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We first prove that any [conjunctive/disjunctive] 3-valued pa-
raconsistent logic with subclassical negation (3VPLSN) is de-
fined by a unique{modulo isomorphisr [conjunctive/disjun-
ctive] 3-valued matrix and provide effective algebraic criteria
of any 3VPLSN’s beingsubclassicgbeingmaximallyparacon-
sistenthaving no (inferentially) consistent non-subclassical ex-
tension implying that any [conjunctive/disjunctiednjunctive/
both disjunctive and subclassical/refutibguble Negation Lay
conjunctive/disjunctive subclassical 3VPLSN'’s is subclassical
if[f] its defining 3-valued matrix has a 2-valued submajisxma-
ximally paraconsisteittas a theorem but no consistent non-sub-
classical extension. Next, any disjunctive 3VPLSN has no proper
consistent non-classical disjunctive extension, any classical ex-
tension being disjunctive and relatively axiomatizedRssolu-
tion rule. Further, we provide an effective algebraic criterion
of a [subclassical] 3VPLSN with lattice conjunction and disj-
unction’s having no proper [consistent non-classical] extension
but that which is relatively axiomatized yx Contradictione
Quodlibetrule [and defined by the product of any defining 3-
valued matrix and its 2-valued submatrix]. Finally, any disjunc-
tive 3VPLSN with classically-valued connectives has an infinite
increasing chain of finitary extensions.
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1 INTRODUCTION

Perhaps, the principal value ahiversallogical investigations consists in
discovering uniform transparent points behind particular results, originally
provedad hog to be resulted innductiveelaborating general theories ex-
plaining those points with preferable covering new instances to demonstrate
the deductivepower of developed theories. This thesis is the main method-
ological paradigm of the present study.

On the other hand, appearance of any non-classical (in particular, many-
valueed) logic inevitably raises the problems of studying both the logic itself
and those related to it (including its extensions) with regard to such points
as their (relative) axiomatizations as well as sound and, especially, complete
semantics. In this connection, the [axiomatic] maximality of various kinds of
the logic under consideration — in the sense of absence of proper [axiomatic]
extensions satisfying a certain property held for the given logic — becomes
especially acute.

In particular, when dealing with paraconsisten{viz., refuting theEx
Contradictione Quodlibetule) logic, the issue of itsnaximal paraconsis-
tencyin the sense of absence of any proper paraconsistent extension becomes
especially acute. Such strong version of maximal paraconsistency — as op-
posed to the weakxiomaticone (regarding merelaxiomatic extensions)
discovered in [13] folP' — was first observed in [7] for thegic of paradox
LP [6] and then forH Z [3] in [9] and has been proved for arbitrary con-
junctive subclassicalviz., having a classical extension) three-valued para-
consistent logics in the reference [Pyn 95b] of [7] as well as comprehensively
studied for arbitrary four-valued expansions of a four-valued logic in [12]
with providing its effective — in case of finitely many connectives — alge-
braic criterion properly inherited by thefour-valuedexpansions. In this
paper, we provide an equally effective algebraic criterion of the maximal
paraconsistency of three-valued paraconsistent logics with subclassical nega-
tion [fragment] properly inherited by theinree-valuedexpansions, while any
such logic isaxiomaticallymaximally paraconsistent. As a consequence, we
prove that any conjunctive/both subclassical and disjunctive/refutingalie
ble Negation Lawthree-valued paraconsistent logic with subclassical nega-
tion is maximally paraconsistent. In particular, ahyee-valuedexpansion
of LP/H Z /P! is maximally paraconsistent.

Likewise, when dealing with non-classical (in particular, many-valued)
logics, their connections with the classical (two-valued) one deserves a par-
ticular emphasis. In particular, this concerns the property of a non-classical



logic’s being subclassical equally comprehensively studied within the frame-
work of four-valued expansions @ B, in [12] with its equally effective al-
gebraic criterion very similar to that found here within the context of conjunc-
tive/disjunctive three-valued paraconsistent logics with subclassical negation.
(Here, we adapt [12]'s abstract conceptiorclafssicallogic).

Nevertheless, the most culminating part of the paper concerns a much
more advanced issue of exploration of overall lattices of extensions of three-
valued paraconsistent logics with subclassical negation going back to the
works [8] and [9] as well as [11] that have advanced much the maximal
paraconsistency results f&rP, HZ as well as botiL A [1] and its bounded
expansion towards proving the fact the lattices of their extensions form four-
element chains, the greatest/least consistent proper extension being relatively
axiomatized by either thielodus Ponengule for thematerialimplication/the
Ex Contradictione Quodlibetule and being classical/defined by the direct
product of any defining three-valued matrix and its two-valued submatrix.
On the other hand, such does not hold for arbitrary (even both subclassical,
conjunctive and disjunctive) three-valued paraconsistent logics with subclas-
sical negation, a most representative example b2hfL3] having infinitely
many (even finitary) extensions, proved here for arbitrary disjunctive three-
valued paraconsistent logics with subclassical negation and classically-valued
connectivesP! being a term-wise definitionally minimal instance of such a
kind. This inevitably raises the question: what does unify the above miscel-
laneous instances? In this connection, it is remarkable that, though the work
[11] has unifiedHd Z, LA and its bounded expansion, the very first instance of
such a kind — the logic of paradaxP — has proved beyond the mentioned
general study. Therefore, thus far, the problem raised remained still open.
Here, we solve it within the framework of three-valued paraconsistent log-
ics with subclassical negation as well as chain-lattice-based conjunction and
disjunction with providing an effective — in case of finitely many connec-
tives — criterion of having the mentioned structure of extensions uniformly
covering both the above and some interesting new instances.

The rest of the paper is as follows. Section 2 is a concise summary of
basic issues underlying the paper. Then, in Section 3 we elaborate quite
useful generic tools concerning weakly conjunctive matrices with a single
non-distinguished value as well as both an enhancement of the conception
of equality determinant going back to [12] and axiomatic [resp., disjunctive]
extensions of logics defined by [finitely many finite disjunctive] matrices. In
Sections 4, 6, 7, 8, 9, 10 and 11 we formulate and prove gemeralresults
of the paper, exemplifying these by brief discussing certain representative in-



stances of 3VPLSN.

2 BASIC ISSUES

2.1 Set-theoretical background
We follow the standard set-theoretical convention, according to which natural
numbers (including 0) are treated as finite ordinals (viz., sets of lesser natu-
ral numbers), the ordinal of all them being denoted.byThe proper class
of all ordinals is denoted byo. Also, functions are viewed as binary rela-
tions, while singletons are identified with their unique elements, unless any
confusion is possible.

Given a setS, the set of all subsets & [of cardinalitye K C oo] is
denoted by (S). As usual, given any equivalence relatipon S, by vy
we denote the function with domaisi defined byvy(a) £ 6[{a}], for all
a € S, whereas we s€iT’/0) = v,[T), for everyT C S. Next, S-tuples
(viz., functions with domair$) are often written in the sequentéorm, itss-
th component (viz., the value under argumentwheres € S, being written
ast. Given two more setd and B, any relationk C (A x B) (in particular,
amappingR : A — B) determines the equally-denoted relati®re (A x
BY) (resp., mapping? : A% — B®) point-wise. Likewise, given a set, an
S-tuple B of sets and any’ € ([T,cq B2), put(ITf) : A — (II B),a —
(fs(a))ses. (In casel = 2, fy x f1 stands for(J] f).) Further, seAg =
{{a,a) | a € S}, functions of such a kind being referred to diagonal
andS* £ (J;c (1) ' elements of5* £ (S° U S*) being identified with
ordinary finite tuples. Then, any binary operatioron S determines the
equally-denoted mapping: ST — S as follows: by induction on the length
| = (doma) of anya € ST, put:

od A ] Ao if l = 1,
a =
(e(@f(l—1)))oa;—1 otherwise

In particular, given anyf : S — S and anyn € w, setf” £ (o(n x
{f},Ap)) : S — S. Finally, given anyT’ C S, we have theharacteristic
functiony £ (T x {1}) U ((S\ T) x {0})) of Tin S.
In general, we adopt the following standard notations for elemeris: of
t2(1,1),  f£(0,0),  b2(L0),  n2(0,1)
def

Moreover, byC we denote the partial ordering @A defined by(a C b) &
((ap < bo)&(b1 < ay)), for all a,b € 22. Then, given anyB C 2%, any



f: B® — B, wheren € w, is said to beegular, provided, for alla, b € B"
such that, for every € n, a; C b;, it holds thatf (a) C f(b).

2.2 Algebraic background

Unless otherwise specified, abstract algebras are denoted by Fraktur letters
[possibly, with indices], their carriers being denoted by corresponding Italic
letters [with same indices, if any].

A (propositional/sentential) language/signatuseany algebraic (viz., fu-
nctional) signaturé&: (to be dealt with throughout the paper by default) con-
stituted by function (viz., operation) symbols of finite arity to be treated as
(propositional/sentential) connective§iven anya € pq\1(w), put Ve =
{z | B € a}, elements of which being viewed gsropositional/sentential)
variables of ranky. Then, we have the absolutely-frEealgebrafms, freely-
generated by the sé&t,, its endomorphisms/elements of its cardens; be-
ing called(propositional/sententialX-substitutions/-formulas of rank. (In
general, any mention af is normally omitted, whenever = w.)

