, 8, 9, 10 and 11 we formulate and prove maingeneralresults
of the paper, exemplifying these by brief discussing certain representative in-
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stances of 3VPLSN.

2 BASIC ISSUES

2.1 Set-theoretical background
We follow the standard set-theoretical convention, according to which natural
numbers (including 0) are treated as finite ordinals (viz., sets of lesser natu-
ral numbers), the ordinal of all them being denoted byω. The proper class
of all ordinals is denoted by∞. Also, functions are viewed as binary rela-
tions, while singletons are identified with their unique elements, unless any
confusion is possible.

Given a setS, the set of all subsets ofS [of cardinality∈ K ⊆ ∞] is
denoted by℘[K](S). As usual, given any equivalence relationθ onS, by νθ
we denote the function with domainS defined byνθ(a) , θ[{a}], for all
a ∈ S, whereas we set(T/θ) , νθ[T ], for everyT ⊆ S. Next, S-tuples
(viz., functions with domainS) are often written in the sequencet̄ form, itss-
th component (viz., the value under arguments), wheres ∈ S, being written
asts. Given two more setsA andB, any relationR ⊆ (A×B) (in particular,
a mappingR : A→ B) determines the equally-denoted relationR ⊆ (AS ×
BS) (resp., mappingR : AS → BS) point-wise. Likewise, given a setA, an
S-tupleB of sets and anȳf ∈ (

∏
s∈S B

A
s ), put (

∏
f̄) : A → (

∏
B), a 7→

〈fs(a)〉s∈S . (In caseI = 2, f0 × f1 stands for(
∏
f̄).) Further, set∆S ,

{〈a, a〉 | a ∈ S}, functions of such a kind being referred to asdiagonal,
andS+ ,

⋃
i∈(ω\1) S

i, elements ofS∗ , (S0 ∪ S+) being identified with
ordinary finite tuples. Then, any binary operation� on S determines the
equally-denoted mapping� : S+ → S as follows: by induction on the length
l = (dom ā) of any ā ∈ S+, put:

�ā ,

{
a0 if l = 1,

(�(ā�(l − 1))) � al−1 otherwise.

In particular, given anyf : S → S and anyn ∈ ω, setfn , (◦〈n ×
{f},∆D〉) : S → S. Finally, given anyT ⊆ S, we have thecharacteristic
functionχTS , ((T × {1}) ∪ ((S \ T )× {0})) of T in S.

In general, we adopt the following standard notations for elements of22:

t , 〈1, 1〉, f , 〈0, 0〉, b , 〈1, 0〉, n , 〈0, 1〉.

Moreover, byv we denote the partial ordering on22 defined by(ā v b̄) def⇐⇒
((a0 6 b0)&(b1 6 a1)), for all ā, b̄ ∈ 22. Then, given anyB ⊆ 22, any
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f : Bn → B, wheren ∈ ω, is said to beregular, provided, for all̄a, b̄ ∈ Bn
such that, for everyi ∈ n, ai v bi, it holds thatf(ā) v f(b̄).

2.2 Algebraic background

Unless otherwise specified, abstract algebras are denoted by Fraktur letters
[possibly, with indices], their carriers being denoted by corresponding Italic
letters [with same indices, if any].

A (propositional/sentential) language/signatureis any algebraic (viz., fu-
nctional) signatureΣ (to be dealt with throughout the paper by default) con-
stituted by function (viz., operation) symbols of finite arity to be treated as
(propositional/sentential) connectives. Given anyα ∈ ℘∞\1(ω), put Vα ,
{xβ | β ∈ α}, elements of which being viewed as(propositional/sentential)
variables of rankα. Then, we have the absolutely-freeΣ-algebraFmα

Σ freely-
generated by the setVα, its endomorphisms/elements of its carrierFmα

Σ be-
ing called(propositional/sentential)Σ-substitutions/-formulas of rankα. (In
general, any mention ofα is normally omitted, wheneverα = ω.)

A Σ-algebraA with A ⊆ 22 is said to beregular, whenever its primary
operations are so, in which case secondary ones are so as well.

2.3 Propositional logics and matrices

A [finitary] Σ-rule is any couple〈Γ, ϕ〉, where(Γ∪{ϕ}) ∈ ℘[ω](Fmω
Σ), nor-

mally written in the standard sequent formΓ ` ϕ, ϕ/any element ofΓ being
referred to as the/aconclusion/premise ofit. A (substitutional)Σ-instanceof
it is then anyΣ-rule of the formσ(Γ ` ϕ) , (σ[Γ] ` σ(ϕ)), whereσ is a
Σ-substitution. As usual,Σ-rules without premises are calledΣ-axiomsand
are identified with their conclusions. A[n][axiomatic] (finitary) Σ-calculus
is then any setC of (finitary) Σ-rules [without premises], the set of allΣ-
instances of its elements being denoted bySIΣ(C).

A (propositional/sentential)Σ-logic (cf., e.g., [4]) is any closure operator
C over Fmω

Σ that isstructural in the sense thatσ[C(X)] ⊆ C(σ[X]), for
all X ⊆ Fmω

Σ and allσ ∈ hom(Fmω
Σ,Fmω

Σ), in which case we set≡αC ,
{〈φ, ψ〉 ∈ (Fmα

Σ)2 | C(φ) = C(ψ)}, whereα ∈ ℘∞\1(ω). This is said
to be[inferentially] (in)consistent, if x1 6∈ (∈)C(∅[∪{x0}]). Then, aΣ-rule
Γ → Φ is said to besatisfied in/byC, providedΦ ∈ C(Γ), Σ-axioms satisfied
in C being referred to astheorems ofC. Next, aΣ-logic C ′ is said to be a
[proper] extension ofC, wheneverC ⊆ [(]C ′, in which caseC is said to
be a[proper] sublogic ofC ′. Then, a[n axiomatic]Σ-calculusC is said to
axiomatizeC ′ (relatively toC), if C ′ is the leastΣ-logic (being an extension
of C and) satisfying every rule inC [(in which case it is called anaxiomatic
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extension ofC, while

C ′(X) = C(X ∪ SIΣ(C)). (2.1)

for all X ⊆ Fmω
Σ)]. Furthermore, we have the finitary sublogicC` of C,

defined byC`(X) , (
⋃
C[℘ω(X)]), for allX ⊆ Fmω

Σ, called thefinitariza-
tion ofC. Then, the extension of any finitary (in particular, diagonal)Σ-logic
relatively axiomatized by a finitaryΣ-calculus is a sublogic of its own finita-
rization, in which case it is equal to this, and so is finitary (in particular, theΣ-
logic axiomatized by a finitaryΣ-calculus is finitary). Further,C is said to be
[weakly] Z-conjunctive, whereZ is a (possibly, secondary) binary connective
of Σ (tacitly fixed throughout the paper), providedC(φZψ)[⊇] = C({φ, ψ}),
whereφ, ψ ∈ Fmω

Σ. Likewise,C is said to beY-disjunctive, whereY is a
(possibly, secondary) binary connective ofΣ (tacitly fixed throughout the pa-
per), providedC(X ∪ {φ Y ψ}) = (C(X ∪ {φ}) ∩ C(X ∪ {ψ})), where
(X ∪ {φ, ψ}) ⊆ Fmω

Σ, in which case the following rules:

x0 ` (x0 Y x1), (2.2)

x1 ` (x0 Y x1), (2.3)

(x0 Y x0) ` x0 (2.4)

are satisfied inC, and so in its extensions, while any axiomatic extension of
C is Y-disjunctive, in view of (2.1). Finally,C is said to be[(axiomatically)
maximally]∼-paraconsistent, where∼ is a unary connective ofΣ {tacitly
fixed throughout the paper}, provided it does not satisfy theEx Contradic-
tione Quodlibetrule:

{x0,∼x0} ` x1 (2.5)

[and has no proper∼-paraconsistent (axiomatic) extension].
A (logical) Σ-matrix (cf. [4]) is any couple of the formA = 〈A, DA〉,

whereA is a Σ-algebra, called theunderlying algebra ofA, while DA ⊆
A is called thetruth predicate ofA. (In general, matrices are denoted by
Calligraphic letters [possibly, with indices], their underlying algebras being
denoted by corresponding Fraktur letters [with same indices, if any].) This
is said to ben-valued/[in]consistent/truth(-non)-empty/truth-|false-singular,
wheren ∈ ω, provided|A| = n/DA 6= [=]A/DA = (6=)∅/|(DA|(A \
DA))| ∈ 2, respectively. Next, given anyΣ′ ⊆ Σ, A is said to be a(Σ-
)expansion ofits Σ′-reduct (A�Σ′) , 〈A�Σ′, DA〉. (Any notation, being
specified for single matrices, is supposed to be extended to classes of matrices
member-wise.) Finally,A is said to befinite[ly generated]/generated bya
B ⊆ A, wheneverA is so.
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Given anyα ∈ ℘∞\1(ω) and any classM of Σ-matrices, we have the clo-
sure operatorCnαM overFmα

Σ defined byCnαM(X) , (Fmα
Σ ∩

⋂
{h−1[DA] ⊇

X | A ∈ M, h ∈ hom(Fmα
Σ,A)}, for allX ⊆ Fmα

Σ, in which case:

CnαM(X) = (Fmα
Σ ∩CnωM(X)), (2.6)

becausehom(Fmα
Σ,A) = {h�Fmα

Σ | h ∈ hom(Fmω
Σ,A)}, for anyΣ-algebra

A, asA 6= ∅. Then,CnωM is aΣ-logic, called thelogic of M, a Σ-logic C
being said to be[finitely-]defined byM, providedC(X) = CnM(X), for all
X ∈ ℘[ω](FmΣ). A Σ-logic is said to ben-valued, wheren ∈ ω, whenever
it is defined by ann-valuedΣ-matrix, in which case it is finitary (cf. [4]).

As usual,Σ-matrices are treated as first-order model structures of the first-
order signatureΣ ∪ {D} with unary predicateD, anyΣ-rule Γ ` φ being
viewed as (the universal closure of, depending upon the context) the infini-
tary equality-free basic strict Horn formula(

∧
Γ) → φ under the standard

identification of any propositionalΣ-formula ψ with the first-order atomic
formulaD(ψ).

A Σ-matrix A is said to be amodel of a Σ-logic C, providedC is a
sublogic of the logic ofA, the class of all them being denoted byMod(C).
Next,A is said to be∼-paraconsistent, whenever the logic ofA is so. Fur-
ther,A is said to be[weakly]�-conjunctive, where� is a (possibly, secondary)
binary connective ofΣ, provided({a, b} ⊆ DA)[⇐] ⇔ ((a �A b) ∈ DA),
for all a, b ∈ A, that is, the logic ofA is [weakly] �-conjunctive. Likewise,
A is said to be�-disjunctive/implicative, whenever((a 6∈ / ∈ DA) ⇒ (b ∈
DA)) ⇔ ((a �A b) ∈ DA), for all a, b ∈ A, in which case the logic ofA is �-
disjunctive, and so is the logic of any class of�-disjunctiveΣ-matrices/resp.,
A is Y�-disjunctive, where(x0 Y� x1) , ((x0 � x1) � x1). Finally, given any
(possibly secondary) unary connective¬ of Σ, put(x0�¬x1) , ¬(¬x0�¬x1).

Let A andB be twoΣ-matrices. A(strict) [surjective] {matrix} homo-
morphism fromA [on]to B is anyh ∈ hom(A,B) such that [h[A] = B

and]DA ⊆ (=)h−1[DB] ([in which caseB/A is said to be astrict surjective
{matrix} homomorphic image/counter-image ofA/B]), the set of all them be-
ing denoted byhom[S]

(S)(A,B). Recall that(∀h ∈ hom(A,B) : [((img h) =
B) ⇒](hom(Fmα

Σ,B) ⊇ [=]{h ◦ g | g ∈ hom(Fmα
Σ,A)}), and so we have:

(∃h ∈ hom[S]
S (A,B)) ⇒(CnωB ⊆ [=]CnωA), (2.7)

(∃h ∈ homS(A,B)) ⇒(CnωA(∅) ⊆ CnωB(∅)), (2.8)

Then,A[6= B] is said to be a[proper] submatrix ofB, whenever∆A ∈
homS(A,B), in which case we set(B�A) , A. Injective/bijective strict
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homomorphisms fromA to B are referred to asembeddings/isomorphisms
of/fromA into/ontoB, in case of existence of whichA is said to beembed-
dable/ isomorphic into/toB.

Given aΣ-matrix A, setχA , χD
A

A . Then, given anyθ ∈ Con(A)
[such thatθ ⊆ θA , (kerχA)], put (A/θ) , 〈A/θ,DA/θ〉, in which case
νθ ∈ homS

[S](A,A/θ).
Given a setI and anI-tupleA of Σ-matrices, [any submatrixB of] the

Σ-matrix (
∏
i∈I Ai) , 〈

∏
i∈I Ai,

∏
i∈I D

Ai〉 is called the [a][sub]direct
product ofA [whenever, for eachi ∈ I, πi[B] = Ai]. As usual, whenI = 2,
A0×A1 stands for the direct product involved. Likewise, if(imgA) ⊆ {A}
(andI = 2), whereA is aΣ-matrix,AI , (

∏
i∈I Ai) [resp.,B] is called the

[a] [sub]direct I-power (square) ofA.
Given a classM of Σ-matrices, the class of all [consistent] submatrices of

members ofM is denoted byS[∗](M), respectively. Likewise, the class of all
[sub]direct products of (finite) tuples constituted by members ofM is denoted
by P[SD]

(ω) (M).