A -algebra?l with A C 22 is said to beregular, whenever its primary
operations are so, in which case secondary ones are so as well.

2.3 Propositional logics and matrices
A [finitary] Y-ruleis any couplgl’, ), where(T'U{¢}) € p|,)(Fms), nor-
mally written in the standard sequent foiim- ¢, ¢/any element of” being
referred to as thefeonclusion/premise af. A (substitutional)>-instanceof
it is then anyX-rule of the forma (T F ¢) £ (0[]  o(y)), whereo is a
3J-substitution. As usuab:-rules without premises are callédaxiomsand
are identified with their conclusions. A[fgxiomatic] (finitary) X-calculus
is then any se€ of (finitary) X-rules [without premises], the set of all-
instances of its elements being denotedSby(C).

A (propositional/sentential¥-logic (cf., e.g., [4]) is any closure operator
C over Fmy that isstructural in the sense that[C(X)] C C(o[X]), for
all X € Fm% and allc € hom(gm$, §ms), in which case we set, £
{{(¢,9) € (Fm$)? | C(¢) = C(¥)}, wherea € poo\1(w). This is said
to be[inferentially] (in)consistentif z; ¢ (€)C(@[U{zo}]). Then, aS-rule
I' — @ is said to besatisfied in/byC, provided® € C(T"), 3-axioms satisfied
in C being referred to atheorems of”. Next, aX:-logic C’ is said to be a
[proper] extension ofC, wheneverC' C [C]C’, in which caseC is said to
be a[proper] sublogic ofC’. Then, a[n axiomatic}p-calculusC is said to
axiomatizeC’ (relatively toC), if C” is the least-logic (being an extension
of C' and) satisfying every rule i@ [(in which case it is called aaxiomatic



extension ofC, while
C'(X) = C(X USIg(C)). (2.1)

for all X C Fm$)]. Furthermore, we have the finitary sublodit, of C,
defined byC5(X) £ (U Clpw. (X)), for all X C Fm¥, called thefinitariza-
tion of C. Then, the extension of any finitary (in particular, diagonalpgic
relatively axiomatized by a finitary-calculus is a sublogic of its own finita-
rization, in which case it is equal to this, and so is finitary (in particularythe
logic axiomatized by a finitar¥-calculus is finitary). Further,' is said to be
[weakly] A-conjunctive wheren is a (possibly, secondary) binary connective
of X (tacitly fixed throughout the paper), providédony)[2] = C ({6, ¢}),
where¢, ) € Fm$. Likewise,C is said to beV-disjunctive whereV is a
(possibly, secondary) binary connectiveboftacitly fixed throughout the pa-
per), providedC(X U {¢ Y ¢}) = (C(X U {¢}) N C(X U {¢})), where
(X U{¢,¥}) C Fms, in which case the following rules:

i) H (l‘o \ le), (22)
T H (3’50 \ Il), (23)
(xo¥Yzo) F o (2.4)

are satisfied irC’, and so in its extensions, while any axiomatic extension of
C'is V-disjunctive, in view of (2.1). FinallyC' is said to bg(axiomatically)
maximally] ~-paraconsistentwhere~ is a unary connective of {tacitly
fixed throughout the papgrprovided it does not satisfy thEx Contradic-
tione Quodlibetule:

{zo,~xo} F 21 (2.5)

[and has no proper-paraconsistent (axiomatic) extension].

A (logical) ¥-matrix (cf. [4]) is any couple of the formd = (A, DA),
where?l is a ¥-algebra, called thenderlying algebra of4, while DA C
A is called thetruth predicate ofA. (In general, matrices are denoted by
Calligraphic letters [possibly, with indices], their underlying algebras being
denoted by corresponding Fraktur letters [with same indices, if any].) This
is said to ben-valued/[in]consistent/truth(-non)-empty/trutfalse-singular
wheren € w, provided|A| = n/DA # [=]A/DA = (#)a/|(DA|(A\
DA))| € 2, respectively. Next, given any’ C ¥, A is said to be g¥-
yexpansion ofits ¥'-reduct (A[Y) £ (A[¥’, D). (Any notation, being
specified for single matrices, is supposed to be extended to classes of matrices
member-wise.) FinallyA is said to béfinite[ly generated]/generated by
B C A, whenevetl is so.



Given anya € p.\1(w) and any clas#/ of ¥-matrices, we have the clo-
sure operatofng; overFm$, defined byCngy (X) £ (Fm$ N{h~[DA] D
X | Ae M, h € hom(gms,2)}, forall X C Fmyg;, in which case:

Cnpy(X) = (Fm$ N Cny (X)), (2.6)

becauséom(gms;, 2A) = {h|Fm$; | h € hom(Fms;, A)}, for anyX-algebra
A, asA # @. Then,Cny, is aX-logic, called thdogic of M, a X-logic C
being said to béfinitely-]defined byM, providedC(X) = Cnn(X), for all
X € pp(Fms). A ¥-logic is said to bex-valued wheren € w, whenever
it is defined by am-valuedX:-matrix, in which case it is finitary (cf. [4]).

As usual >-matrices are treated as first-order model structures of the first-
order signatures U {D} with unary predicateD, any X-ruleT' - ¢ being
viewed as (the universal closure of, depending upon the context) the infini-
tary equality-free basic strict Horn formu{g@\I') — ¢ under the standard
identification of any propositional-formula ) with the first-order atomic
formulaD(v).

A Y-matrix A is said to be amodel of a X-logic C, providedC is a
sublogic of the logic of4, the class of all them being denoted kiod(C).
Next, A is said to be~-paraconsistentwhenever the logic ofd is so. Fur-
ther, A is said to bgweakly] ¢-conjunctive whereo is a (possibly, secondary)
binary connective of, provided({a,b} C D4)[«<] < ((a o® b) € DA),
forall a,b € A, that is, the logic of4 is [weakly] o-conjunctive. Likewise,
A is said to be>-disjunctive/implicativewhenever((a ¢ / € DA) = (b €
DA)) < ((ao®™b) € DA), foralla,b € A, inwhich case the logic ofl is o-
disjunctive, and so is the logic of any classcaflisjunctiveX-matrices/resp.,
Alis Y -disjunctive, wherdzq Y, 21) 2 ((xg ¢ x1) o z1). Finally, given any
(possibly secondary) unary connectivef ¥, put(zgo~z;) £ =(—zgo—w1).

Let A and B be two X-matrices. A(strict) [surjective] {matrix} homo-
morphism fromA [on]to B is anyh € hom(2(,B) such that p[A] = B
and] DA C (=)h~[D?] ([in which case3/ A is said to be atrict surjective
{matrix} homomorphic image/counter-image4f3]), the set of all them be-
ing denoted b)homESS]) (A, B). Recall thatVh € hom(2,B) : [((imgh) =
B) =](hom(gms;,B) 2 [=]{hog | g € hom(Fms,A)}), and so we have:

(3h € hom§ (A, B)) =(Cn3 € [=] Cn%y), 2.7)
(3h € hom® (A, B)) =(Cn%(2) C Cn¥(2)), (2.8)

Then, A[# B] is said to be gproper] submatrix of 3, wheneverA, €
homg (A, B), in which case we setB[A) £ A. Injective/bijective strict



homomorphisms fromd to 5 are referred to asmbeddings/isomorphisms
of/ffrom A into/onto B, in case of existence of whicH is said to beembed-
dable/ isomorphic into/tds.

Given a¥-matrix A, setxyA 2 y2“. Then, given any) € Con()
[such that) C 04 £ (ker x4)], put (A/0) = (A/0, D*/6), in which case
vy € hom[s’s] (A, A/0).

Given a setl and anl-tuple A of ¥-matrices, [any submatri8 of] the
S-matrix ([T,c; Ai) £ (I1e; 2, [1;c; D) is called the [a][sub]direct
product of A [whenever, for each € I, w;[B] = A;]. As usual, wherd = 2,
Ap x A; stands for the direct product involved. Likewise(iifig A) C {A}
(andI = 2), whereA is aX-matrix, A’ £ ([],.; A;) [resp.,B] is called the
[a] [sub]direct I-power (square) ofA.

Given a clas#M of X:-matrices, the class of all [consistent] submatrices of
members oM is denoted byS(,;(M), respectively. Likewise, the class of all
[sub]direct products of (finite) tuples constituted by membeid &6 denoted

by P (M).

Lemma 2.1 Subdirect Product Lemma; cf. Lemma 2.7 of [12)et M be a
finite class of finiteés-matrices andA a finitely-generated model of the logic
of M. Then,A is a strict surjective homomorphic counter-image of a strict
surjective homomorphic image of a membe®gf° (S, (M)).

Theorem 2.2 €f. Theorem 2.8 of [12]) Let K and M be classes oE-mat-
rices, C the logic of M and C’ an extension of’. Suppose [botl\V and all

members of it are finite and??) (S« (M)) C K (in particular, S(Py,)(M)) C

K {in particular, K © M is closed under bott$ and P, ( in particular,

K = Mod(C))}). Then,C" is [finitely-]defined byMod(C") N K, and so by
Mod(C").

Given anyX-logic C' and anyX’ C ¥, in which caseFm§, C Fm§
andhom(Fms,, ms,) = {A[Fm$, | A € hom(Fm$, Fms), h[FmS,| C
Fmg, }, for all & € poo\1(w), we have thex'-logic €7, defined byC’(X) £
(Fmy, NC(X)), for all X C Fmyg,, called theX'-fragment ofC, in which
caseC is said to be gX-)expansion of?”. In that case, given also any class
M of X-matrices defining”, C" is, in its turn, defined by %',

Classical negations, matrices and logics
Let - be a (possibly, secondary) unary connectiv&of

A Y-matrix A is said to bgweakly] (classically)--negative provided, for
alla € A, (a € DA)[<] & (=%a ¢ DA).



Remark2.3. Leto be any (possibly, secondary) binary connectivE o hen,
any —-negativeX-matrix is o-disjunctive/-conjunctive iff it iso”-conjuncti-
ve/-disjunctive, respectively. O

A two-valued consisterit-matrix A is said to be--classical whenever it
is ~-negative, in which case it is truth-non-empty, for it is consistent, and so
is both false- and truth-singular but is netparaconsistent.

A Y-logic is said to be--[sub]classical whenever it is [a sublogic of] the
logic of a~-classicalx-matrix. Then,~ is called asubclassical negation for
aX-logic C, whenever the--fragment ofC' is ~-subclassical, in which case:

~Mrg & C(~"x0), (2.9)

for all m,n € w such that the integen — n is odd.

3 PRELIMINARY ADVANCED KEY GENERIC ISSUES

3.1 False-singular consistent weakly conjunctive matrices

Lemma 3.1. Let A be a false-singular weakly-conjunctiveX-matrix, f €
(A\ D), I afinite setC an I-tuple constituted by consistent submatrices of
A and B a subdirect product of. Then,(I x {f}) € B.

Proof. By induction on the cardinality of any C I, let us prove that there
is somea € B including (J x {f}). First, whenJ = &, take anya €
C # @, in which casgJ x {f}) = @ C a. Now, assume/ # &. Take
anyj € J C I, in which caseK = (J\ {j}) C I, while |K| < |J],
and so, ag’; is a consistent submatrix of the false-singular maixwe
havef € C; = w;[B]. Hence, there is some e B such thatr;(b) = f,
while, by induction hypothesis, there is some= B including (K x {f}).
Therefore, sincd = (K U {j}), while A is both weaklyA-conjunctive and
false-singular, we havB > ¢ £ (a A% b) D (J x {f}). Thus, whenJ = I,
we eventually geB > (I x {f}), as required. O

3.2 Equality determinants

A binary equality determinant foa classM of Y-matrices is any»-cal-
culuse C (p(Fm%) x Fm%) such that the infinitary universal sentence
VzoVz1((Ae) < (zo = x1)) is true inM. Then, according to [12], a
(unitary) equality determinant foM is any T C Fmsy, such thatey £
{(v[zo/x;]) F (v[zo/21-4]) | © € 2,0 € T} is a binary equality determinant
for M.



Example 3.2. {z(} is a unitary equality determinant for any both false- and
truth-singular (in particular--classical)>-matrix. O

Lemma 3.3. Let. A and B be X-matrices¢ a binary equality determinant for
Aandh € homg (A, B). Then,h is injective.

Proof. For anya,b € A such thath(a) = h(b), we have(a = a) =
(A = (Ae)lzo/a,x1/a]) = (B = (Ae)lzo/h(a),z1/h(a)]) = (B =
(Ae)lzo/h(a), 21/h(D)]) = (A = (Ae)lxo/a, 1/b]) = (a = D). O

Lemma 3.4. Let A and B be X-matrices¢ a binary equality determinant for
B ande € homg(A, B). Suppose is injective. Theng is a binary equality
determinant forA.

Proof. By the well-known fact that any infinitary universal sentence, being
true inB, is so inA, being isomorphic (undes to (B[ (imge)) € S(B). O

Lemma 3.5. Any axiomatic binary equality determinantfor a classM of
Y-matrices is so fol?(M).

Proof. In that case, members bf are models of the infinitary universal strict
Horn theorye[z1 /zo] U{(A &) — (xo =~ x1)} with equality, and so are well-
known to be those dP (M), as required. O

3.3 Disjunctive extensions of disjunctive finitely-valued logics
Fix any (possibly, secondary) binary connectivef >. Given anyX,Y C
Fm¥, put(X YY) £ V(X x Y].

Lemma 3.6. LetC be aV-disjunctiveX-logic. Then,
(pYC(XUY)) CC(XU(pVY)), (3.1)
forall X C Fmy, all p € Fmy and allY € g, (Fms).

Proof. By induction on|Y'| € w. The case, wheli = &, is by (2.3). Now,
assume’” # @. Take anyy € Y, in which caseX’ £ (X U {¢}) C Fm$
andY’ £ (Y \ {¢}) € p.(Fm$), while |Y'| < |Y|, whereagY' U X') =
(X UY), and so, by induction hypothesis, we haueY C(X UY)) C
C(X'U(pYY")). Onthe other hand, by (2.2), we also hay& C'(XUY)) C
C(XU{e})U(pYY")). Thus, ag” = (Y' U {¢}), theV-disjunctivity of
C'yields (3.1). O

Given ax-ruleT + ¢ and as-formulay, put((T = ¢) Vb)) £ ((T'V.4h)
(¢ Y 9)). (This notation is naturally extended ¥dcalculi member-wise.)
By o1 we denote th&-substitution extendin; /z;11]ice-
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Theorem 3.7. Let M be a [finite] class of [finiteV-disjunctive] X-matrices,
C the logic of M, while A an axiomaticX-calculus [wherea a finitary
Y-calculus]. Then, the extensiafl’ of C relatively axiomatized by’ =
(A[U(o11[C] Y 20)]) is defined bys = (Mod(A[UC]) N S.(M)) [and so is
V-disjunctive].

Proof. First, by (2.7) [and Lemma 3.6 withk = @ as well as the/-disjun-
ctivity of every A € S, (M), and so both that and the structurality@fi],
we haveS = (Mod(A)[NMod(€)] N S.(M)) C (Mod(€') N'S.(M)) C
(Mod(€") N Mod(C)) = Mod(C").

Conversely, consider any [finitargl-rule I" - ¢ not satisfied inC’, in
which casep ¢ T £ C'(T') € (imgC’) C (imgCnyy), and so [by the
finiteness of(I' U {¢}) C Fmy], there is some [finitel € p.\1(w) such
that (T' U {¢}) C Fm$, in which casd® C U = (T NFm$) # ¢, and so,
by (2.6),U = Cnpy(U) = (Fm$E NN U), wherell 2 {h"'[DA] DU | A<
M, h € hom(Fmsg,2A)} [is finite, for o as well as bothivl and all members
of it are so]. Therefore, there is some [minim&lle U not containingp, in
which casel' C U C S, and sal" - ¢ is not true inB = (Fm$, S) under
[x:/%;)ica- NEXt, we are going to show th&t € Mod(A[UC]). For consider
any (A F ¢) € (A[UC]) and anyo € hom(Fms, §ms:) such that[A] C S
as well as the following exhaustive case[s]:

o (AF9¢)eA,
in which caseA = @, and so, ag € A C €', by the structurality of
C’', we haver (¢) € (Fm$NC'(@)) C (FmgNT) =U C 8S.

[e (AF@)€g,

in which casé (o1 [A] F o11(9)) Vxg) € €, and so is satisfied i@”.

Then,(U\{S}) C Uis finite, forl is so, in which case £ |U\{S}| €

w. Take any bijectioW : n — (U\{S}). Then, for each € n, W,, #

S, in which case, by the minimality of € U > W,,, we havelV,, Z S,

and so there is sontg € (W, \ S) # @. Puty = (Y(, ¢)) € Fm$.

Let ¢ be theX-substitution extending; 1 /o(x;); zo/¥}icw. Then,
((0[A] Y 9) F (0() Y 4)) = <((011[A] F 041(9)) Y x0) is satisfied
in C’, for this is structural. Moreover, in view of thédisjunctivity of

members oM, (o[A] Y ¢) C (Fms;N(U) = U C T, in which case
(c(p)Yop) € (FmENT)=U C S,and sar(¢) € S, fory € S.]

Thus, B € Mod(A[UC]). On the other hand, aS € U, there are some
A € M and somé: € hom(Fms,A) such thatS = h~'[D4], in which
caseD £ (imgh) forms a subalgebra ¢, and sok is a surjective strict
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homomorphism fronB ontoD £ (A[D). In this way, by (2.7)I" I- ¢ is not
true inD € S, as required [foC’ is finitary, as bothC' andC’ are so]. O

Lemma 3.8. Let C be aX-logic and M a finite class of finite:-matrices.
Suppose” is finitely-defined byM. Then,C is defined byM, that is, C is
finitary.