Lemma 2.1 (Subdirect Product Lemma; cf. Lemma 2.7 of [12]). Let M be a
finite class of finiteΣ-matrices andA a finitely-generated model of the logic
of M. Then,A is a strict surjective homomorphic counter-image of a strict
surjective homomorphic image of a member ofPSD

ω (S∗(M)).

Theorem 2.2 (cf. Theorem 2.8 of [12]). Let K andM be classes ofΣ-mat-
rices,C the logic ofM andC ′ an extension ofC. Suppose [bothM and all
members of it are finite and]PSD

[ω](S∗(M)) ⊆ K (in particular,S(P[ω](M)) ⊆
K {in particular, K ⊇ M is closed under bothS and P[ω]〈 in particular,
K = Mod(C)〉}). Then,C ′ is [finitely-]defined byMod(C ′) ∩ K, and so by
Mod(C ′).

Given anyΣ-logic C and anyΣ′ ⊆ Σ, in which caseFmα
Σ′ ⊆ Fmα

Σ

andhom(Fmα
Σ′ ,Fmα

Σ′) = {h�Fmα
Σ′ | h ∈ hom(Fmα

Σ,Fmα
Σ), h[Fmα

Σ′ ] ⊆
Fmα

Σ′}, for all α ∈ ℘∞\1(ω), we have theΣ′-logicC ′, defined byC ′(X) ,
(Fmω

Σ′ ∩C(X)), for all X ⊆ Fmω
Σ′ , called theΣ′-fragment ofC, in which

caseC is said to be a(Σ-)expansion ofC ′. In that case, given also any class
M of Σ-matrices definingC, C ′ is, in its turn, defined byM�Σ′.

Classical negations, matrices and logics

Let¬ be a (possibly, secondary) unary connective ofΣ.
A Σ-matrixA is said to be[weakly] (classically)¬-negative, provided, for

all a ∈ A, (a ∈ DA)[⇐] ⇔ (¬Aa 6∈ DA).
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Remark2.3. Let� be any (possibly, secondary) binary connective ofΣ. Then,
any¬-negativeΣ-matrix is �-disjunctive/-conjunctive iff it is�¬-conjuncti-
ve/-disjunctive, respectively.

A two-valued consistentΣ-matrixA is said to be∼-classical, whenever it
is∼-negative, in which case it is truth-non-empty, for it is consistent, and so
is both false- and truth-singular but is not∼-paraconsistent.

A Σ-logic is said to be∼-[sub]classical, whenever it is [a sublogic of] the
logic of a∼-classicalΣ-matrix. Then,∼ is called asubclassical negation for
aΣ-logicC, whenever the∼-fragment ofC is∼-subclassical, in which case:

∼mx0 6∈ C(∼nx0), (2.9)

for all m,n ∈ ω such that the integerm− n is odd.

3 PRELIMINARY ADVANCED KEY GENERIC ISSUES

3.1 False-singular consistent weakly conjunctive matrices

Lemma 3.1. LetA be a false-singular weaklyZ-conjunctiveΣ-matrix,f ∈
(A \DA), I a finite set,C anI-tuple constituted by consistent submatrices of
A andB a subdirect product ofC. Then,(I × {f}) ∈ B.

Proof. By induction on the cardinality of anyJ ⊆ I, let us prove that there
is somea ∈ B including (J × {f}). First, whenJ = ∅, take anya ∈
C 6= ∅, in which case(J × {f}) = ∅ ⊆ a. Now, assumeJ 6= ∅. Take
any j ∈ J ⊆ I, in which caseK , (J \ {j}) ⊆ I, while |K| < |J |,
and so, asCj is a consistent submatrix of the false-singular matrixA, we
havef ∈ Cj = πj [B]. Hence, there is someb ∈ B such thatπj(b) = f ,
while, by induction hypothesis, there is somea ∈ B including (K × {f}).
Therefore, sinceJ = (K ∪ {j}), whileA is both weaklyZ-conjunctive and
false-singular, we haveB 3 c , (a ZB b) ⊇ (J × {f}). Thus, whenJ = I,
we eventually getB 3 (I × {f}), as required.

3.2 Equality determinants

A binary equality determinant fora classM of Σ-matrices is anyΣ-cal-
culus ε ⊆ (℘(Fm2

Σ) × Fm2
Σ) such that the infinitary universal sentence

∀x0∀x1((
∧
ε) ↔ (x0 ≈ x1)) is true in M. Then, according to [12], a

(unitary) equality determinant forM is any Υ ⊆ Fm1
Σ such thatεΥ ,

{(υ[x0/xi]) ` (υ[x0/x1−i]) | i ∈ 2, υ ∈ Υ} is a binary equality determinant
for M.
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Example 3.2. {x0} is a unitary equality determinant for any both false- and
truth-singular (in particular,∼-classical)Σ-matrix.

Lemma 3.3. LetA andB beΣ-matrices,ε a binary equality determinant for
A andh ∈ homS(A,B). Then,h is injective.

Proof. For anya, b ∈ A such thath(a) = h(b), we have(a = a) ⇒
(A |= (

∧
ε)[x0/a, x1/a]) ⇒ (B |= (

∧
ε)[x0/h(a), x1/h(a)]) ⇒ (B |=

(
∧
ε)[x0/h(a), x1/h(b)]) ⇒ (A |= (

∧
ε)[x0/a, x1/b]) ⇒ (a = b).

Lemma 3.4. LetA andB beΣ-matrices,ε a binary equality determinant for
B ande ∈ homS(A,B). Supposee is injective. Then,ε is a binary equality
determinant forA.

Proof. By the well-known fact that any infinitary universal sentence, being
true inB, is so inA, being isomorphic (undere) to (B�(img e)) ∈ S(B).

Lemma 3.5. Any axiomatic binary equality determinantε for a classM of
Σ-matrices is so forP(M).

Proof. In that case, members ofM are models of the infinitary universal strict
Horn theoryε[x1/x0]∪{(

∧
ε) → (x0 ≈ x1)} with equality, and so are well-

known to be those ofP(M), as required.

3.3 Disjunctive extensions of disjunctive finitely-valued logics
Fix any (possibly, secondary) binary connectiveY of Σ. Given anyX,Y ⊆
Fmω

Σ, put(X Y Y ) , Y[X × Y ].

Lemma 3.6. LetC be aY-disjunctiveΣ-logic. Then,

(ϕ Y C(X ∪ Y )) ⊆ C(X ∪ (ϕ Y Y )), (3.1)

for all X ⊆ Fmω
Σ, all ϕ ∈ Fmω

Σ and allY ∈ ℘ω(Fmω
Σ).

Proof. By induction on|Y | ∈ ω. The case, whenY = ∅, is by (2.3). Now,
assumeY 6= ∅. Take anyψ ∈ Y , in which caseX ′ , (X ∪ {ψ}) ⊆ Fmω

Σ

andY ′ , (Y \ {ψ}) ∈ ℘ω(Fmω
Σ), while |Y ′| < |Y |, whereas(Y ′ ∪X ′) =

(X ∪ Y ), and so, by induction hypothesis, we have(ϕ Y C(X ∪ Y )) ⊆
C(X ′∪(ϕYY ′)). On the other hand, by (2.2), we also have(ϕYC(X∪Y )) ⊆
C((X ∪ {ϕ}) ∪ (ϕ Y Y ′)). Thus, asY = (Y ′ ∪ {ψ}), theY-disjunctivity of
C yields (3.1).

Given aΣ-ruleΓ ` φ and aΣ-formulaψ, put((Γ ` φ) Yψ) , ((Γ Yψ) `
(φ Y ψ)). (This notation is naturally extended toΣ-calculi member-wise.)

By σ+1 we denote theΣ-substitution extending[xi/xi+1]i∈ω.
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Theorem 3.7. Let M be a [finite] class of [finiteY-disjunctive]Σ-matrices,
C the logic of M, while A an axiomaticΣ-calculus [whereasC a finitary
Σ-calculus]. Then, the extensionC ′ of C relatively axiomatized byC′ ,
(A[∪(σ+1[C] Y x0)]) is defined byS , (Mod(A[∪C]) ∩ S∗(M)) [and so is
Y-disjunctive].

Proof. First, by (2.7) [and Lemma 3.6 withX = ∅ as well as theY-disjun-
ctivity of everyA ∈ S∗(M), and so both that and the structurality ofCnωA],
we haveS = (Mod(A)[∩Mod(C)] ∩ S∗(M)) ⊆ (Mod(C′) ∩ S∗(M)) ⊆
(Mod(C′) ∩Mod(C)) = Mod(C ′).

Conversely, consider any [finitary]Σ-rule Γ ` ϕ not satisfied inC ′, in
which caseϕ 6∈ T , C ′(Γ) ∈ (imgC ′) ⊆ (img CnωM), and so [by the
finiteness of(Γ ∪ {ϕ}) ⊆ Fmω

Σ], there is some [finite]α ∈ ℘ω\1(ω) such
that (Γ ∪ {ϕ}) ⊆ Fmα

Σ, in which caseΓ ⊆ U , (T ∩ Fmα
Σ) 63 ϕ, and so,

by (2.6),U = CnαM(U) = (Fmα
Σ ∩

⋂
U), whereU , {h−1[DA] ⊇ U | A ∈

M, h ∈ hom(Fmα
Σ,A)} [is finite, for α as well as bothM and all members

of it are so]. Therefore, there is some [minimal]S ∈ U not containingϕ, in
which case,Γ ⊆ U ⊆ S, and soΓ ` ϕ is not true inB , 〈Fmα

Σ, S〉 under
[xi/xi]i∈α. Next, we are going to show thatB ∈ Mod(A[∪C]). For consider
any(∆ ` φ) ∈ (A[∪C]) and anyσ ∈ hom(Fmω

Σ,Fmα
Σ) such thatσ[∆] ⊆ S

as well as the following exhaustive case[s]:

• (∆ ` φ) ∈ A,
in which case∆ = ∅, and so, asφ ∈ A ⊆ C′, by the structurality of
C ′, we haveσ(φ) ∈ (Fmα

Σ ∩C ′(∅)) ⊆ (Fmα
Σ ∩T ) = U ⊆ S.

[• (∆ ` φ) ∈ C,
in which case((σ+1[∆] ` σ+1(φ))Yx0) ∈ C′, and so is satisfied inC ′.
Then,(U\{S}) ⊆ U is finite, forU is so, in which casen , |U\{S}| ∈
ω. Take any bijectionW : n→ (U\{S}). Then, for eachi ∈ n,Wn 6=
S, in which case, by the minimality ofS ∈ U 3Wn, we haveWn * S,
and so there is someξi ∈ (Wn \ S) 6= ∅. Putψ , (Y〈ξ̄, ϕ〉) ∈ Fmα

Σ.
Let ς be theΣ-substitution extending[xi+1/σ(xi);x0/ψ]i∈ω. Then,
((σ[∆] Y ψ) ` (σ(φ) Y ψ)) = ς((σ+1[∆] ` σ+1(φ)) Y x0) is satisfied
in C ′, for this is structural. Moreover, in view of theY-disjunctivity of
members ofM, (σ[∆] Y ψ) ⊆ (Fmα

Σ ∩
⋂

U) = U ⊆ T , in which case
(σ(φ) Y ψ) ∈ (Fmα

Σ ∩T ) = U ⊆ S, and soσ(φ) ∈ S, for ψ 6∈ S.]

Thus,B ∈ Mod(A[∪C]). On the other hand, asS ∈ U, there are some
A ∈ M and someh ∈ hom(Fmα

Σ,A) such thatS = h−1[DA], in which
caseD , (img h) forms a subalgebra ofA, and soh is a surjective strict
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homomorphism fromB ontoD , (A�D). In this way, by (2.7),Γ ` ϕ is not
true inD ∈ S, as required [forC ′ is finitary, as bothC andC′ are so].

Lemma 3.8. Let C be aΣ-logic andM a finite class of finiteΣ-matrices.
SupposeC is finitely-defined byM. Then,C is defined byM, that is,C is
finitary.