Proof. In that case(’ £ Cny, C C, for C" is finitary. To prove the converse
is to prove thatVi C Mod(C). For consider anyd € M, anyI’ C Fmy,
any ¢ € C(I') and anyh € hom(Fmg,A) such thath[T] € DA. Then,
a £ |A] € (poo\1(w) Nw). Take any bijectior : V,, — A to be extended to
ag € hom(Fm%, A). Then,e=! o (h]V,,) is extended to &-substitutions,

in which caser(¢) € C(o[I']), for C'is structural, whiles[I' U {¢}] C Fm§..
Further, as botl, M and all members of it are finite, we have the finite set
I 2 {(f,B)| BeM,f € hom(Fm, B)}, in which case, for eache I,
we seth; = mo(i), B; = m (i) andg; = 65:. Then, by (2.6), we have
0 £ =g == = ((Fm$ x Fm$) N, ki '[6:]), in which case, for every
i€ 1,0 C h;'[0;] = ker(vp,oh;), and say; £ (vg,0hiov, ') : (Fm$, /6) —
B;. Inthis way,e £ ([T,c; 9:) : (Fm$ /0) — ([1,c; B:) is injective, for
(kere) = ((Fmg /6)> NN, (ker g;)) is diagonal. Henceimg, /6 is finite,
for [[,.; Bi is so, and so i$o[I']/60) C (Fm§, /). For eachc € (o[I']/6),
choose anys. € (o[ Nv, '[{c}]) # @. PutA £ {¢. | c € (o[[]/0)} €
9w (o[l']). Consider any) € o[I']. Then,A > ¢,,(y) =& ¥, in which case
¥ € C(A), and soo[I'] C C(A). In this way,o(¢) € C(A) = C'(A), for
A € p,(Fm3), so, by (2.6)0(p) € Cny(A). Moreover,g[A] C g[o[l]] =
h[I'] € DA, and sch(p) = g(a(p)) € DA, as required. O

Corollary 3.9. Let M be a finite class of finit&-disjunctiveX-matrices,C
the logic of M andC” a V-disjunctive extension @f. Then,C’ is defined by
S £ (S.(M) N Mod(C)), and so is finitary.

Proof. Let C be the finitaryX-calculus of all finitaryX-rules satisfied in
C', C" the finitary sublogic ofC’ axiomatized byC andS’ £ (S.(M) N
Mod(C")) = (S«(M)NMod(C)). Clearly,C"” C Cn¢,. Conversely, by The-
orem 3.7 withA = @, Cn¢, is the extension of’ relatively axiomatized by
o+1[C] Y . On the other hand, by the structurality andlisjunctivity of C’
as well as Lemma 3.6 with' = &, (041[C] ¥ z¢) C €. Moreover,C, being
a finitary sublogic ofC’, is a sublogic ofC”, in which case”” O Cn¢,, and
so C" is defined byS’, in which caseC’ is finitely-defined byS’, and so is
defined byS’, by Lemma 3.8, in which cas€’ = C”, and soS = S/, as
required. O
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4 SUPER-CLASSICAL MATRICES VERSUS THREE-VALUED PA-
RACONSISTENT LOGICS WITH SUBCLASSICAL NEGATION

A Y-matrix A is said to be~-super-classicalprovidedA = {f,b,t}, DA =
{b,t}, ~*(i,i) = (1 —1i,1—1i), for eachi € 2, and~*b € D, in which
case it is three-valued as well as both weakhinegative and--paraconsist-
ent, whileL, = {f t} forms a subalgebra &[{~}, whereagA[{~})[Lx
is ~-classical, and se- is a subclassical negation for the logic.4f in view
of (2.7). Thus, we have argued the routine part (viz.=iiji) =(i)) of the
following preliminary marking the framework of the present paper:

Theorem 4.1. LetC be aX-logic. Then, the following are equivalent:

(i) C'isthree-valued and--paraconsistent, while- is a subclassical nega-
tion for C;

(i) C is three-valued, while any three-valuédmatrix definingC' is iso-
morphic to a~-super-classical one;

(iii) C'is defined by a--super-classicakb-matrix.

Proof. Assume (i) holds. Lef3 be any three-value®l-matrix definingC.
Define ane : {f,b,t} — B as follows. In that casd3 is ~-paraconsistent,
so there are some(b) € DB such that~Te(b) € D® and somee(f) €
(B \ D), in which case(f) # e(b). Next, by (2.9) withm = 1 andn = 0,
there is some(t) € D” such that~Pe(t) ¢ D5, in which casee(f) #
e(t) # e(b). In this way,e : {f,b,t} — B is injective, and so bijective,
for |[B| = 3. Hence, it is an isomorphism frod = (e~![B], {b,t}) onto
B. Therefore, by (2.7)¢ is defined byA. Furthermore~?b € D4, while
~%t ¢ DA, in which case~®t = f, and so, for proving thatl is ~-super-
classical, in which case (i) holds, it only remains to show th3f = t. We
do it by contradiction. For suppose®f # t, in which case, agl = {f, b, t},
we have the following two exhaustive cases:

o A =f.
This contradicts to (2.9) witim = 0 andn = 1.

o ~Af =b,
Then, as~®b € DA = {b,t}, we have the following two exhaustive
subcases:
- ~%p =b.

Then,~*~%*~%q = b € DA, for eacha € D4 = {b,t}. This
contradicts to (2.9) withn = 3 andn = 0.
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- ~b=t.
Then,~*~2~2f = f. This contradicts to (2.9) witim = 0 and
n = 3.

Thus, anyway, we come to a contradiction, as required. O

Remark4.2 {zg,~xo} [resp.,e2 £ {~'z; O ~'z1_; | i,j € 2}]isa

unitary [axiomatic binary] equality determinant for arysuperclassicatf-
implicative] X-matrix [where is a (possibly, secondary) binary connective
of X]. O

Throghout the rest of the paper, fix arysuper-classical:-matrix A. Let
C be the logic of4 andC™" the least non~-paraconsistent extension 6f
(viz., that which is relatively axiomatized by (2.5)).

Theorem 4.3. Let B be a~-super-classicab-matrix. Suppos® is a model
of C (in particular, C' is defined by3). Then,B = A.

Proof. In that casej3 is a finite (and so finitely-generated)}paraconsistent
model of C. Then, by Lemmas 2.1, 3.3 and Remark 4.2, there are some set
I, somel-tupleC constituted by submatrices gf, some subdirect produf

of C and somey € hom$ (D, B), in which caseD is both weakly~-negative

and, by (2.7), isv-paraconsistent, fa8 is so, and so there are some DP

such that~®a € DP and some < (D \ DP), in which case £ ~®b €

DP C {b,t}!, for D is weakly ~-negative. ThenD > a = (I x {b}).
Consider the following complementary cases:

e {b} forms a subalgebra &,
in which case~®b = b, and so~®c = b ¢ D®. Hence,J = {i € I |
mi(c) =t} # @. Given anya € A2, set(aglay) = ((J x {ao}) U((I\
J) x {a1})) € AL. Inthisway,D > a = (b1b), D > ¢ = (t1b) and
D 5 b= (f1b). Then, as(b} forms a subalgebra &, while J # &,
f2{({d,(d1b)) | d € A} is an embedding of{ into D.

e {b} does not form a subalgebra2f
Then, there is some € Fmy, such thaty®(b) # b, in which case
{bvﬁpm(b)v'\“m@%(b)} = A, and soD 2 {a,go@(a),fv@go@(a)} =
{I x {d} | d € A}. Therefore, ad # @, forb ¢ DP, f £
{(d,I x {d}) | d € A} is an embedding of into D.

Then,h £ (go f) € homg(A, B), in which caseh(f) = f, for (A \ DA) =
{f} = (B\ DP), and soh(t) = h(~*f) = ~Ph(f) = ~Pf = t, while,
since{b, ~*b} C D4, whereasv®t = f ¢ D?, we havet # h(b) # f, in
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which caseh(b) = b, and soh is diagonal. Henced = 5, for A = B, as
required. O

Corollary 4.4. LetY D X be a signature and’ a three-valued’-expan-
sion ofC. Then,C’ is defined by a uniquE’-expansion of4.

Proof. In that case(”’ is ~-paraconsistent, while is a subclassical nega-
tion for C’. Hence, by Theorem 4.1}’ is defined by a~-super-classical
Y’-matrix .A’, in which caseC is defined by thev-super-classical-matrix
A'1%, and so(A'|X) = A, by Theorem 4.3 completing the argument. [J

5 CLASSICAL EXTENSIONS

A (2[+1])-ary [b-relative] (classical) semi-conjunction fa¥ is any ¢ €
Fm2 " such that botkp® (£, t[, b]) = f andy™(t, f[, b]) € {f[, b]}. (Clearly,
any binary semi-conjunction féX is a ternaryb-relative one.) Likewise!l is
said tosatisfy Generation Condition (GCprovided eitherf, f) or (b, f) or
(f, b) belongs to the carrier of the subalgebr&@fgenerated by (t, b)}.