Proof. In that case,C ′ , CnωM ⊆ C, forC ′ is finitary. To prove the converse
is to prove thatM ⊆ Mod(C). For consider anyA ∈ M, anyΓ ⊆ Fmω

Σ,
anyϕ ∈ C(Γ) and anyh ∈ hom(Fmω

Σ,A) such thath[Γ] ⊆ DA. Then,
α , |A| ∈ (℘∞\1(ω) ∩ ω). Take any bijectione : Vα → A to be extended to
a g ∈ hom(Fmα

Σ,A). Then,e−1 ◦ (h�Vω) is extended to aΣ-substitutionσ,
in which caseσ(ϕ) ∈ C(σ[Γ]), forC is structural, whileσ[Γ∪{ϕ}] ⊆ Fmα

Σ.
Further, as bothα, M and all members of it are finite, we have the finite set
I , {〈f,B〉 | B ∈ M, f ∈ hom(Fmα

Σ,B)}, in which case, for eachi ∈ I,
we sethi , π0(i), Bi , π1(i) and θi , θBi . Then, by (2.6), we have
θ , ≡αC = ≡αC′ = ((Fmα

Σ×Fmα
Σ)∩

⋂
i∈I h

−1
i [θi]), in which case, for every

i ∈ I, θ ⊆ h−1
i [θi] = ker(νθi◦hi), and sogi , (νθi◦hi◦ν−1

θ ) : (Fmα
Σ /θ) →

Bi. In this way,e , (
∏
i∈I gi) : (Fmα

Σ /θ) → (
∏
i∈I Bi) is injective, for

(ker e) = ((Fmα
Σ /θ)

2 ∩
⋂
i∈I(ker gi)) is diagonal. Hence,Fmα

Σ /θ is finite,
for

∏
i∈I Bi is so, and so is(σ[Γ]/θ) ⊆ (Fmα

Σ /θ). For eachc ∈ (σ[Γ]/θ),
choose anyφc ∈ (σ[Γ] ∩ ν−1

θ [{c}]) 6= ∅. Put∆ , {φc | c ∈ (σ[Γ]/θ)} ∈
℘ω(σ[Γ]). Consider anyψ ∈ σ[Γ]. Then,∆ 3 φνθ(ψ) ≡ωC ψ, in which case
ψ ∈ C(∆), and soσ[Γ] ⊆ C(∆). In this way,σ(ϕ) ∈ C(∆) = C ′(∆), for
∆ ∈ ℘ω(Fmω

Σ), so, by (2.6),σ(ϕ) ∈ CnαM(∆). Moreover,g[∆] ⊆ g[σ[Γ]] =
h[Γ] ⊆ DA, and soh(ϕ) = g(σ(ϕ)) ∈ DA, as required.

Corollary 3.9. Let M be a finite class of finiteY-disjunctiveΣ-matrices,C
the logic ofM andC ′ a Y-disjunctive extension ofC. Then,C ′ is defined by
S , (S∗(M) ∩Mod(C)), and so is finitary.

Proof. Let C be the finitaryΣ-calculus of all finitaryΣ-rules satisfied in
C ′, C ′′ the finitary sublogic ofC ′ axiomatized byC andS′ , (S∗(M) ∩
Mod(C ′′)) = (S∗(M)∩Mod(C)). Clearly,C ′′ ⊆ CnωS′ . Conversely, by The-
orem 3.7 withA = ∅, CnωS′ is the extension ofC relatively axiomatized by
σ+1[C] Y x0. On the other hand, by the structurality andY-disjunctivity ofC ′

as well as Lemma 3.6 withX = ∅, (σ+1[C] Y x0) ⊆ C. Moreover,C, being
a finitary sublogic ofC ′, is a sublogic ofC ′′, in which caseC ′′ ⊇ CnωS′ , and
soC ′′ is defined byS′, in which caseC ′ is finitely-defined byS′, and so is
defined byS′, by Lemma 3.8, in which caseC ′ = C ′′, and soS = S′, as
required.
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4 SUPER-CLASSICAL MATRICES VERSUS THREE-VALUED PA-
RACONSISTENT LOGICS WITH SUBCLASSICAL NEGATION

A Σ-matrixA is said to be∼-super-classical, providedA = {f, b, t},DA =
{b, t}, ∼A〈i, i〉 = 〈1− i, 1− i〉, for eachi ∈ 2, and∼Ab ∈ DA, in which
case it is three-valued as well as both weakly∼-negative and∼-paraconsist-
ent, whileL2 , {f, t} forms a subalgebra ofA�{∼}, whereas(A�{∼})�L2

is∼-classical, and so∼ is a subclassical negation for the logic ofA, in view
of (2.7). Thus, we have argued the routine part (viz., (ii)⇒(iii) ⇒(i)) of the
following preliminary marking the framework of the present paper:

Theorem 4.1. LetC be aΣ-logic. Then, the following are equivalent:

(i) C is three-valued and∼-paraconsistent, while∼ is a subclassical nega-
tion forC;

(ii) C is three-valued, while any three-valuedΣ-matrix definingC is iso-
morphic to a∼-super-classical one;

(iii) C is defined by a∼-super-classicalΣ-matrix.

Proof. Assume (i) holds. LetB be any three-valuedΣ-matrix definingC.
Define ane : {f, b, t} → B as follows. In that case,B is ∼-paraconsistent,
so there are somee(b) ∈ DB such that∼Be(b) ∈ DB and somee(f) ∈
(B \DB), in which casee(f) 6= e(b). Next, by (2.9) withm = 1 andn = 0,
there is somee(t) ∈ DB such that∼Be(t) 6∈ DB, in which casee(f) 6=
e(t) 6= e(b). In this way,e : {f, b, t} → B is injective, and so bijective,
for |B| = 3. Hence, it is an isomorphism fromA , 〈e−1[B], {b, t}〉 onto
B. Therefore, by (2.7),C is defined byA. Furthermore,∼Ab ∈ DA, while
∼At 6∈ DA, in which case∼At = f, and so, for proving thatA is ∼-super-
classical, in which case (ii) holds, it only remains to show that∼Af = t. We
do it by contradiction. For suppose∼Af 6= t, in which case, asA = {f, b, t},
we have the following two exhaustive cases:

• ∼Af = f.
This contradicts to (2.9) withm = 0 andn = 1.

• ∼Af = b.
Then, as∼Ab ∈ DA = {b, t}, we have the following two exhaustive
subcases:

– ∼Ab = b.
Then,∼A∼A∼Aa = b ∈ DA, for eacha ∈ DA = {b, t}. This
contradicts to (2.9) withm = 3 andn = 0.
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– ∼Ab = t.
Then,∼A∼A∼Af = f. This contradicts to (2.9) withm = 0 and
n = 3.

Thus, anyway, we come to a contradiction, as required.

Remark4.2. {x0,∼x0} [resp.,εA
∼ , {∼ixj A ∼ix1−j | i, j ∈ 2}] is a

unitary [axiomatic binary] equality determinant for any∼-superclassical [A-
implicative] Σ-matrix [whereA is a (possibly, secondary) binary connective
of Σ].

Throghout the rest of the paper, fix any∼-super-classicalΣ-matrixA. Let
C be the logic ofA andCNP the least non-∼-paraconsistent extension ofC
(viz., that which is relatively axiomatized by (2.5)).

Theorem 4.3. LetB be a∼-super-classicalΣ-matrix. SupposeB is a model
ofC (in particular,C is defined byB). Then,B = A.

Proof. In that case,B is a finite (and so finitely-generated)∼-paraconsistent
model ofC. Then, by Lemmas 2.1, 3.3 and Remark 4.2, there are some set
I, someI-tupleC constituted by submatrices ofA, some subdirect productD
of C and someg ∈ homS

S(D,B), in which caseD is both weakly∼-negative
and, by (2.7), is∼-paraconsistent, forB is so, and so there are somea ∈ DD

such that∼Da ∈ DD and someb ∈ (D \ DD), in which casec , ∼Db ∈
DD ⊆ {b, t}I , for D is weakly∼-negative. Then,D 3 a = (I × {b}).
Consider the following complementary cases:

• {b} forms a subalgebra ofA,
in which case∼Ab = b, and so∼Dc = b 6∈ DB. Hence,J , {i ∈ I |
πi(c) = t} 6= ∅. Given anȳa ∈ A2, set(a0 oa1) , ((J×{a0})∪ ((I \
J)× {a1})) ∈ AI . In this way,D 3 a = (b o b), D 3 c = (t o b) and
D 3 b = (f o b). Then, as{b} forms a subalgebra ofA, while J 6= ∅,
f , {〈d, (d o b)〉 | d ∈ A} is an embedding ofA intoD.

• {b} does not form a subalgebra ofA.
Then, there is someϕ ∈ Fm1

Σ such thatϕA(b) 6= b, in which case
{b, ϕA(b),∼AϕA(b)} = A, and soD ⊇ {a, ϕD(a),∼DϕD(a)} =
{I × {d} | d ∈ A}. Therefore, asI 6= ∅, for b 6∈ DD, f ,
{〈d, I × {d}〉 | d ∈ A} is an embedding ofA intoD.

Then,h , (g ◦ f) ∈ homS(A,B), in which caseh(f) = f, for (A \DA) =
{f} = (B \ DB), and soh(t) = h(∼Af) = ∼Bh(f) = ∼Bf = t, while,
since{b,∼Ab} ⊆ DA, whereas∼Bt = f 6∈ DB, we havet 6= h(b) 6= f, in
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which caseh(b) = b, and soh is diagonal. Hence,A = B, for A = B, as
required.

Corollary 4.4. Let Σ′ ⊇ Σ be a signature andC ′ a three-valuedΣ′-expan-
sion ofC. Then,C ′ is defined by a uniqueΣ′-expansion ofA.

Proof. In that case,C ′ is ∼-paraconsistent, while∼ is a subclassical nega-
tion for C ′. Hence, by Theorem 4.1,C ′ is defined by a∼-super-classical
Σ′-matrixA′, in which caseC is defined by the∼-super-classicalΣ-matrix
A′�Σ, and so(A′�Σ) = A, by Theorem 4.3 completing the argument.

5 CLASSICAL EXTENSIONS

A (2[+1])-ary [b-relative] (classical) semi-conjunction forA is anyϕ ∈
Fm2[+1]

Σ such that bothϕA(f, t[, b]) = f andϕA(t, f[, b]) ∈ {f[, b]}. (Clearly,
any binary semi-conjunction forA is a ternaryb-relative one.) Likewise,A is
said tosatisfy Generation Condition (GC), provided either〈f, f〉 or 〈b, f〉 or
〈f, b〉 belongs to the carrier of the subalgebra ofA2 generated by{〈t, b〉}.

Lemma 5.1 (Key Lemma). LetI be a set andB a consistent non-∼-paracon-
sistent submatrix ofAI . Suppose eitherB is∼-negative or both eitherA has
a binary semi-conjunction or bothB is truth-non-empty andA satisfies GC,
and either{f, t} forms a subalgebra ofA or L4 , (A2 \ ({f, t}2 ∪ {b}2))
forms a subalgebra ofA2. Then, the following hold:

(i) if {f, t} forms a subalgebra ofA, thenA�{f, t} is embeddable intoB;

(ii) if {f, t} does not form a subalgebra ofA, thenL4 forms a subalgebra
of A2, while(A2�L4) is embeddable intoB.

Proof. We start from proving:

Claim 5.2. LetI be a set andB a consistent non-∼-paraconsistent submatrix
ofAI . Supposea , (I × {f}) ∈ B (that is,b , (I × {t}) ∈ B). Then, the
following hold:

(i) {f, t} forms a subalgebra ofA;

(ii) A�{f, t} is embeddable intoB.

Proof. (i) By contradiction. For suppose{f, t} does not form a subalgebra
of A. Then, there is someϕ ∈ Fm2

Σ such thatϕA(f, t) = b, in which
caseB 3 c , ϕB(a, b) = (I × {b}), and so{c,∼Bc} ⊆ DB, that
contradicts to the non-∼-paraconsistency ofB, for this is consistent.
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(ii) As I 6= ∅, for B is consistent, by (i),{〈d, I × {d}〉 | d ∈ {f, t}} is an
embedding ofA�{f, t} intoB, as required.

AsB is consistent,I 6= ∅ and there is somea ∈ (B \DB) 6= ∅. Next, we
prove that there is some non-emptyJ ⊆ I such that(t o b) ∈ B, where, for
everyā ∈ A2, we set(a0 o a1) , ((J ×{a0})∪ ((I \ J)×{a1})) ∈ AI . For
consider the following exhaustive cases:

• B is∼-negative.
Then,b , ∼Ba ∈ DB ⊆ {b, t}I , in which caseB 3 c , ∼Bb 6∈ DB,
and soJ , {i ∈ I | πi(b) = t} 6= ∅. In this way,B 3 b = (t o b).

• A has a binary semi-conjunctionϕ.
Let K , {i ∈ I | πi(a) = t}, L , {i ∈ I | πi(a) = f} 6= ∅, for
a 6∈ DB. Given anȳa ∈ A3, we set(a0 oa1 oa2) , ((K×{a0})∪ (L×
{a1})∪ ((I \ (K ∪L))×{a2})) ∈ AI . In this way,B 3 a = (t o f o b).
Consider the following exhaustive subcases:

– ∼Ab = b.
Then,B 3 b , ∼Aa = (f otob). Letx , ϕA(b, b) ∈ A. Consider
the following exhaustive subsubcases:

∗ x = b.
Then,B 3 c , ϕB(a, b) = (f o f ob). PutJ , (K ∪L) 6= ∅,
for L 6= ∅. In this way,(t o b) = ∼Bc ∈ B.

∗ x = f.
Then,B 3 c , ϕB(a, b) = (f o f o f). PutJ , I 6= ∅. In this
way,(t o b) = ∼Bc ∈ B.

∗ x = t.
Then,B 3 c , ϕB(a, b) = (f o f o t), and soB 3 ∼Bc = (t o
t o f). PutJ , I 6= ∅. Then,(t o b) = ∼BϕB(c,∼Bc) ∈ B.

– ∼Ab = t.
Then,B 3 b , ∼Aa = (f o t o t), and soB 3 ∼Bb = (t o f o f).
PutJ , I 6= ∅. Then,(t o b) = ∼BϕB(b,∼Bb) ∈ B.

• B is truth-non-empty.
Take anyd ∈ DB ⊆ (DA)I . Let J , {i ∈ I | πi(d) = t}. Then, as
B is not∼-paraconsistent, we haveJ 6= ∅, for, otherwise, (2.5) would
not be true inB under[x0/d, x1/a]. In this way,(t o b) = d ∈ B.