Lemma5.1 Key Lemma) Let! be a set and a consistent non--paracon-
sistent submatrix ofl!. Suppose eitheB is ~-negative or both eithe2l has
a binary semi-conjunction or botH is truth-non-empty an@l satisfies GC,
and either{f, t} forms a subalgebra of( or Ly = (A2 \ ({f,t}? U {b}?))
forms a subalgebra o#(2. Then, the following hold:

(i) if {f,t} forms a subalgebra of, then A[{f, t} is embeddable inté;

(i) if {f,t} does not form a subalgebra @f, thenL, forms a subalgebra
of 22, while (A?[L4) is embeddable inté.

Proof. We start from proving:

Claim 5.2. Let! be a set an® a consistent non--paraconsistent submatrix
of A?. Suppose: = (I x {f}) € B (thatis,b = (I x {t}) € B). Then, the
following hold:

(i) {f,t} forms a subalgebra of{;
(i) Al{f,t} is embeddable inté.

Proof. (i) By contradiction. For supposg,t} does not form a subalgebra
of 2. Then, there is some € Fm$, such thato®(f,t) = b, in which
caseB > ¢ = pP(a,b) = (I x {b}), and so{c,~%c} C D5, that
contradicts to the non--paraconsistency df, for this is consistent.
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(i) As I # o, for Bis consistent, by (i){(d, I x {d}) | d € {f,t}} is an
embedding ofd[{f, t} into B, as required. O

As Bis consistent] # @ and there is some € (B\ D) # @. Next, we
prove that there is some non-emptyC I such that(t: b) € B, where, for
everya € A2, we set(aglay) 2 ((J x {ao}) U ((I\J) x {a1})) € A. For
consider the following exhaustive cases:

e BB is ~-negative.
Then,b & ~®q € DB C {b,t}, in which caseB > ¢ = ~Fb ¢ D5,
andsoJ £ {i € I | mi(b) =t} # @. Inthisway,B > b= (t1b).

¢ 2 has a binary semi-conjunctian
LetK 2 {i €I |ma) =t}, L 2 {i€l]|ma)=fF}#g,for
a ¢ DB. Givenanya € A3, we set(aplailas) = (K x {ag})U(L x
{a1})U((I\(KUL)) x{a2})) € AL, Inthisway,B 3 a = (t1f1b).
Consider the following exhaustive subcases:

- ~% =b.
Then,B 3 b £ ~%a = (fitb). Letz = p*(b,b) € A. Consider
the following exhaustive subsubcases:
* x =b.
Then,B 5 ¢ £ ¢®(a,b) = (f1f1b). PutJ £ (KUL) # @,
for L # @. In this way,(t 1 b) = ~®c € B.
* x=f.
Then,B 3 ¢ £ p®(a,b) = (f1fif). PutJ £ I # 2. In this
way, (t1b) = ~%c € B.
* xr =1
Then,B > ¢ £ ¢®(a,b) = (f1fit), and saB > ~Pc = (t2
tf). PutJ £ I # @. Then,(t1b) = ~Tp®(c,~%¢c) € B.
- ~p=t.
Then,B 3 b2 ~%a = (f1tit),and soB > ~Fb = (t1f 1 f).
PutJ £ I # @. Then,(t1b) = ~®p®(b,~®b) € B.

e Jis truth-non-empty.
Take anyd € DB C (D#)!. LetJ £ {i € I | mi(d) = t}. Then, as
B is not~-paraconsistent, we have# &, for, otherwise, (2.5) would
not be true inB under(zy/d, x1 /a]. In this way,(t1b) = d € B.

Further, we prove:
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Claim 5.3. Suppose~?b = t. Then,L, does not form a subalgebra @f>
and, providing botlY, B, J and(t 1 b) € B are as above(l x {t}) € B.

Proof. In that case, first,wQ‘2<b,f> = (t,t) & L4, and sal4 > (b, f) does not
form a subalgebra ¢fi%. Finally, consider the following exhaustive cases:

e Bis ~-negative.
Then,(t1b) € DP, in which casdt:f) = ~®~%(t1b) € D, and so
J = 1. Inthisway,(I x {t}) = (t1b) € B, as required.

e 2 has a binary semi-conjunctian
Moreover,h £ (f1t) = ~®(t1b) € B,and soB > ~%b = (t1f). In
this way, (I x {t}) = ~Tp®(b,~%b) € B, as required.

o 2 satisfies GC.
Then, there is somg € Fm such thaty®”((t, b)) € {(b,f), (f,f
(f,b)}, in which case~®"n*"((t,b)) = (t,t), and so(I x {t})
~Bn®((t1b)) € B, as required.

~

)

Ol

Finally, consider the respective complementary cases:

(i) {f,t} forms a subalgebra é&x.
Consider the following exhaustive subcases:

o ~b=t.
Then, by Claims 5.2(ii) and 5.3 [{f, t} is embeddable inté.
o ~%b=h,

in which casé) £ (t1b) € B > ¢ £ ~®b = (f1b). Consider the
following complementary subsubcases:

— {b} forms a subalgebra é&f.
Then, as] # @, {{e, (el b)) | e € {f,t}} is an embedding of
Al{f, t} into B.
— {b} does not form a subalgebra #f
Then, there is som¢ € Fmy, such that)®(b) € {f,t}, in
which casep?(f) € {f,t} > ¢*(t), for {f,t} forms a subal-
gebra of, and so, a${ f,t}| = 2, we have just the following
exhaustive subsubsubcases:
x P (b) = ¥¥(f),
in which case, for some € {f,t}, (I x {z}) = (z12) =
Y®(c) € B, and soA[{f,t} is embeddable intd, in
view of Claim 5.2(ii).

17



* P (b) = ¥ (1),
in which case, for some € {f,t}, (I x {z}) = (z12) =
»B(b) € B, and soA[{f,t} is embeddable intd, in
view of Claim 5.2(ii).

« PU(t) = (),
in which case, for some € {f,t}, (I x {z}) = (z1z) =
B2 (c)) € B, and saAl{f,t} is embeddable inté,
in view of Claim 5.2(ii).

(i) {f,t} does not form a subalgebraf

Then, ~%b = b, in view of Claims 5.2(i) and 5.3. Thereforé, £
(t1b) € B> c 2 ~%bh = (f1b). And what is more, there is some
¢ € Fmi such thatp?(f,t) = b, in which casep 2 p(zg, ~zg) €
Fmsy, and¢? (f) = b, and sap®(b) # b, for, otherwise, we would have
B 3> ¢®(c) = (blb), and so we would get® (b1 b) = (bib) € D5,
contrary to the non~-paraconsistency and consistencysofn this way,

f & (bif) € {¢®(c),~P¢P(c)} C B, inwhich casey = ~® f =
(b1t) € DB, and so, by the nor-paraconsistency and consistency
of B, we getf = ~Pg ¢ DB. Hence,J # I. Let us prove, by
contradiction, thaf, forms a subalgebra &i2. For supposd., does
not form a subalgebra &2. Then,B is ~-negative. Moreover, there is
some¢ € Fmd, such that™” ((b, f), (b, t), (f,b), (t, b)) € (A2\ Ly), in
whichcaseB 3 V' = ¢ (f,g,¢c,b) = (2ly), where(z, y) € (A%\L,) =
({f,t}? U {b}?), and so either®V = b’ € DB, if x = b = y, or,
otherwise, in which case,y € {f,t}, and sox # y, by Claim 5.2(i),
neitherd’ nor ~®y = (y1z)isin DB, for J # @ # (I\ J). This
contradicts to the--negativity of 3. Thus,L, forms a subalgebra &f2.
Hence, as] # @ # (I'\ J), {{{w,2), (w1z)) | (w,z) € Ly} is an
embedding ofd?[ L, into B. O

Corollary 5.4. LetI be a setj3 a submatrix ofA!, D a ~-classical:-matrix
andh € hom$ (B, D). Then, the following hold:

(i) if {f,t} forms a subalgebra o, thenA[{f, t} is isomorphic tdD;

(i) if {f,t} does not form a subalgebra &, then L, forms a subalge-
bra of 22, while 64’ 1%+ € Con(22[Ly), whereas(A2[ L) /64" 114 is
isomorphic taD.

Proof. In that casep3 is both~-negative and consistent, f@r is so, and so
is non~-paraconsistent. Consider the respective complementary cases:
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(i) {f,t} forms a subalgebra &f.
Then, by Lemma 5.1(i), there is somes homg(A[{ f,t}, B), in which
case(h o g) € hom3(A[{f,t},D), for any ~-classicals-matrix has
no proper submatrix, and so Example 3.2 and Lemma 3.3 complete the
argument.

(ii) {f,t} does not form a subalgebraf
Then, by Lemma 5.1(ii)L, forms a subalgebra ¢fi2, while there is
an embedding of £ £ (A2[L,) into B, in which casey £ (hoe) €
homg (€, D), for any~-classicab:-matrix has no proper submatrix, and
so (kerg) € Con(€). On the other handkerg) = 0 = 6%, for D
is both false- and truth-singular, so, by the Homomorphism Theorem,
go z/gl is an isomorphism fror& /6 ontoD, as required. O

Theorem 5.5. C'is ~-subclassical iff either of the following hold:

(i) {f,t} forms a subalgebra o\, in which case4[{f,t} is isomorphic to
any ~-classical model of”', and so defines a unique-classical exten-
sion of C;

(i) L, forms a subalgebra of(2, while 64°1Z+ € Con(22[L,), in which
case(A? [L4)/9*“2 'Z4 js isomorphic to any--classical model of”, and
so defines a unique-classical extension of’.

Proof. The “if” part is by (2.7) and the fact that the submatrices4st ap-
pearing in (i[i]), respectively, are-classical.

Conversely, consider any-classical modeD of C, in which case it is
finite, and so finitely-generated. Hence, by Lemmas 2.1, 3.3 and Example
3.2, there are some sétsomeC € S(A)!, some subdirect produé of it,
in which case this is a submatrix gf’, and somé: € hom$(B, D). Then,

(2.7) and Corollary 5.4 complete the argument. O

On the other hand, the item (i) of Theorem 5.5 does not exhaust-all
subclassical three-valued-paraconsisterit-logics, as it ensues from:

A

Example 5.6. Leti € 2, w £ (i,i), ¥ £ {&,~} with binaryw, B the ~-
classicab:-matrix with B £ 2, DB £ {1} and(j w® k) = i, for all j, k € 2,
~%b £ b and

(aw?b) 2 w Ifa:t?,
b otherwise

forall a,b € A. Then, we have:

((bya) & (b,b)) = (w,b),
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((6.b) ™" (b)) = (b,w),
((ba) & (b,b) = ({w,b),
((a.b) ™ (bb) = (b,w),
for all a,b € {f,t}. Therefore,L, forms a subalgebra d#? andh =
XA 154 € hom3 (A2 Ly, B), s06A° 14 = (ker h) € Con(22[Ly), in which
caseC is ~-subclassical, by Theorem 5.5. Howev@rg® t) = b, so{f,t}
does not form a subalgebra 2if O

g o &

Taking Theorem 5.5 into account, in ca8eas ~-subclassical, the unique
~-classical extension af is denoted byCT¢.

6 PARACONSIST EXTENSIONS

First, asA has no proper-paraconsistent submatrix, by Theorems 3.7 and
4.1, we immediately have:

Corollary 6.1. Any~-paraconsistent three-valuedlogic with subclassical
negation~ is axiomatically maximally so.

Lemma 6.2. Let B be a finitely-generated--paraconsistent model of’.
Suppose eithe?l has a ternaryb-relative semi-conjunction ofb} does not
form a subalgebra oR(. Then,4 is embeddable into a strict surjective ho-
momorphic image oB.

Proof. Then, by Lemma 2.1 witiv = {A}, there are some sét somel-

tupleC constituted by submatrices gf, some subdirect produét of C, some
strict surjective homomorphic imagéof B and somey € homg(D,f,’), in

which case, by (2.7)P is ~-paraconsistent, and so there are same DP

such thatv®a € DP and somé € (D \ DP). Then,D > a = (I x {b}).

Consider the following complementary cases:

e {b} forms a subalgebra &,
in which case~*b = b. Then,2 has a ternanp-relative semi-con-
junctionp € Fm,. Putc 2 ¢®(b,~®b,a) € D,d 2 ~®c € D,
JE{iel|mb) =tyandK = {i € I | m(b) = f} # o, for
b ¢ DP. Given anya € A3, set(agla; las) = ((J x {ao}) U (K x
{a1}) U ((I'\ (JUK)) x {az})) € AL. Then,a = (b1 b b) and
b = (t!fb). Consider the following exhaustive subcases:

- @m(tafa b) = f,
in which case we have= (fif1b) andd = (tt!b), and so, since
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K # @, while {b} forms a subalgebra &, f = {(e, (elelb)) |
e € A} is an embedding ofl into D.

- ¢%(t,f,b) = b,
in which case we have= (b:f:b) andd = (b:tib), and so, since
K # @, while {b} forms a subalgebra &, f = {(e, (ble b)) |
e € A} is an embedding ofl into D.

e {b} does not form a subalgebra2f
Then, there is some € Fmy, such thaty®(b) # b, in which case
{b, % (b),~*%(b)} = A, and soD 2 {a,¢®(a),~*¢°(a)}
{I x {e} | e € A}. Therefore, ad # @, forb ¢ DP, f
{{e,I x {e}) | e € A} is an embedding ao#l into D.

=]

Then,(go f) € homg(A, £) is injective, by Lemma 3.3 and Remark 4.2.]

Theorem 6.3. The following are equivalent [provided is ~-subclassical]:
(i) C has no proper--paraconsistent{--subclassical] extension;

(i) C has no proper-paraconsistent nor--subclassical extension;

(i) either has a ternanpb-relative semi-conjunction ofb} does not form
a subalgebra of (in particular, ~*b # b, that is,~~xzq & C(x0));

(iv) Lz = {(b,b), (f, 1), (t,f)} does not form a subalgebra &f;
(v) A has no truth-singular--paraconsistent subdirect square;
(vi) .A? has no truth-singular--paraconsistent submatrix;

(vii) C has no truth-singular--paraconsistent model.

In particular, C' has a~-paraconsistent proper extension iff it has a [non-
Jnon-~-subclassical one.

Proof. First, assume (iii) holds. Consider aryparaconsistent extensi@if
of C, in which caser; ¢ T = C'({zo,~z0}) 2 {z0,~x0}, While, by the
structurality ofC’, (Fms:, T) is a model ofC”’ (in particular, ofC), and so
is its finitely-generated--paraconsistent submatrix £ (Fm%, T N Fm%),
in view of (2.7). Then, by Lemma 6.2 and (2.7,is a model ofC’, and so
C' = C. Thus, (i) and (ii) hold.

Next, (V)=(iv) is by the fact~*b € {b,t}, (L3 N {b,t}?) = {(b,b)} #
Lz andmop41y[L3] = A, while (v) is a particular case of (vi), whereas ()
(vi) is by (2.7).
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Now, let B € Mod(C') be both~-paraconsistent and truth-singular, in
which case the ruleg - ~z is true inB, and so is its logical consequence
{0, x1,~x1} F ~x0, NOt being true ind under(zq /t, z1/b] [but true in any
~-classical model’ of C, for C’ is ~-negative]. Thus, the logic dfB[,C’]}
is a proper~-paraconsistent}-subclassical] extension @, so (i}=(vii).
And what is morexg - ~xq, being true inB, is true in nethetd nor any
~-classicalX-matrix C", in view of (2.9) withn = 0 andm = 1. Thus, the
logic of B is a proper~-paraconsistent nor-subclassical extension @f,
so (ii)=-(vii) holds.

Finally, assume has no ternarnb-relative semi-conjunction andlb}
forms a subalgebra ¢fl. In that case~%b = b. Let B be the subalge-
bra of A2 generated byLs. If (f,f) was in B, then there would be some
¢ € Fm3, such thatp®(f,t,b) = f = ©%(t,f,b), in which case it would
be a ternanb-relative semi-conjunction fol. Likewise, if either(b, f) or
(f,b) was inB, then there would be somee Fm3, such thato®(f,t,b) = f
and ¢®(t,f,b) = b, in which case it would be a ternatyrelative semi-
conjunction for2l. Therefore, as-®t = f and~%b = b, we conclude that
({(f,b), (t,b), (b, t}, (b, f), {f,f), (t,t)} N B) = @. Thus,B = L3 forms a
subalgebra of(2. In this way, (iv)=(iii) holds. O

Theorem 6.3(¥=(iii[iv]) is especially useful for [effective dis]proving the
maximal~-paraconsistency af [cf. Example 9.10].

7 NON-SUBCLASSICAL CONSISTENT EXTENSIONS

In caseC' is not~-subclassical, it, being [inferentially] consistent, fdris
[both] so [and truth-non-empty], is clearly a[n inferentially] consistent non-
~-subclassical extension of itself. Here, we explore the opposite case.

Lemma 7.1. Let B be a~-classicalX-matrix andC’ the logic of B. Then,
the following are equivalent:

(i) C’ has atheorem;

(i) there is some € Fm3, such thaip (g, ~z0) is a theorem of’;
(i) B?\ Ap does not form a subalgebra 832;
(iv) B has no truth-empty model.

Proof. First, (i) is a particular case of (ii). Next, €}(iv) is immediate.

22



Further, leta/b be the unique element ¢f3 \ D®)/D?5, respectively,
in which cases # b, B = {a,b} and~%(a/b) = (b/a). Then, in case
D2 {{a,b), (b,a)} = (B2\ Ap)  (B2\ {(b,5)}) = (B2 \ D) forms
subalgebra o#32, by (2.7),D £ (B2 D) is a truth-empty model af”’. Thus,
(iv)=(iii) holds.