Further, we prove:
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Claim 5.3. Suppose∼Ab = t. Then,L4 does not form a subalgebra ofA2

and, providing bothI, B, J and(t o b) ∈ B are as above,(I × {t}) ∈ B.

Proof. In that case, first,∼A2〈b, f〉 = 〈t, t〉 6∈ L4, and soL4 3 〈b, f〉 does not
form a subalgebra ofA2. Finally, consider the following exhaustive cases:

• B is∼-negative.
Then,(t o b) ∈ DB, in which case(t o f) = ∼B∼B(t o b) ∈ DB, and so
J = I. In this way,(I × {t}) = (t o b) ∈ B, as required.

• A has a binary semi-conjunctionϕ.
Moreover,b , (f o t) = ∼B(t o b) ∈ B, and soB 3 ∼Bb = (t o f). In
this way,(I × {t}) = ∼BϕB(b,∼Bb) ∈ B, as required.

• A satisfies GC.
Then, there is someη ∈ Fm1

Σ such thatηA2
(〈t, b〉) ∈ {〈b, f〉, 〈f, f〉,

〈f, b〉}, in which case∼A2
ηA2

(〈t, b〉) = 〈t, t〉, and so(I × {t}) =
∼BηB((t o b)) ∈ B, as required.

Finally, consider the respective complementary cases:

(i) {f, t} forms a subalgebra ofA.
Consider the following exhaustive subcases:

• ∼Ab = t.
Then, by Claims 5.2(ii) and 5.3,A�{f, t} is embeddable intoB.

• ∼Ab = b,
in which caseb , (t o b) ∈ B 3 c , ∼Bb = (f o b). Consider the
following complementary subsubcases:

– {b} forms a subalgebra ofA.
Then, asJ 6= ∅, {〈e, (e o b)〉 | e ∈ {f, t}} is an embedding of
A�{f, t} intoB.

– {b} does not form a subalgebra ofA.
Then, there is someψ ∈ Fm1

Σ such thatψA(b) ∈ {f, t}, in
which caseψA(f) ∈ {f, t} 3 ψA(t), for {f, t} forms a subal-
gebra ofA, and so, as|{f, t}| = 2, we have just the following
exhaustive subsubsubcases:

∗ ψA(b) = ψA(f),
in which case, for somex ∈ {f, t}, (I ×{x}) = (x ox) =
ψB(c) ∈ B, and soA�{f, t} is embeddable intoB, in
view of Claim 5.2(ii).
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∗ ψA(b) = ψA(t),
in which case, for somex ∈ {f, t}, (I ×{x}) = (x ox) =
ψB(b) ∈ B, and soA�{f, t} is embeddable intoB, in
view of Claim 5.2(ii).

∗ ψA(t) = ψA(f),
in which case, for somex ∈ {f, t}, (I ×{x}) = (x ox) =
ψB(ψB(c)) ∈ B, and soA�{f, t} is embeddable intoB,
in view of Claim 5.2(ii).

(ii) {f, t} does not form a subalgebra ofA.
Then,∼Ab = b, in view of Claims 5.2(i) and 5.3. Therefore,b ,
(t o b) ∈ B 3 c , ∼Bb = (f o b). And what is more, there is some
ϕ ∈ Fm2

Σ such thatϕA(f, t) = b, in which caseφ , ϕ(x0,∼x0) ∈
Fm1

Σ andφA(f) = b, and soφA(b) 6= b, for, otherwise, we would have
B 3 φB(c) = (b o b), and so we would get∼B(b o b) = (b o b) ∈ DB,
contrary to the non-∼-paraconsistency and consistency ofB. In this way,
f , (b o f) ∈ {φB(c),∼BφB(c)} ⊆ B, in which caseg , ∼Bf =
(b o t) ∈ DB, and so, by the non-∼-paraconsistency and consistency
of B, we getf = ∼Bg 6∈ DB. Hence,J 6= I. Let us prove, by
contradiction, thatL4 forms a subalgebra ofA2. For supposeL4 does
not form a subalgebra ofA2. Then,B is∼-negative. Moreover, there is
someξ ∈ Fm4

Σ such thatξA2
(〈b, f〉, 〈b, t〉, 〈f, b〉, 〈t, b〉) ∈ (A2 \L4), in

which caseB 3 b′ , ξB(f, g, c, b) = (xoy), where〈x, y〉 ∈ (A2\L4) =
({f, t}2 ∪ {b}2), and so either∼Bb′ = b′ ∈ DB, if x = b = y, or,
otherwise, in which casex, y ∈ {f, t}, and sox 6= y, by Claim 5.2(i),
neitherb′ nor∼Bb′ = (y o x) is in DB, for J 6= ∅ 6= (I \ J). This
contradicts to the∼-negativity ofB. Thus,L4 forms a subalgebra ofA2.
Hence, asJ 6= ∅ 6= (I \ J), {〈〈w, z〉, (w o z)〉 | 〈w, z〉 ∈ L4} is an
embedding ofA2�L4 intoB.

Corollary 5.4. LetI be a set,B a submatrix ofAI ,D a∼-classicalΣ-matrix
andh ∈ homS

S(B,D). Then, the following hold:

(i) if {f, t} forms a subalgebra ofA, thenA�{f, t} is isomorphic toD;

(ii) if {f, t} does not form a subalgebra ofA, thenL4 forms a subalge-
bra of A2, while θA

2�L4 ∈ Con(A2�L4), whereas(A2�L4)/θA
2�L4 is

isomorphic toD.

Proof. In that case,B is both∼-negative and consistent, forD is so, and so
is non-∼-paraconsistent. Consider the respective complementary cases:
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(i) {f, t} forms a subalgebra ofA.
Then, by Lemma 5.1(i), there is someg ∈ homS(A�{f, t},B), in which
case(h ◦ g) ∈ homS

S(A�{f, t},D), for any∼-classicalΣ-matrix has
no proper submatrix, and so Example 3.2 and Lemma 3.3 complete the
argument.

(ii) {f, t} does not form a subalgebra ofA.
Then, by Lemma 5.1(ii),L4 forms a subalgebra ofA2, while there is
an embeddinge of E , (A2�L4) into B, in which caseg , (h ◦ e) ∈
homS

S(E ,D), for any∼-classicalΣ-matrix has no proper submatrix, and
so (ker g) ∈ Con(E). On the other hand,(ker g) = θ , θE , for D
is both false- and truth-singular, so, by the Homomorphism Theorem,
g ◦ ν−1

θ is an isomorphism fromE/θ ontoD, as required.

Theorem 5.5. C is∼-subclassical iff either of the following hold:

(i) {f, t} forms a subalgebra ofA, in which caseA�{f, t} is isomorphic to
any∼-classical model ofC, and so defines a unique∼-classical exten-
sion ofC;

(ii) L4 forms a subalgebra ofA2, while θA
2�L4 ∈ Con(A2�L4), in which

case(A2�L4)/θA
2�L4 is isomorphic to any∼-classical model ofC, and

so defines a unique∼-classical extension ofC.

Proof. The “if” part is by (2.7) and the fact that the submatrices ofA[2] ap-
pearing in (i[i]), respectively, are∼-classical.

Conversely, consider any∼-classical modelD of C, in which case it is
finite, and so finitely-generated. Hence, by Lemmas 2.1, 3.3 and Example
3.2, there are some setI, someC ∈ S(A)I , some subdirect productB of it,
in which case this is a submatrix ofAI , and someh ∈ homS

S(B,D). Then,
(2.7) and Corollary 5.4 complete the argument.

On the other hand, the item (i) of Theorem 5.5 does not exhaust all∼-
subclassical three-valued∼-paraconsistentΣ-logics, as it ensues from:

Example 5.6. Let i ∈ 2, w , 〈i, i〉, Σ , {],∼} with binary], B the∼-
classicalΣ-matrix withB , 2,DB , {1} and(j ]B k) , i, for all j, k ∈ 2,
∼Ab , b and

(a ]A b) ,

{
w if a = b,

b otherwise,

for all a, b ∈ A. Then, we have:

(〈b, a〉 ]A2
〈b, b〉) = 〈w, b〉,
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(〈b, b〉 ]A2
〈b, a〉) = 〈b, w〉,

(〈b, a〉 ]A2
〈b, b〉) = 〈w, b〉,

(〈a, b〉 ]A2
〈b, b〉) = 〈b, w〉,

for all a, b ∈ {f, t}. Therefore,L4 forms a subalgebra ofA2 and h ,
χA

2�L4 ∈ homS
S(A2�L4,B), soθA

2�L4 = (kerh) ∈ Con(A2�L4), in which
caseC is∼-subclassical, by Theorem 5.5. However,(f ]A t) = b, so{f, t}
does not form a subalgebra ofA.

Taking Theorem 5.5 into account, in caseC is∼-subclassical, the unique
∼-classical extension ofC is denoted byCPC.

6 PARACONSIST EXTENSIONS

First, asA has no proper∼-paraconsistent submatrix, by Theorems 3.7 and
4.1, we immediately have:

Corollary 6.1. Any∼-paraconsistent three-valuedΣ-logic with subclassical
negation∼ is axiomatically maximally so.

Lemma 6.2. Let B be a finitely-generated∼-paraconsistent model ofC.
Suppose eitherA has a ternaryb-relative semi-conjunction or{b} does not
form a subalgebra ofA. Then,A is embeddable into a strict surjective ho-
momorphic image ofB.

Proof. Then, by Lemma 2.1 withM = {A}, there are some setI, someI-
tupleC constituted by submatrices ofA, some subdirect productD of C, some
strict surjective homomorphic imageE of B and someg ∈ homS

S(D, E), in
which case, by (2.7),D is∼-paraconsistent, and so there are somea ∈ DD

such that∼Da ∈ DD and someb ∈ (D \DD). Then,D 3 a = (I × {b}).
Consider the following complementary cases:

• {b} forms a subalgebra ofA,
in which case∼Ab = b. Then,A has a ternaryb-relative semi-con-
junctionϕ ∈ Fm3

Σ. Put c , ϕD(b,∼Db, a) ∈ D, d , ∼Dc ∈ D,
J , {i ∈ I | πi(b) = t} andK , {i ∈ I | πi(b) = f} 6= ∅, for
b 6∈ DD. Given anȳa ∈ A3, set(a0 o a1 o a2) , ((J × {a0}) ∪ (K ×
{a1}) ∪ ((I \ (J ∪ K)) × {a2})) ∈ AI . Then,a = (b o b o b) and
b = (t o f o b). Consider the following exhaustive subcases:

– ϕA(t, f, b) = f,
in which case we havec = (f o f ob) andd = (t ot ob), and so, since
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K 6= ∅, while {b} forms a subalgebra ofA, f , {〈e, (e o e o b)〉 |
e ∈ A} is an embedding ofA intoD.

– ϕA(t, f, b) = b,
in which case we havec = (bof ob) andd = (botob), and so, since
K 6= ∅, while{b} forms a subalgebra ofA, f , {〈e, (b o e o b)〉 |
e ∈ A} is an embedding ofA intoD.

• {b} does not form a subalgebra ofA.
Then, there is someϕ ∈ Fm1

Σ such thatϕA(b) 6= b, in which case
{b, ϕA(b),∼AϕA(b)} = A, and soD ⊇ {a, ϕD(a),∼DϕD(a)} =
{I × {e} | e ∈ A}. Therefore, asI 6= ∅, for b 6∈ DD, f ,
{〈e, I × {e}〉 | e ∈ A} is an embedding ofA intoD.

Then,(g ◦f) ∈ homS(A, E) is injective, by Lemma 3.3 and Remark 4.2.

Theorem 6.3. The following are equivalent [providedC is∼-subclassical]:

(i) C has no proper∼-paraconsistent [∼-subclassical] extension;

(ii) C has no proper∼-paraconsistent non-∼-subclassical extension;

(iii) eitherA has a ternaryb-relative semi-conjunction or{b} does not form
a subalgebra ofA (in particular,∼Ab 6= b, that is,∼∼x0 6∈ C(x0));

(iv) L3 , {〈b, b〉, 〈f, t〉, 〈t, f〉} does not form a subalgebra ofA2;

(v) A has no truth-singular∼-paraconsistent subdirect square;

(vi) A2 has no truth-singular∼-paraconsistent submatrix;

(vii) C has no truth-singular∼-paraconsistent model.

In particular, C has a∼-paraconsistent proper extension iff it has a [non-
]non-∼-subclassical one.

Proof. First, assume (iii) holds. Consider any∼-paraconsistent extensionC ′

of C, in which casex1 6∈ T , C ′({x0,∼x0}) ⊇ {x0,∼x0}, while, by the
structurality ofC ′, 〈Fmω

Σ, T 〉 is a model ofC ′ (in particular, ofC), and so
is its finitely-generated∼-paraconsistent submatrixB , 〈Fm2

Σ, T ∩ Fm2
Σ〉,

in view of (2.7). Then, by Lemma 6.2 and (2.7),A is a model ofC ′, and so
C ′ = C. Thus, (i) and (ii) hold.