Finally, assume (iii) holds, in which case there is sofne& Fm% such
thaty® (a,b) = (alb) = ¥® (b, a), and so, respectively, £ ~'1%) ¢ Fm3,
while ¢(zq, ~x0) is a theorem of’. Thus, (ii) holds, as required. O

Theorem 7.2. Suppos€&' is ~-subclassical (that isL.,, ) forms a subalge-
bra of 2[!; cf. Theorem 5.5). Then, the following are equivalent:

(i) C has a consistent nor-subclassical (viz, not being a sublogic of
C™C; cf. Theorem 5.5) extension;

(ii) 20 has no binary semi-conjunction (in particular, has a proper~-pa-
raconsistent ~-subclassical extension; cf. Theorem 6.3);

("I) Mo, £ {<fat>’ <t7f>} [resp.,Mg £ {<{<Z7 b>7 <1 - 7:7 <]7.7>>}7
{{k,b), (1 —k,(1—34,1—3501}) | 4,4,k € 2}] forms a subalgebra of
(2[[2] fL2[+2])2;

(iv) CT€ has a truth-empty model;
(v) CT€ has no theorem;

(vi) C has a truth-empty model,
(vii) C has no theorem.

In particular, C' has a truth-empty model/theoremdf’© does so/ ifiC’ has
no truth-empty model.

Proof. First, assumé&l has a binary semi-conjunction. Consider any consis-
tent extensiorC” of C. In caseC’ is ~-paraconsistent, by Theorem 6.3,
C’ = C C CPC. Now, assume’’ is non~-paraconsistent. Then, as
C' is consistent, we have, ¢ C'(), while, by the structurality of””,
(Fms, C’'()) is a model ofC’ (in particular, ofC’), and so is its consistent
finitely-generated submatri® 2 (Fmy,, Fmy NC’(@)), in view of (2.7).
Hence, by Lemma 2.1, there are somelsebmeC € S..(A)! and some sub-
direct productD of it such thatB3 is a strict surjective homomorphic counter-
image of a strict surjective homomorphic imageZof in which caseD is

a consistent model of”, in view of (2.7), and so, a nor-paraconsistent
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submatrix of AZ. Then, by (2.7), Lemma 5.1 and Theorem 5.5;-matrix
definingCTC is embeddable int®, in which case>’ C CT¢, and so (i} (ii)
holds.

Next, assum&™“ has a theorem. Then, by Lemma 7.3£ii), there is
some¢ € Fm% such that) £ ¢(zg, ~x0) is a theorem of2FC. Consider
the following complementary cases:

e {b,t} forms a subalgebra &,
in which case, by Theorem 5.5(1);F“ is defined byA|{f,t}, and so
~¢ is a binary semi-conjunction fcx.

e {b,t} does not form a subalgebraf
in which case, by (2.7) and Theorem 5[5, forms a subalgebra &2,
while CFC is defined byB £ (A2[L,), and so~%b = b, in view
of Claim 5.3, while, agb,f/t) € Ly, a 2 ¢* ((b,f/t), (b, t/f)) =
Y ((b,f/t)) € DB = {(b,t), (t,b)}. Consider the following com-
plementary subcases:

- ¢*(b) =b,
in which case)?(f/t) = t, and so~¢ is a binary semi-conjunc-
tion for L.

— % (b) #b,
in which case)®(b) = t, while )*(f/t) = b, and so~v(¢) is a
binary semi-conjunction fa2l.

Thus, anyway, (ii) does not hold, and soijv) holds.

Further, (iiilx=(iv)<(v) are by Lemma 7.1(&>(iii) <(iv) and Theorem
5.5, while (iv)=-(vi) is by the inclusionC C C?€, whereas (v (vii) is
immediate.

Finally, assume (vii) holds. L&f be a truth-empty model af', in which
case the logic oB is an extension of’ without theorems, and so a consistent
one. Moreover, the ruley F z; is true in3 but is not so in any both consis-
tent and truth-non-empty (in particulas-[super-]classical}-matrix, so (i)
holds. O

The case, wheR = {~}, inwhich casd., forms a subalgebra @&f, while
M, forms a subalgebra ¢fi?, and so, by Theorems 5.5 and 72, being
~-subclassical, has a consistent nersubclassical extension, demonstrates
that the item (i) of Theorem 7.2 may hold. On the other hand, the consistent
instance invoked in proving it is inferentially inconsistent. Below, we prove
the following “inferential” analogue of Theorem 7.2:
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Theorem 7.3. Suppose&” is ~-subclassical. Then, any inferentially consis-
tent extension of” is a sublogic ofCTC iff both  satisfies GC and.; does
not form a subalgebra of(2.

Proof. First, assumel does not satisfy GC. LeB be the subalgebra &f?
generated by(t, b)}, in which caseB £ (A?]B) is a model ofC, in view of
(2.7). Moreover(t, b) € DB, in which case casB is truth-non-empty, while
(f, ~%b) = ~¥*(t b) € (B\ DP), and saB is consistent. And what is more,
D £ (B\ DB) C {{f,t), (,f)}, in which case, for each ¢ D, ~Tb ¢ D,
and so the rule-x(  xg is true inB. On the other hand, this rule is true in
any ~-classical>-matrix C’, in view of (2.9) withn = 1 andm = 0. Thus,
the logic of B is an inferentially consistent nor-subclassical extension of
C.

Likewise, by Theorem 6.3, in cade; forms a subalgebra gii2, C has
a~-paraconsistent (in particular, inferentially consistent) resubclassical
extension.

Conversely, assume bd?hsatisfies GC and 3 does not form a subalgebra
of A2. Consider any inferentially consistent extensi@hof C. In caseC’ =
C,we haveC’ = C C CTC. Now, assum&”’ # C, in which caseC’ is non-
~-paraconsistent, by Theorem 6.3. Then(C4ss inferentially consistent, we
havex; ¢ C’'(xg) 2 xo, while, by the structurality o€’, (Fms, C'(z0)) is
a model ofC” (in particular, ofC), and so is its consistent truth-non-empty
finitely-generated submatri® 2 (Fm%, Fm% NC’(z0)), in view of (2.7).
Hence, by Lemma 2.1, there are some EetomeC € S.(A)! and some
subdirect producD of it such that3 is a strict surjective homomorphic image
of a strict surjective homomorphic counter-imageffin which caseD is a
consistent truth-non-empty model 6f, in view of (2.7), and so, a nor-
paraconsistent submatrix of. Then, by (2.7), Lemma 5.1 and Theorem
5.5, aX-matrix definingC*° is embeddable int®, in which caseC’ C
cre. O

8 WEAKLY CONJUNCTIVE THREE-VALUED
PARACONSISTENT LOGICS
WITH SUBCLASSICAL NEGATION

Remark8.1 Suppose eithedl is weakly A-conjunctive or both{f, t} forms
a subalgebra oft and A [{f,t} is weaklyA-conjunctive. Then(zo A x1) is a
binary semi-conjunction fou(. O

By Theorems 4.1, 6.3 and Remark 8.1, we immediately get the following
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corollary, subsuming the reference [Pyn 95b] of [7]:

Corollary 8.2. Any three-valued--paraconsistent weakly-conjunctiveX:-
logic with subclassical negatior is maximally~-paraconsistent.

The principal advance of the present study with regard to the reference
[Pyn 95b] of [7] consists in proving inheritance of the maximal paracon-
sistency bythree-valuedexpansions of [weakly] conjunctive paraconsistent
three-valued logics with subclassical negation, because both paraconsistency,
subclassical negation and [weak] conjunction are inherited by expansions,
while the property of being subclassical is not, generally speaking, so. In par-
ticular, Corollary 8.2 implies the maximal paraconsistency of arbitrary three-
valued expansions (cf. Corollary 4.4 in this connection)Ld? (including
those ofLA), HZ and P! equally covered by this section, in general.

8.1 Subclassical weakly conjunctive three-valued paraconsistent
logics
Remark8.3. If A isweaklyA-conjunctive, then we havgA?b) = f = (bA?
f), in which case we ge(f, b) A (b,f)) = (f,f) & Ly D {{f,b), (b,f)},
and soL, does not form a subalgebra 4¥. O
By Theorem 5.5 and Remark 8.3, we immediately have:

Corollary 8.4. [Providing C' is weaklyA-conjunctive (viz.,A is so)] C is
~-subclassical if[f]{f, t} forms a subalgebra of(, in which caseA[{f,t}
is isomorphic to any~-classical model of”, and so defines a unique-
classical extension af, that is,C*C.

Likewise, by Theorem 7.2 and Remark 8.1, we immediately have:

Corollary 8.5. LetC’ be a consistent extension 6f. Suppos€f,t} forms

a subalgebra ofd (in which caseC' is (-subclassical; cf. Theorem 5.5) and
AT{f,t} is weaklyA-conjunctive (in particular,A [viz., C]is so). Then(C
has a/no theorem/truth-empty model, wiGIE® is an extension of”.

The last paragraph of Section 7 shows that the condition of the weak
conjunctivity cannot be omitted in the formulation of Corollary 8.5.

9 DISJUNCTIVE THREE-VALUED PARACONSISTENT LOGICS
WITH SUBCLASSICAL NEGATION

Lemma 9.1. Let B be a false-singular (in particular~-[super-]classical)
Y-matrix andC’ the logic of3. Then, the following are equivalent:
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(i) C'is Y-disjunctive;
(i) Bis V-disjunctive;
(iii) (2.2), (2.3)and(2.4)are satisfied irC” (viz., are true inB).