Next, (v)⇒(iv) is by the fact∼Ab ∈ {b, t}, (L3 ∩ {b, t}2) = {〈b, b〉} 6=
L3 andπ0[+1][L3] = A, while (v) is a particular case of (vi), whereas (vii)⇒
(vi) is by (2.7).
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Now, let B ∈ Mod(C) be both∼-paraconsistent and truth-singular, in
which case the rulex0 ` ∼x0 is true inB, and so is its logical consequence
{x0, x1,∼x1} ` ∼x0, not being true inA under[x0/t, x1/b] [but true in any
∼-classical modelC′ of C, for C′ is∼-negative]. Thus, the logic of{B[, C′]}
is a proper∼-paraconsistent [∼-subclassical] extension ofC, so (i)⇒(vii).
And what is more,x0 ` ∼x0, being true inB, is true in netherA nor any
∼-classicalΣ-matrix C′′, in view of (2.9) withn = 0 andm = 1. Thus, the
logic of B is a proper∼-paraconsistent non-∼-subclassical extension ofC,
so (ii)⇒(vii) holds.

Finally, assumeA has no ternaryb-relative semi-conjunction and{b}
forms a subalgebra ofA. In that case,∼Ab = b. Let B be the subalge-
bra of A2 generated byL3. If 〈f, f〉 was inB, then there would be some
ϕ ∈ Fm3

Σ such thatϕA(f, t, b) = f = ϕA(t, f, b), in which case it would
be a ternaryb-relative semi-conjunction forA. Likewise, if either〈b, f〉 or
〈f, b〉 was inB, then there would be someϕ ∈ Fm3

Σ such thatϕA(f, t, b) = f

andϕA(t, f, b) = b, in which case it would be a ternaryb-relative semi-
conjunction forA. Therefore, as∼At = f and∼Ab = b, we conclude that
({〈f, b〉, 〈t, b〉, 〈b, t〉, 〈b, f〉, 〈f, f〉, 〈t, t〉} ∩ B) = ∅. Thus,B = L3 forms a
subalgebra ofA2. In this way, (iv)⇒(iii) holds.

Theorem 6.3(i)⇔(iii[iv]) is especially useful for [effective dis]proving the
maximal∼-paraconsistency ofC [cf. Example 9.10].

7 NON-SUBCLASSICAL CONSISTENT EXTENSIONS

In caseC is not∼-subclassical, it, being [inferentially] consistent, forA is
[both] so [and truth-non-empty], is clearly a[n inferentially] consistent non-
∼-subclassical extension of itself. Here, we explore the opposite case.

Lemma 7.1. LetB be a∼-classicalΣ-matrix andC ′ the logic ofB. Then,
the following are equivalent:

(i) C ′ has a theorem;

(ii) there is someφ ∈ Fm2
Σ such thatφ(x0,∼x0) is a theorem ofC ′;

(iii) B2 \∆B does not form a subalgebra ofB2;

(iv) B has no truth-empty model.

Proof. First, (i) is a particular case of (ii). Next, (i)⇒(iv) is immediate.
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Further, leta/b be the unique element of(B \ DB)/DB, respectively,
in which casea 6= b, B = {a, b} and∼B(a/b) = (b/a). Then, in case
D , {〈a, b〉, 〈b, a〉} = (B2 \∆B) ⊆ (B2 \ {〈b, b〉}) = (B2 \DB2

) forms a
subalgebra ofB2, by (2.7),D , (B2�D) is a truth-empty model ofC ′. Thus,
(iv)⇒(iii) holds.

Finally, assume (iii) holds, in which case there is someψ ∈ Fm2
Σ such

thatψB(a, b) = (a|b) = ψB(b, a), and so, respectively,φ , ∼1|0ψ ∈ Fm2
Σ,

while φ(x0,∼x0) is a theorem ofC ′. Thus, (ii) holds, as required.

Theorem 7.2. SupposeC is∼-subclassical (that is,L2[+2] forms a subalge-
bra of A[2]; cf. Theorem 5.5). Then, the following are equivalent:

(i) C has a consistent non-∼-subclassical (viz, not being a sublogic of
CPC; cf. Theorem 5.5) extension;

(ii) A has no binary semi-conjunction (in particular,C has a proper∼-pa-
raconsistent{∼-subclassical} extension; cf. Theorem 6.3);

(iii) M2 , {〈f, t〉, 〈t, f〉} [resp.,M8 , {〈{〈i, b〉, 〈1− i, 〈j, j〉〉},
{〈k, b〉, 〈1− k, 〈1− j, 1− j〉〉}〉 | i, j, k ∈ 2}] forms a subalgebra of
(A[2]�L2[+2])2;

(iv) CPC has a truth-empty model;

(v) CPC has no theorem;

(vi) C has a truth-empty model;

(vii) C has no theorem.

In particular,C has a truth-empty model/theorem iffCPC does so/ iffC has
no truth-empty model.

Proof. First, assumeA has a binary semi-conjunction. Consider any consis-
tent extensionC ′ of C. In caseC ′ is ∼-paraconsistent, by Theorem 6.3,
C ′ = C ⊆ CPC. Now, assumeC ′ is non-∼-paraconsistent. Then, as
C ′ is consistent, we havex0 6∈ C ′(∅), while, by the structurality ofC ′,
〈Fmω

Σ, C
′(∅)〉 is a model ofC ′ (in particular, ofC), and so is its consistent

finitely-generated submatrixB , 〈Fm1
Σ,Fm1

Σ ∩C ′(∅)〉, in view of (2.7).
Hence, by Lemma 2.1, there are some setI, someC ∈ S∗(A)I and some sub-
direct productD of it such thatB is a strict surjective homomorphic counter-
image of a strict surjective homomorphic image ofD, in which caseD is
a consistent model ofC ′, in view of (2.7), and so, a non-∼-paraconsistent
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submatrix ofAI . Then, by (2.7), Lemma 5.1 and Theorem 5.5, aΣ-matrix
definingCPC is embeddable intoD, in which caseC ′ ⊆ CPC, and so (i)⇒(ii)
holds.

Next, assumeCPC has a theorem. Then, by Lemma 7.1(i)⇒(ii), there is
someφ ∈ Fm2

Σ such thatψ , φ(x0,∼x0) is a theorem ofCPC. Consider
the following complementary cases:

• {b, t} forms a subalgebra ofA,
in which case, by Theorem 5.5(i),CPC is defined byA�{f, t}, and so
∼φ is a binary semi-conjunction forA.

• {b, t} does not form a subalgebra ofA,
in which case, by (2.7) and Theorem 5.5,L4 forms a subalgebra ofA2,
while CPC is defined byB , (A2�L4), and so∼Ab = b, in view
of Claim 5.3, while, as〈b, f/t〉 ∈ L4, a , φA2

(〈b, f/t〉, 〈b, t/f〉) =
ψA2

(〈b, f/t〉) ∈ DB = {〈b, t〉, 〈t, b〉}. Consider the following com-
plementary subcases:

– ψA(b) = b,
in which caseψA(f/t) = t, and so∼φ is a binary semi-conjunc-
tion for A.

– ψA(b) 6= b,
in which caseψA(b) = t, whileψA(f/t) = b, and so∼ψ(φ) is a
binary semi-conjunction forA.

Thus, anyway, (ii) does not hold, and so (ii)⇒(v) holds.
Further, (iii)⇔(iv)⇔(v) are by Lemma 7.1(i)⇔(iii)⇔(iv) and Theorem

5.5, while (iv)⇒(vi) is by the inclusionC ⊆ CPC, whereas (vi)⇒(vii) is
immediate.

Finally, assume (vii) holds. LetB be a truth-empty model ofC, in which
case the logic ofB is an extension ofC without theorems, and so a consistent
one. Moreover, the rulex0 ` x1 is true inB but is not so in any both consis-
tent and truth-non-empty (in particular,∼-[super-]classical)Σ-matrix, so (i)
holds.

The case, whenΣ = {∼}, in which caseL2 forms a subalgebra ofA, while
M2 forms a subalgebra ofA2, and so, by Theorems 5.5 and 7.2,C, being
∼-subclassical, has a consistent non-∼-subclassical extension, demonstrates
that the item (i) of Theorem 7.2 may hold. On the other hand, the consistent
instance invoked in proving it is inferentially inconsistent. Below, we prove
the following “inferential” analogue of Theorem 7.2:
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Theorem 7.3. SupposeC is∼-subclassical. Then, any inferentially consis-
tent extension ofC is a sublogic ofCPC iff both A satisfies GC andL3 does
not form a subalgebra ofA2.

Proof. First, assumeA does not satisfy GC. LetB be the subalgebra ofA2

generated by{〈t, b〉}, in which caseB , (A2�B) is a model ofC, in view of
(2.7). Moreover,〈t, b〉 ∈ DB, in which case caseB is truth-non-empty, while
〈f,∼Ab〉 = ∼A2〈t, b〉 ∈ (B \DB), and soB is consistent. And what is more,
D , (B \DB) ⊆ {〈f, t〉, 〈t, f〉}, in which case, for eachb ∈ D, ∼Bb ∈ D,
and so the rule∼x0 ` x0 is true inB. On the other hand, this rule is true in
any∼-classicalΣ-matrix C′, in view of (2.9) withn = 1 andm = 0. Thus,
the logic ofB is an inferentially consistent non-∼-subclassical extension of
C.

Likewise, by Theorem 6.3, in caseL3 forms a subalgebra ofA2, C has
a∼-paraconsistent (in particular, inferentially consistent) non-∼-subclassical
extension.

Conversely, assume bothA satisfies GC andL3 does not form a subalgebra
of A2. Consider any inferentially consistent extensionC ′ of C. In caseC ′ =
C, we haveC ′ = C ⊆ CPC. Now, assumeC ′ 6= C, in which caseC ′ is non-
∼-paraconsistent, by Theorem 6.3. Then, asC ′ is inferentially consistent, we
havex1 6∈ C ′(x0) 3 x0, while, by the structurality ofC ′, 〈Fmω

Σ, C
′(x0)〉 is

a model ofC ′ (in particular, ofC), and so is its consistent truth-non-empty
finitely-generated submatrixB , 〈Fm2

Σ,Fm2
Σ ∩C ′(x0)〉, in view of (2.7).

Hence, by Lemma 2.1, there are some setI, someC ∈ S∗(A)I and some
subdirect productD of it such thatB is a strict surjective homomorphic image
of a strict surjective homomorphic counter-image ofD, in which caseD is a
consistent truth-non-empty model ofC ′, in view of (2.7), and so, a non-∼-
paraconsistent submatrix ofAI . Then, by (2.7), Lemma 5.1 and Theorem
5.5, aΣ-matrix definingCPC is embeddable intoD, in which caseC ′ ⊆
CPC.

8 WEAKLY CONJUNCTIVE THREE-VALUED
PARACONSISTENT LOGICS
WITH SUBCLASSICAL NEGATION

Remark8.1. Suppose eitherA is weaklyZ-conjunctive or both{f, t} forms
a subalgebra ofA andA�{f, t} is weaklyZ-conjunctive. Then,(x0 Z x1) is a
binary semi-conjunction forA.

By Theorems 4.1, 6.3 and Remark 8.1, we immediately get the following
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corollary, subsuming the reference [Pyn 95b] of [7]:

Corollary 8.2. Any three-valued∼-paraconsistent weaklyZ-conjunctiveΣ-
logic with subclassical negation∼ is maximally∼-paraconsistent.

The principal advance of the present study with regard to the reference
[Pyn 95b] of [7] consists in proving inheritance of the maximal paracon-
sistency bythree-valuedexpansions of [weakly] conjunctive paraconsistent
three-valued logics with subclassical negation, because both paraconsistency,
subclassical negation and [weak] conjunction are inherited by expansions,
while the property of being subclassical is not, generally speaking, so. In par-
ticular, Corollary 8.2 implies the maximal paraconsistency of arbitrary three-
valued expansions (cf. Corollary 4.4 in this connection) ofLP (including
those ofLA),HZ andP 1 equally covered by this section, in general.

8.1 Subclassical weakly conjunctive three-valued paraconsistent
logics

Remark8.3. If A is weaklyZ-conjunctive, then we have(fZAb) = f = (bZA

f), in which case we get(〈f, b〉 ZA2 〈b, f〉) = 〈f, f〉 6∈ L4 ⊇ {〈f, b〉, 〈b, f〉},
and soL4 does not form a subalgebra ofA2.

By Theorem 5.5 and Remark 8.3, we immediately have:

Corollary 8.4. [Providing C is weaklyZ-conjunctive (viz.,A is so)] C is
∼-subclassical if[f]{f, t} forms a subalgebra ofA, in which caseA�{f, t}
is isomorphic to any∼-classical model ofC, and so defines a unique∼-
classical extension ofC, that is,CPC.

Likewise, by Theorem 7.2 and Remark 8.1, we immediately have:

Corollary 8.5. LetC ′ be a consistent extension ofC. Suppose{f, t} forms
a subalgebra ofA (in which caseC is o-subclassical; cf. Theorem 5.5) and
A�{f, t} is weaklyZ-conjunctive (in particular,A [viz., C] is so). Then,C
has a/no theorem/truth-empty model, whileCPC is an extension ofC ′.

The last paragraph of Section 7 shows that the condition of the weakZ-
conjunctivity cannot be omitted in the formulation of Corollary 8.5.

9 DISJUNCTIVE THREE-VALUED PARACONSISTENT LOGICS
WITH SUBCLASSICAL NEGATION

Lemma 9.1. Let B be a false-singular (in particular,∼-[super-]classical)
Σ-matrix andC ′ the logic ofB. Then, the following are equivalent:
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(i) C ′ is Y-disjunctive;

(ii) B is Y-disjunctive;

(iii) (2.2), (2.3)and (2.4)are satisfied inC ′ (viz., are true inB).

Proof. First, (ii)⇒(i)⇒(iii) are immediate. Finally, assume (iii) holds. Con-
sider anya, b ∈ B. In case(a/b) ∈ DB, by (2.2)/(2.3), we have(a YB b) ∈
DB. Now, assume({a, b} ∩DB) = ∅. Then,DB 63 a = b. Hence, by (2.4),
we getDB 63 (a YB a) = (a YB b), so (ii) holds, as required.

9.1 Disjunctive extensions

By CMP we denote the extension ofC relatively axiomatized by theModus
Ponensrule for thematerial implication∼x0 Y x1:

{x0,∼x0 Y x1} ` x1. (9.1)

Likewise, byCR we denote the extension ofC relatively axiomatized by the
Resolutionrule:

{x0 Y x1,∼x0 Y x1} ` x1. (9.2)

Clearly,CNP ⊆ CMP ⊆ CR, by (2.2), wheneverC is Y-disjunctive. Gener-
ally speaking, the converse inclusions need not hold, as we show below.

Remark9.2. Given anyY-disjunctiveΣ-logic C ′, by (2.4)|(2.3), applying
[x1/x0, x2/x1, x0/x1]|[x1/x0, x0/x1] to (σ+1(2.5) Y x0)|(9.2), any exten-
sion ofC ′ satisfies (9.2)|(σ+1(2.5)Y x0), whenever it satisfies(σ+1(2.5)Y
x0)|(9.2). Hence,CR is the extension ofC relatively axiomatized by
σ+1(2.5)Y x0.

Theorem 9.3. LetC ′ be an extension ofC. SupposeC is Y-disjunctive (viz.,
A is so; cf. Lemma 9.1). Then, the following are equivalent:

(i) C ′ is∼-classical;

(ii) C ′ is proper, consistent andY-disjunctive;

(iii) {f, t} forms a subalgebra ofA andC ′ is defined byA�{f, t};

(iv) C is∼-subclassical andC ′ = CPC;

(v) C ′ = CR is consistent;

(vi) C ′ is consistent, non-∼-paraconsistent andY-disjunctive.
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In particular, CR is consistent iffC is ∼-subclassical, in which caseCR =
CPC. Moreover,C has no consistent non-∼-classical (in particular,∼-para-
consistent) properY-disjunctive [in particular, axiomatic] extension.

Proof. First, (i/ii) is a particular case of (iv/vi) respectively. Next, (i)⇒(ii) is
by Lemma 9.1. Further, (iii)⇒(iv) is by Theorem 5.5.

Now, assume (ii) holds. Then, by Corollary 3.9,C ′ is defined by some
S ⊆ S∗(A), in which caseA 6∈ S 6= ∅. Consider anyB ∈ S. Then,f ∈ B,
forB is consistent, in which caset = ∼Af ∈ B, and so, asB 6= A,B = {f, t}
forms a subalgebra ofA, while S = {A�{f, t}}. Thus, (iii) holds.

Furthermore, in case (iii) holds, asA is∼-paraconsistent,A�{f, t} is the
only non-∼-paraconsistent member ofS∗(A), and so (v) is by Theorem 3.7
and Remark 9.2.

Finally, (v)⇒(vi) is by Theorem 3.7 and Remark 9.2.

Corollary 9.4. SupposeC is Y-disjunctive (viz.,A is so; cf. Lemma 9.1).
Then, the following are equivalent:

(i) CNP is an axiomatic extension ofC;

(ii) CNP is Y-disjunctive;

(iii) CNP is inconsistent;

(iv) CNP = CR.

Proof. First, (iii)⇒(iv) is by the inclusionCNP ⊆ CR. Next, (iii)⇒(i)⇒(ii)
are immediate. Further, (iv)⇒(ii) is by Theorem 3.7 and Remark 9.2. Finally,
(ii)⇒(iii) is proved by contradiction. For supposeCNP is bothY-disjunctive
and consistent. Then, by Theorem 9.3(vi)⇒(iii,v), {f, t} forms a subalgebra
of A, in which caseB , (A × (A�{f, t})) ∈ Mod(C) (cf. (2.7)) is not
∼-paraconsistent, forA�{f, t} is∼-negative, and soB ∈ Mod(CNP), while
CNP = CR, whereas (9.2) is not true inB under[x0/〈b, t〉, x1/〈f, t〉].

9.2 Subclassical disjunctive three-valued paraconsistent logics
First of all, by Theorems 5.5 and 9.3, we immediately have the following
“disjunctive” analogue of Corollary 8.4:

Corollary 9.5. [Providing C is Y-disjunctive (viz.,A is so; cf. Lemma
9.1)] C is∼-subclassical if[f]{f, t} forms a subalgebra ofA, in which case
A�{f, t} is isomorphic to any∼-classical model ofC, and so defines a unique
∼-classical extension ofC, that is,CPC.
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Corollary 9.6. SupposeA is A-implicative (and so isYA-disjunctive), where
A is a (possibly, secondary) binary connective ofΣ, andC is∼-subclassical.
Then,CPC is a unique proper consistent axiomatic extension ofC and is
relatively axiomatized by theEx Contradictione Quodlibetaxiom:

∼x0 A (x0 A x1). (9.3)

Proof. In that case, by Corollary 9.5,{f, t} forms a subalgebra ofA, while
B , (A�{f, t}) definesCPC. On the other hand,B is the only consis-
tent proper submatrix ofA. Moreover, it, being both∼-negative andA-
implicative, is a model of (9.3) not being true inA under[x0/b, x1/f], for it
is A-implicative. Then, Theorems 3.7 and 9.3 complete the argument.

Next, combining Remark 2.3 with Corollaries 9.5 and 8.5, we get the fol-
lowing “disjunctive” analogue of the latter:

Corollary 9.7. SupposeC is Y-disjunctive (viz.,A is so; cf. Lemma 9.1)
and∼-subclassical. Then,C has a/no theorem/truth-empty model, while any
consistent extension ofC is a sublogic ofCPC.

The last paragraph of Section 7 shows that the condition of theY-disjunc-
tivity cannot be omitted in the formulation of Corollary 9.7.

On the other hand, Corollary 9.5 equally ensues from Lemma 9.1 and the
following interesting (in its own right) result:

Theorem 9.8. C has a [Ydisjunctive]∼-classical extension (viz., model [cf.
Lemma 9.1]) if[f] {f, t} forms a subalgebra ofA, in which caseA�{f, t}
is isomorphic to any∼-classical model ofC, and so defines a unique∼-
classical extension ofC.

Proof. The “if”+“in which case” part is by Theorem 5.5. [Conversely, let
D be aY-disjunctive∼-classical model ofC. We prove that{f, t} forms
a subalgebra ofA by contradiction. For suppose{f, t} does not form a
subalgebra ofA. Then, by Theorem 5.5,L4 forms a subalgebra ofA2,
B , (A2�L4) beingY-disjunctive, forD is so. Therefore, as〈b, t〉 ∈ DB,
we have{〈b, t〉 YB 〈f, b〉, 〈f, b〉 YB 〈b, t〉} ⊆ DB, in which case we get
{b YA f, f YA b} ⊆ DA, and so we eventually get(〈f, b〉 YB 〈b, f〉) ∈ DB.
This contradicts to the fact that({〈f, b〉, 〈b, f〉}∩DB) = ∅, as required.]

It is remarkable that theY-disjunctivity ofC is not required in the formula-
tion of Theorem 9.8, making it the right algebraic criterion ofC ’s being “gen-
uinely subclassical” in the sense of having agenuinely(viz., functionally-
complete) classical extension.
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By Theorems 4.1, 6.3, Lemma 9.1, Corollary 9.5 and Remarks 8.1 and
2.3, we eventually obtain the following one moreuniversalmaximality result,
being essentially beyond the scopes of the reference [Pyn 95b] of [7] and thus
becoming a one more substantial advance of the present study with regard to
that one:

Corollary 9.9. Any three-valuedY-disjunctive∼-subclassical∼-paracon-
sistentΣ-logic is maximally∼-paraconsistent.

The following counterexample shows that the condition of being∼-sub-
classical in the formulation of Corollary 9.9 is essential:

Example 9.10. Let Σ = {∼[,]]} [where] is binary], while∼Ab = b

[whereas:

(a ]A b) =

{
a if a = b,

b otherwise,

for all a, b ∈ A, in which case (2.2), (2.3) and (2.4) are true inA, and so, by
Lemma 9.1,C is]-disjunctive, in which case this has no proper]-disjunctive
∼-paraconsistent extension; cf. Theorem 9.3]. But,L3 forms a subalgebra of
A2, so, by Theorem 6.3,C is not maximally∼-paraconsistent [and so is not
∼-subclassical, by Corollary 9.9].

10 THREE-VALUED PARACONSISTENT LOGICS WITH
SUBCLASSICAL NEGATION AND LATTICE CONJUNCTION
AND DISJUNCTION

A Σ-algebraB is said to be a[distributive] (Z,Y)-lattice, provided it satisfies
[distributive] lattice identities forZ andY, that is,〈B,ZB,YB〉 is a [distribu-
tive] lattice (in the standard algebraic sense; cf. [5]), whose partial ordering
is denoted by≤B.

Throughout this section, it is supposed that:

• A is a(Z,Y)-lattice, in which case〈A,≤A〉 is a chain poset for|A| = 3,
and soA is a distributive(Z,Y)-lattice;

• f is the least element of the poset involved or, equivalently,A is Z-
conjunctive/Y-disjunctive, that is,C is so/, in view of Lemma 9.1, and
soC is maximally∼-paraconsistent (cf. Corollary 8.2), while it is∼-
subclassical iff{f, t} forms a subalgebra ofA, in which caseCPC is
defined byA�{f, t} (cf. Corollary 8.4).
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Remark10.1. SinceA is Y-disjunctive, whilef is the least element of the
poset〈A,≤A〉, we have(∼(x0 Y x1) Y x1) ∈ C(∼x0 Y x1). Therefore,
any extension ofC satisfies (9.2), whenever it satisfies (9.1). In particular,
CMP = CR.

Lemma 10.2. Let I be a finite set,C ∈ S∗(A)I andB a consistent non-∼-
paraconsistent subdirect product ofC. Then,{f, t} forms a subalgebra ofA
andhom(B,A�{f, t}) 6= ∅.

Proof. Then, as〈A,≤A〉 is a chain, we haveb(≤ / ≥)At. Moreover,∼Ab ∈
DA = {b, t}. Therefore,b(≤ / ≥)A∼Ab. Let us prove, by contradiction,
that there is somei ∈ I such thatb 6∈ Ci. For suppose, for eachi ∈ I,
b ∈ Ci. By induction on the cardinality on anyJ ⊆ I, let us prove that there
is somea ∈ (B ∩ {f/t, b}I) includingJ × {b}. First, in caseJ = ∅, by
Lemma 3.1, we haved , (I × {f}) ∈ B, and so(J × {b}) = ∅ ⊆ a ,
(d/∼Bd) = (I × {f/t}) ∈ (B ∩ {f/t, b}I). Now, assumeJ 6= ∅, in which
case there is somej ∈ J ⊆ I, and soK , (J \ {j}) ⊆ I, while |K| < |J |.
Hence, by induction hypothesis, there is somea ∈ (B ∩ {f/t, b}I) including
K × {b}. Moreover, asj ∈ I, we haveb ∈ Cj = πj [B], in which case
there is someb ∈ B such thatπj(b) = b, and soc , (b(Z/Y)B∼Bb) ∈ B,
while, for everyi ∈ I, πi(c) = b, if πi(b) = b, andπi(c) = (f/t), otherwise,
in which casec ∈ {f/t, b}I , while πj(c) = b, and so, asJ = (K ∪ {j}),
we eventually get(J × {b}) ⊆ (a YB c) ∈ (B ∩ {f/t, b}I), as required.
In particular, whenJ = I, we havea , (I × {b}) ∈ B, in which case we
get{a,∼Ba} ⊆ DB, and soB, being consistent, is∼-paraconsistent. This
contradiction shows that there is somei ∈ I such thatb 6∈ Ci, in which
caseh , (πi�B) ∈ hom(B, Ci), whileCi forms a subalgebra ofA, whereas
Ci = (A�Ci). Finally, asCi is consistent, in which casef ∈ Ci, and so
t = ∼Af ∈ Ci, we eventually conclude thatCi = {f, t}, for b 6∈ Ci, as
required.

Theorem 10.3.CNP is consistent iffC is∼-subclassical, in which case{f, t}
forms a subalgebra ofA andCNP is defined byA× (A�{f, t}).

Proof. First, assumeC is∼-subclassical.
Then, any∼-classical extension ofC is a both consistent and non-∼-pa-

raconsistent extension ofC, and so a consistent extension ofCNP, in which
case this is consistent too.

Moreover, by Corollary 8.4,{f, t} forms a subalgebra ofA, in which case
we have theΣ-matrixB , (A × (A�{f, t})). Consider any finite setI, any
C ∈ S∗(A)I and any subdirect productD ∈ Mod(CNP) of C, in which
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caseD is not∼-paraconsistent. PutJ , hom(D,B). Consider anya ∈
(D\DD), in which caseD is consistent, and so, by Lemma 10.2, there is some
g ∈ hom(D,A�{f, t}) 6= ∅. Moreover, there is somei ∈ I, in which case
f , (πi�D) ∈ hom(D,A), such thatf(a) 6∈ DA. Then,h , (f × g) ∈ J

andh(a) 6∈ DB. In this way, (
∏

∆J) ∈ homS(D,BJ). Thus, by (2.7)
and Theorem 2.2,CNP is finitely-defined by the six-valuedB, and so, being
finitary, for both the three-valuedC and (2.5) are so, is defined byB.

Conversely, assumeCNP is consistent, in which casex0 6∈ T , CNP(∅),
while, by the structurality ofCNP, 〈Fmω

Σ, T 〉 is a model ofCNP (in par-
ticular, of C), and so is its consistent finitely-generated submatrixB′ ,
〈Fm1

Σ, T ∩ Fm1
Σ〉, in view of (2.7). Hence, by Lemma 2.1, there are some

finite setI, someC ∈ S∗(A)I , some subdirect productD of it, being a strict
surjective homomorphic counter-image of a strict surjective homomorphic
image ofB′, in which case, by (2.7),D is a consistent model ofCNP, so
it is not ∼-paraconsistent. Thus, by Lemma 10.2 and Corollary 8.4,C is
∼-subclassical, as required.

Lemma 10.4. Suppose{f, t} forms a subalgebra ofA (i.e.,C is∼-subclas-
sical; cf. Corollary 8.4). Then, ((i)⇒(ii) and) (ii)⇒(iii)⇒(iv), where:

(i) A is regular;

(ii) K3(+1) , {〈f, f〉, 〈b, f〉, (〈b, t〉, )〈t, t〉} forms a subalgebra ofA2;

(iii) CnA�{f,t}(∅) = CnA(∅);

(iv) A is not implicative.

Proof. (First, assume (i) holds. LetD be the subalgebra ofA2 generated by
K4, in which case it is a subalgebra ofA × (A�{f, t}), for {f, t} = π1[K4]
forms a subalgebra ofA. If 〈t, f〉 was inD, there would be someϕ ∈ Fm4

Σ

such that bothϕA(f, b, b, t) = t andϕA(f, f, t, t) = f, in which case, since
a v b, for everya ∈ {f, t}, by the regularity ofA, we would getf v t.
Therefore, as∼B(f/t) = (t/f), we conclude thatD = K4, and so (ii) holds.)

Next, when (ii) holds,(π0[+1]�K3(+1)) ∈ homS
[S](A2�K3(+1),A[�{f, t}]),

in which case (2.7) and (2.8) yield (iii).
Finally, (iii)⇒(iv) is by (2.1) and Corollary 9.6.

Lemma 10.5. Suppose{f, t} forms a subalgebra ofA (i.e.,C is∼-subclas-
sical; cf. Corollary 8.4). Then, (i)⇔(ii)⇐(iii)⇒(iv), where:

(i) ∼(x0 Z∼x0) 6∈ C(∅);
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(ii) neither∼Ab = b (that is,C(x0) = C(∼∼x0)) nor b ≤A t;

(iii) L5 , ((A× {f, t}) \ {〈b, f〉}) forms a subalgebra ofA2;

(iv) CNP has a proper non-axiomatic extension being both that ofC and a
proper sublogic ofCMP, being, in its turn, an axiomatic extension ofC,
and so ofCNP.

Proof. First, (i)⇔(ii) is immediate.
Next, if (∼Ab = b)/(b ≤A t), then we have(∼A2〈b, t〉/(〈b, t〉 ZA2

〈t, f〉)) = 〈b, f〉 6∈ L5, in which caseL5 ⊇ {〈b, t〉, 〈t, f〉} does not form a
subalgebra ofA2, and so (iii)⇒(ii) holds.

Further, assume (iii) holds, in which case (ii) holds too, as it has been
proved above. Then, by (2.7) and Theorem 10.3, the consistentΣ-logic C ′

of the consistent submatrixD , (A2�L5) of B , (A2�(A × {f, t})), defin-
ing CNP, is a consistent extension ofC [NP] and so a sublogic ofCPC =
CMP (cf. Corollary 8.5, Theorem 9.3 and Remark 10.1). Moreover, (9.1)
is not true inD under[x0/〈b, t〉, x1/〈f, t〉], and soC ′ is a proper sublogic
of CMP. And what is more, since, for alla ∈ D = L5, it holds that
(∼Da ∈ DD) ⇒ (a = 〈f, f〉), whileA is Y-disjunctive, whereasf 6∈ DA,
we conclude that{∼x0, x0 Y x1} ` x1 is true inD but is not true inB
under[x0/〈b, f〉, x1/〈f, t〉], and soC ′ is a proper extension ofC [NP]. In ad-
dition, (π0�D) ∈ homS(D,A), in which case, by (2.8), we haveC(∅) ⊆
CNP(∅) ⊆ C ′(∅) ⊆ C(∅), and soC ′ is not an axiomatic extension of
C [NP]. Finally, by (ii),A is¬-negative, where¬x0 , ∼(x0Z(∼∼x0Y∼x0)),
in which case it, beingY-disjunctive, isA-implicative, where(x0 A x1) ,
(¬x0 Y x1), and so Corollary 9.6 completes the argument of (iv), as re-
quired.

Lemma 10.6. LetC ′ be an extension ofC. Suppose(9.1) is not satisfied in
C ′ andL5 does not form a subalgebra ofA2 (in particular,∼(x0 Z ∼x0) ∈
C(∅), i.e., either∼Ab = b — that is,C(x0) = C(∼∼x0) — or b ≤A t; cf.
Lemma 10.5(iii)⇒(ii)⇔(i)). Then,C ′ is a sublogic ofCNP.

Proof. The case, whenCNP is inconsistent, is evident. Otherwise, by The-
orem 10.3,C is ∼-subclassical, in which case{f, t} forms a subalgebra of
A, CNP being defined by the submatrixB , (A × (A�{f, t})) of A2, and
so it suffices to prove thatB ∈ Mod(C ′). On the other hand, asC ′ does not
satisfy the finitary (9.1), by Theorem 2.2, there are some finite setI, some
C ∈ S∗(A)I and some subdirect productD ∈ Mod(C ′) of it not being a
model of (9.1), in which case there are somea ∈ DD ⊆ {b, t}I and some
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b ∈ (D \ DD) such that(∼Da YD b) ∈ DD, and soJ , {i ∈ I | πi(a) =
b} ⊇ K , {i ∈ I | πi(b) = f} 6= ∅. PutL , {i ∈ I | πi(b) = t}. Then,
given anȳa ∈ A5, set(a0oa1oa2oa3oa4) , ((((I\(L∪K))∩J)×{a0})∪((I\
(L∪J))×{a1})∪ ((L\J)×{a2})∪ ((L∩J)×{a3})∪ (K×{a4})) ∈ AI .
In this way:

D 3 a = (b o t o t o b o b), (10.1)

D 3 b = (b o b o t o t o f). (10.2)

Moreover, by Lemma 3.1, we also have:

D 3 f , (f o f o f o f o f), (10.3)

D 3 ∼Df = (t o t o t o t o t). (10.4)

Consider the following exhaustive (as∼Ab ∈ DA = {b, t}) cases:

• ∼Ab = b.
Then, in caseb ≤A t, by (10.1) and (10.2), we have:

D 3 e , (a ZD b) = (b o b o t o b o f), (10.5)

D 3 ∼De = (b o b o f o b o t), (10.6)

D 3 c , (e YD ∼Db) = (b o b o t o b o t), (10.7)

D 3 ∼Dc = (b o b o f o b o f). (10.8)

Likewise, in caseb(≤ / ≥)At, by (10.1) and (10.5)/(10.2), we have:

D 3 d , ((e/b) YD ∼Da) = (b o b o t o b o b), (10.9)

D 3 ∼Dd = (b o b o f o b o b). (10.10)

Consider the following complementary subcases:

– L ⊆ J .
Then, sinceI ⊇ K 6= ∅ = (L \ J), by (10.3), (10.4) and (10.9),
〈g, I × {g}〉 | g ∈ A} is an embedding ofA into D, in which
case, by (2.7),A is a model ofC ′, for D is so, and so isB, for
{f, t} forms a subalgebra ofA.

– L * J .
Then, consider the following complementary subsubcases:

∗ there is someϕ ∈ Fm2
Σ such thatϕA(b, f) = f andϕA(f, f)

= t,
in which case, by (10.3) and (10.10), we have:

D 3 ϕD(∼Dd, f) = (f o f o t o f o f), (10.11)
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D 3 ∼DϕD(∼Dd, f) = (t o t o f o t o t). (10.12)

Then, since(L \ J) 6= ∅ 6= K, taking (10.3), (10.4), (10.9),
(10.10), (10.11) and (10.12) into account, we see that

{〈〈g, h〉, (g o g o h o g o g)〉 | 〈g, h〉 ∈ B}

is an embedding ofB intoD, and so, by (2.7),B is a model
of C ′, forD is so.

∗ there is noϕ ∈ Fm2
Σ such thatϕA(b, f) = f andϕA(f, f) =

t,
Then,b ≤A t, for, otherwise, we would havet ≤A b, in
which case we would getϕA(b, f) = f andϕA(f, f) = t,
whereϕ , ∼(x0 Z ∼x1) ∈ Fm2

Σ. Consider the following
complementary subsubsubcases:

· (((I \ (L ∪K)) ∩ J) ∪ (I \ (L ∪ J)) ∪ (L ∩ J)) = ∅.
Then, taking (10.5), (10.6), (10.7), (10.8), (10.9) as well
as (10.10) into account, asK 6= ∅ 6= (L \ J), we con-
clude that{〈〈g, h〉, (b o b o h o b o g)〉 | 〈g, h〉 ∈ B} is an
embedding ofB intoD, and so, by (2.7),B is a model of
C ′, forD is so.

· (((I \ (L ∪K)) ∩ J) ∪ (I \ (L ∪ J)) ∪ (L ∩ J)) 6= ∅.
Let G be the subalgebra ofB × A generated by((B ×
{b})∪{〈〈i, i〉, i〉 | i ∈ {f, t}}). Then, as(((I\(L∪K))∩
J)∪(I\(L∪J))∪(L∩J)) 6= ∅ 6∈ {K,L\J}, by (10.3),
(10.4), (10.5), (10.6), (10.7), (10.8), (10.9) and (10.10),
we see that{〈〈〈g, h〉, j〉, (j o j o h o j o g)〉 | 〈〈g, h〉, j〉 ∈
G} is an embedding ofG , ((B × A)�G) into D, in
which case, by (2.7),G is a model ofC ′, forD is so. Let
us prove, by contradiction, that((DB × {f}) ∩G) = ∅.
For suppose((DB × {f}) ∩ G) 6= ∅. Then, there is
someψ ∈ Fm8

Σ such thatψA(t, b, b, b, b, b, b, f) = f

andψA(t, t, t, t, f, f, f, f) = t, for π1[DB] = {t}. Let
ϕ , ψ(∼x1,∼x0,∼x0,∼x0, x0, x0, x0, x1) ∈ Fm2

Σ.
Then,ϕA(b, f) = f andϕA(f, f) = t. This contradic-
tion shows that((DB × {f}) ∩ G) = ∅, in which case
(π0�G) ∈ homS

S(G,B), and so, by (2.7),B is a model of
C ′, for G is so.

• ∼Ab = t,
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Consider the following exhaustive (as〈A,≤A〉 is a chain poset) sub-
cases:

– b ≤A t.
Then, by (10.1) and (10.2), we get:

D 3 c′ , (a YD b) = (b o t o t o t o b), (10.13)

D 3 d′ , ∼Dc′ = (t o f o f o f o t), (10.14)

D 3 e′ , ∼Dd′ = (f o t o t o t o f), (10.15)

D 3 f ′ , (c′ ZD d′) = (b o f o f o f o b). (10.16)

Consider the following complementary subsubcases:

∗ ((I \ (L ∪ J)) ∪ (L \ J) ∪ (L ∩ J)) = ∅.
Then, sinceI ⊇ K 6= ∅, by (10.3), (10.4) and (10.13), we
see that{〈g, I × {g}〉 | g ∈ A} is an embedding ofA into
D, in which case, by (2.7),A is a model ofC ′, for D is so,
and so isB, for {f, t} forms a subalgebra ofA.

∗ ((I \ (L ∪ J)) ∪ (L \ J) ∪ (L ∩ J)) 6= ∅.
Then, asK 6= ∅, by (10.3), (10.4), (10.13), (10.14), (10.15)
and (10.16), we conclude that{〈〈g, h〉, (g o h o h o h o g)〉 |
〈g, h〉 ∈ B} is an embedding ofB intoD, in which case, by
(2.7),B is a model ofC ′, forD is so.

– t ≤A b.
Then, by (10.1) and (10.2), we get:

D 3 c′′ , (a YD b) = (b o b o t o b o b), (10.17)

D 3 d′′ , ∼Dc′′ = (t o t o f o t o t), (10.18)

D 3 e′′ , ∼Dd′′ = (f o f o t o f o f). (10.19)

Consider the following complementary subsubcases:

∗ L ⊆ J .
Then, asK 6= ∅ = (L\J), taking (10.3), (10.4) and (10.17)
into account, we see that{〈g, I × {g}〉 | g ∈ A} is an em-
bedding ofA into D, in which case, by (2.7),A is a model
of C ′, for D is so, and so isB, for {f, t} forms a subalgebra
of A.

∗ L * J .
Then, asL5 does not form a subalgebra ofA2, and so of its
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subalgebraB, there is someϕ ∈ Fm5
Σ such thatϕA(f, t, f, b,

t) = b andϕA(f, f, t, t, t) = f, in which case, by (10.3),
(10.4), (10.17), (10.18) and (10.19), we get:

D 3 ϕD(f, d′′, e′′, c′′,∼Df) = (b o b o f o b o b), (10.20)

and so, asK 6= ∅ 6= (L \ J), taking (10.3), (10.4), (10.17),
(10.18), (10.19) and (10.20) into account, we see that

{〈〈g, h〉, (g o g o h o g o g)〉 | 〈g, h〉 ∈ B}

is an embedding ofB intoD, in which case, by (2.7),B is a
model ofC ′, forD is so.

Theorem 10.7. SupposeC is [not] non-∼-subclassical. Then, extensions of
C form the(2[+2])-element chainC ( CNP = [CnωA×(A�{f,t}) (]CMP|R =
[CPC = CnωA�{f,t} (] Cnω∅, CNP [not] being axiomatic/Y-disjunctive, [iff
L5 does not form a subalgebra ofA2 (in particular,∼(x0 Z ∼x0) ∈ C(∅),
i.e., either∼Ab = b — that is,C(x0) = C(∼∼x0) — or b ≤A t), in
which caseCPC is Y-disjunctive, while, providingA is A-implicative, where
A ∈ Fm2

Σ,/ K3(+1) forms a subalgebra ofA2 (in particular, A is regular),
CPC is relatively axiomatized by(9.3)/CPC(∅) = C(∅), in which caseCPC

is an axiomatic extension ofC/ both proper consistent extensions ofC are not
axiomatic, and soC has a unique/no proper consistent axiomatic extension].

Proof. By Theorems 9.3, 10.3, Lemmas 10.4, 10.5, 10.6, Corollaries 8.2, 8.4,
8.5, 9.4, 9.6 and Remark 10.1.

Concluding this section, we briefly discuss various representative instanc-
es, assuming thatΣ ⊇ Σ(⊃)

∼[,01] , ({∼,∧,∨(,⊃)[,⊥,>]}), where both∨ and

∧ (as well as⊃) are binary [while both⊥ and> are nullary, whereas⊥A = f

and>A = t].
First of all, taking Corollary 4.4 into account, the case, when∼Ab = b,

Z = ∧, Y = ∨ andb ≤A t, covers arbitrarythree-valuedexpansions of the
Σ∼-logic of paradoxLP [6] {cf. [7] for the equivalent matrix definition of
it tacitly used here}, including those by constants — as regular ones — [in
particular, theboundedΣ∼,01-expansionLP01 of LP ] (as well as arbitrary
three-valuedexpansions of theΣ⊃

∼-logic of antinomiesLA [1], when(ā ⊃A

b̄) = 〈max(1− a0, b0),max(1− a0, b1)〉, for all ā, b̄ ∈ A, in which caseA is
⊃-implicative [in particular, theboundedΣ⊃

∼,01-expansionLA01 of LA]). In
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this way, Theorem 10.7 subsumes respective results obtained originally in [7],
[8] and [11]ad hoc. Moreover, this case covers the axiomatic extensions of
arbitrary non-maximally∼-paraconsistent four-valued logics studied in [12]
by theExcluded Middle Lawaxiomx0 ∨ ∼x0 includingL{P/A}[01].

Likewise, taking Corollary 4.4 into account, the case, when∼Ab = b

andA is a(∧,∨)-lattice with zerob and unitt (in which caseA is neither∧-
conjunctive nor∨-disjunctive, though), and so a(Z,Y)-lattice, whereZ = ∧∼
andY = ∨∼, with zero f and unitb (it is this non-artificial instance that
warrants regarding the case, whent ≤A b), in which caseA is A-implicative,
where(x0 A x1) , ((∼x0 ∧ ∼x1) ∨ x1), covers arbitrarythree-valued
expansions of theΣ∼-logic HZ [3]. In this way, Theorem 10.7 subsumes
respective results obtained originally in [9] and [11]ad hoc.

And what is more, the case, when∼Ab = t, in which case∼A is not
regular,Z = ∧, Y = ∨ andb ≤A t (as well as(a ⊃A b) = min{c ∈
A | b 6 max(c, a)}, for all a, b ∈ A), in which case, whenΣ = Σ(⊃)

∼,01,
{f, t} forms a subalgebra ofA, whileK3{+1} does{not} form a subalgebra
of A2 — it is this case that warrants involvingK3 in addition toK4, and
soA is not (⊃-)implicative, in view of Lemma 10.4, is equally covered by
Theorem 10.7. In this connection, the subcase, whenΣ = Σ(⊃)

∼,01, and soC
is actually dual — via both the lattice duality and the truth predicate comple-
ment — to theΣ∼,01-fragment of (resp., to) G̈odel’s three-valued logic [2]
(itself), deserves a particular emphasis. Then,{f, t} forms a unique subal-
gebra ofA, while A2 , (A�{f, t}) satisfies the identity(x0 ∧ ∼x0) ≈ ⊥
not being true inA under [x0/b]. Therefore, that subprevarietyP2 of the
prevarietyP3 generated byA, which is relatively axiomatized by the iden-
tity involved is generated byA2 — the reader is referred to [8] as for the
conception ofprevariety. Moreover,A/A2 is embeddable into any/ non-one-
element member of(P3 \ P2)/P2, respectively. Hence,P2 is the only sub-
prevariety ofP3 distinct from this and containing a non-one-element algebra.
On the other hand, according to Theorem 10.7,C has two distinct proper
consistent extensions. In this way, as opposed to the above instances, when
DA = {a ∈ A | A |= (x0 ≈ (x0 ∨ ∼x0)[a]}, the general study [8] is not ap-
plicable to the one under consideration. This highlights a particular value of
Theorem 10.7 as well as of the case involved, though being, to some extent,
rather artificial.

After all, the following counterexample collectively with Lemma 10.5(iii)
⇒(iv) show that the condition ofL5’s not forming a subalgebra ofA2 cannot
be omitted in the formulations of Lemma 10.6 and Theorem 10.7:
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Example 10.8. Let Σ = Σ∼, ∼Ab = t, Z = ∧, Y = ∨ andf ≤A t ≤A b,
in which case{f, t} forms a subalgebra ofA (i.e., C is ∼-subclassical; cf.
Corollary 8.4), whileL5 forms a subalgebra ofA2.

11 DISJUNCTIVE THREE-VALUED PARACONSISTENT LOGICS
WITH SUBCLASSICAL NEGATION AND CLASSICALLY-VAL-
UED CONNECTIVES

An n-ary, wheren ∈ ω, operationf onA is said to beclassically-valued, if
(img f) ⊆ {f, t}.

Throughout this section, it is supposed thatC is Y-disjunctive (that is,A
is so; cf. Lemma 9.1) and all primary operations ofA are classically-valued,
in which case:

• ∼Ab = t;

• {f, t} forms a subalgebra ofA, and soC is both∼-subclassical (cf.
Corollary 9.5) and maximally∼-paraconsistent (cf. Corollary 9.9);

• A is both¬-negative,Z-conjunctive andA-implicative, where:

¬x0 , ∼(x0 Y x0),

(x0 Z x1) , ¬(¬x0 Y ¬x1),

(x0 A x1) , (¬x0 Y x1),

and soCPC is an extension of any consistent extension ofC (cf. Corol-
lary 8.5) and the only proper consistent axiomatic extension ofC (cf.
Corollary 9.6), whileεA

∼ is an axiomatic binary equality determinant
for A (cf. Remark 4.2).

It is remarkable thatYA = YA
A, while the⊃-implicative∼-super-classical

{∼,⊃}-matrixS with ∼Sb = t and⊃S = AA defines the{∼,⊃}-logic P 1

[13]. In this way,P 1 is a term-wise definitionally minimal instance of the
case under consideration.

Theorem 11.1. There is an increasing countable chain of finitary extensions
ofC, and so such finitary extension ofC that is not (relatively) finitely-axio-
matizable, in which case this is consistent.

Proof. We use Theorem 2.2 withK , Mod(C) tacitly.
Let n ∈ (ω \ 1) andCn the finitary (forC, being three-valued, is so) ex-

tension ofC relatively axiomatized by the finitary ruleRn , (({∼xi | i ∈
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n}∪{Y〈xi〉i∈n}) ` xn). Then, asC, beingY-disjunctive, satisfies (2.3), and
so does anyB ∈ K, whenRn is not true inB under anyv : Vn+1 → B, for ev-
erym ∈ (ω\n),Rm is not true inB underv∪[xj/v(x0);xm/v(xn)]j∈(m\n).
So,〈Cn〉i∈n is an increasing denumerable chain of finitary extensions ofC.

Claim 11.2. For anyn ∈ (ω \ (1(+1))), there is a consistent subdirectn-
powerAn ∈ Mod(C) of A such thatRn is [not] true in An+1[−1] (and
DAn = {n× {t}}).

Proof. Since all primary operations ofA are classically-valued, the setAn ,
({f, t}n ∪ {{〈i, b〉} ∪ ((n \ {i}) × {f}) | i ∈ n}) 3 (n × {f}) forms a
subalgebra ofAn, so we have the consistent{for n 6= 0} subdirectn-power
An , (An�An) ∈ Mod(C) {cf. (2.7)} ofA (withDAn = {n×{t}}, asn 6=
1). Then, asA is Y-disjunctive,Rn is not true inAn under[xi/({〈i, b〉} ∪
((n \ {i})× {f}));xn/(n× {f})]i∈n but is true inAn+1.

Then, by Claim 11.2, the increasing chain〈Cn〉n∈(ω\1) is injective, and
so countable, in which case the finitary (for bothC, being three-valued, and
all Rn, n ∈ (ω \ 1), are so) extensionCω of C relatively axiomatized by
{Rn | n ∈ (ω \ 1)} is a proper extension ofCn, for any n ∈ (ω \ 1),
and so, by the Compactness Theorem for classes of algebraic systems closed
under ultra-products (cf. [5]),Cω is not (relatively) finitely axiomatizable, as
required.

As it has been demonstrated in the previous section, the condition ofA’s
primary operations’ being classically-valued cannot be omitted in the formu-
lation of Theorem 11.1. It is remarkable thatR1 = (2.5), in which case
C1 = CNP, while Cω, being a consistent extension ofC, is a sublogic of
CPC, and so the infinite chain involved appears intermediate betweenCNP

andCPC, in contrast to Theorem 10.7. And what is more, in contrast to
Lemma 10.2, we have:

Lemma 11.3. B , A2 ∈ Mod(CMP) ⊆ Mod(CNP) (cf. Claim 11.2) is a
consistent subdirect square ofA such thathom(B,A�{f, t}) = ∅.

Proof. Then,B , A2 ∈ Mod(C) is a consistent subdirect square ofA.
Moreover, as2 6∈ 2, DB = {〈t, t〉}, while, for everyb ∈ B, it holds that
(∼B〈t, t〉 YB b) = (〈f, f〉 YB b) ∈ DB implies b ∈ DB, in view of theY-
disjunctivity ofA and the fact thatf 6∈ DA. Hence, (9.1) is true inB. Finally,
let us prove, by contradiction, thathom(B,A�{f, t}) = ∅. For suppose
hom(B,A�{f, t}) 6= ∅. Take anyh ∈ hom(B,A�{f, t}), in which case
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h(〈t, t〉) = t, for 〈t, t〉 ∈ DB. Therefore, if, for anya ∈ {〈b, f〉, 〈f, b〉} ⊆ B,
it did hold thath(a) = t, we would havef = ∼At = h(∼Ba) = h(〈t, t〉) =
t. Hence,h(〈b, f〉) = f = h(〈f, b〉). Then, we getf = (f YA f) = h(〈b, f〉 YB

〈f, b〉) = h(〈t, t〉) = t. This contradiction completes the argument.

As a consequence, in contrast to Theorem 10.3/both Theorem 9.3 and Re-
mark 10.1, we get:

Corollary 11.4. CNP/MP is not defined byD , ((A × (A�{f, t}))/(A�{f,
t}))./ In particular,CMP 6= CR is notY-disjunctive.

Proof. By contradiction. For supposeCNP/MP is defined byD. Then, by
Lemma 11.3,B , A2 ∈ Mod(CNP/MP) is a consistent subdirect square of
A such thathom(B,A�{f, t}) = ∅, in which case it is finite, forA is so, and
so is a finitely-generated consistent model ofCNP/MP/, in which case this is
consistent. Therefore, by Lemmas 2.1, 3.3, 3.4, 3.5 and Remark 4.2, there
are some setI, someC ∈ S(D)I , some subdirect productE of it and some
g ∈ homS

S(E ,B), in which caseE is consistent, forB is so (cf. (2.7)), and
soI 6= ∅. On the other hand, by Lemmas 3.3, 3.4, 3.5 and Remark 4.2,g is
injective, and so((π1/∆{f,t}) ◦ πi ◦ g−1) ∈ hom(B,A�{f, t}) = ∅, where
i ∈ I 6= ∅. This contradiction/ and Theorem 9.3 completes/complete the
argument.

Finally, P 1 collectively with Theorem 11.1 show that, despite of Theo-
rem 10.7, three-valued (even both conjunctive, disjunctive and subclassical)
paraconsistent logics with subclassical negation need not have finitely many
extensions.

12 CONCLUSIONS

Aside from quite useful non-trivial general results and their numerous illus-
trative applications, the present paper (like [12]) demonstrates a special value
of the conception of equality determinant initially suggested in [10].
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