Proof. First, (ii)=(i)=(iii) are immediate. Finally, assume (iii) holds. Con-
sider anya, b € B. In case(a/b) € D5, by (2.2)/(2.3), we havéa VP b) €
DB. Now, assumé{a, b} N DB) = @. Then,D® # a = b. Hence, by (2.4),
we getDB # (a Y® a) = (a Y® b), so (i) holds, as required. O

9.1 Disjunctive extensions
By CMF we denote the extension 6f relatively axiomatized by th#odus
Ponengule for thematerialimplication~xq Y x;:

{zg,~xo Y21} F 27. (9.1)

Likewise, byC® we denote the extension 6f relatively axiomatized by the
Resolutiorrule:
{.%‘0!131,“‘31‘0!1‘1} |—.131. (92)

Clearly, CN? ¢ CMP C CR, by (2.2), whenevef is V-disjunctive. Gener-
ally speaking, the converse inclusions need not hold, as we show below.

Remark9.2 Given anyVY-disjunctive 3-logic C’, by (2.4)(2.3), applying
[1'1/1'0,1'2/1'1,1'0/1'1”[1'1/1'0,(L’o/l’l] to (0’+1(25)! mo)‘(QZ), any exten-
sion of C’ satisfies (9.2Jo1(2.5) VY z(), whenever it satisfietr(2.5) v
70)](9.2). Hence,C® is the extension ofC relatively axiomatized by
O'+1(2.5)¥ Zo- L]

Theorem 9.3. LetC’ be an extension d@f'. Supposé& is V-disjunctive (viz.,
A is so; cf. Lemma 9.1). Then, the following are equivalent:

(i) C'is~-classical;
(ii) C’is proper, consistent and-disjunctive;
(i) {f,t} forms a subalgebra ol andC" is defined byA[{f,t};
(iv) Cis ~-subclassical and’ = CT¢;
(v) ¢’ = C®is consistent;

(vi) C’is consistent, nor--paraconsistent and-disjunctive.
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In particular, C® is consistent if is ~-subclassical, in which cas@® =
C™C€. Moreover,C has no consistent nor-classical (in particular,~-para-
consistent) propeY-disjunctive [in particular, axiomatic] extension.

Proof. First, (i/ii) is a particular case of (iv/vi) respectively. Next=£iii) is
by Lemma 9.1. Further, (iig>(iv) is by Theorem 5.5.

Now, assume (ii) holds. Then, by Corollary 3@, is defined by some
S C S.(A), inwhich cased ¢ S # @. Consider any3 € S. Then,f € B,
for Bis consistent, in which case= ~*f € B,and so, a® # A, B = {f,t}
forms a subalgebra &, while S = { A[{f,t}}. Thus, (iii) holds.

Furthermore, in case (iii) holds, a§is ~-paraconsistent4[{f,t} is the
only non-~-paraconsistent member 8f (4), and so (v) is by Theorem 3.7
and Remark 9.2.

Finally, (v)=(vi) is by Theorem 3.7 and Remark 9.2. O

Corollary 9.4. Suppose is V-disjunctive (viz.,A is so; cf. Lemma 9.1).
Then, the following are equivalent:

(i) CNF is an axiomatic extension ¢f;
(i) CNPis V-disjunctive;
(i) CNP isinconsistent;
(iv) CNP = COR,

Proof. First, (iij)=(iv) is by the inclusionC™* C CR. Next, (iii)=(i)=(ii)
are immediate. Further, (i)} (ii) is by Theorem 3.7 and Remark 9.2. Finally,
(i) =(iii) is proved by contradiction. For suppog&'F is bothV-disjunctive
and consistent. Then, by Theorem 9.3&xjii,v), {f,t} forms a subalgebra
of 2, in which caseB £ (A x (A{f,t})) € Mod(C) (cf. (2.7)) is not
~-paraconsistent, fad [ {f, t} is ~-negative, and s8 € Mod(CNY), while
CNP = CR whereas (9.2) is not true i under[zo/(b,t), z1 /(f,t)]. O

9.2 Subclassical disjunctive three-valued paraconsistent logics
First of all, by Theorems 5.5 and 9.3, we immediately have the following
“disjunctive” analogue of Corollary 8.4:

Corollary 9.5. [Providing C' is Y-disjunctive (viz.,A is so; cf. Lemma
9.1)] C'is ~-subclassical if[f]{f, t} forms a subalgebra o, in which case
ATl{f,t} isisomorphic to any--classical model of’, and so defines a unique
~-classical extension af, that is,CTC.
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Corollary 9.6. Supposed is J-implicative (and so i¥ -disjunctive), where
Jis a (possibly, secondary) binary connectivetgfandC' is ~-subclassical.
Then,CT€ is a unique proper consistent axiomatic extensiorCo&nd is

relatively axiomatized by thEx Contradictione Quodlibetxiom:

~xg 1 (IL‘O | xl). (93)

Proof. In that case, by Corollary 9.5f,t} forms a subalgebra &, while
B £ (A[{f,t}) definesCPC. On the other handj3 is the only consis-
tent proper submatrix ofA. Moreover, it, being both--negative andz-
implicative, is a model of (9.3) not being true #under[z, /b, ;1 /f], for it
is J-implicative. Then, Theorems 3.7 and 9.3 complete the argument]

Next, combining Remark 2.3 with Corollaries 9.5 and 8.5, we get the fol-
lowing “disjunctive” analogue of the latter:

Corollary 9.7. Suppose”' is Y-disjunctive (viz.,A is so; cf. Lemma 9.1)
and ~-subclassical. Ther(;’ has a/no theorem/truth-empty model, while any
consistent extension 6f is a sublogic olCTC.

The last paragraph of Section 7 shows that the condition of tfisjunc-
tivity cannot be omitted in the formulation of Corollary 9.7.

On the other hand, Corollary 9.5 equally ensues from Lemma 9.1 and the
following interesting (in its own right) result:

Theorem 9.8. C has a [Vdisjunctive]~-classical extension (viz., model [cf.
Lemma 9.1]) if[f] {f,t} forms a subalgebra ofl, in which caseAl{f,t}

is isomorphic to any~-classical model of”, and so defines a unique-
classical extension af'.

Proof. The “if"+“in which case” part is by Theorem 5.5. [Conversely, let
D be aV-disjunctive ~-classical model of”. We prove that{f,t} forms

a subalgebra ofl by contradiction. For supposgf,t} does not form a
subalgebra ofl. Then, by Theorem 5.5[, forms a subalgebra o2,

B £ (A%]L,) beingY-disjunctive, forD is so. Therefore, aé,t) € D5,
we have{(b,t) YV® (f,b), (f,b) YV® (b,t)} C D5, in which case we get
{b VY% f f VA b} C DA, and so we eventually gétf,b) V> (b,f)) € DB,
This contradicts to the fact théf(f, b), (b,f)} N D?) = &, as required.] O

Itis remarkable that the-disjunctivity of C is not required in the formula-
tion of Theorem 9.8, making it the right algebraic criterior(8$ being “gen-
uinely subclassical” in the sense of having@nuinely(viz., functionally-
complete) classical extension.
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By Theorems 4.1, 6.3, Lemma 9.1, Corollary 9.5 and Remarks 8.1 and
2.3, we eventually obtain the following one mangiversalmaximality result,
being essentially beyond the scopes of the reference [Pyn 95b] of [7] and thus
becoming a one more substantial advance of the present study with regard to
that one:

Corollary 9.9. Any three-valued’-disjunctive~-subclassical-paracon-
sistentX-logic is maximally~-paraconsistent.

The following counterexample shows that the condition of beingub-
classical in the formulation of Corollary 9.9 is essential:

Example 9.10. Let & = {~[, ]} [wherew is binary], while~*b = b
[whereas:
ifa=0b
(awp)=q" "0
b otherwise

forall a,b € A, in which case (2.2), (2.3) and (2.4) are truednand so, by
Lemma 9.1 is w-disjunctive, in which case this has no propedisjunctive
~-paraconsistent extension; cf. Theorem 9.3]. Bytforms a subalgebra of
A2, so, by Theorem 6.3} is not maximally~-paraconsistent [and so is not
~-subclassical, by Corollary 9.9]. O

10 THREE-VALUED PARACONSISTENT LOGICS WITH
SUBCLASSICAL NEGATION AND LATTICE CONJUNCTION
AND DISJUNCTION

A Y-algebra® is said to be gdistributive] (A, V)-lattice, provided it satisfies
[distributive] lattice identities fon andY, that is,(B, A%, V®) is a [distribu-
tive] lattice (in the standard algebraic sense; cf. [5]), whose partial ordering
is denoted by<™.

Throughout this section, it is supposed that:

e 2isa(n,Y)-lattice, in which caséA, <?) is a chain poset faid| = 3,
and sal is a distributive(A, V)-lattice;

e f is the least element of the poset involved or, equivalendlyis A-
conjunctive¥-disjunctive, that isC' is so/, in view of Lemma 9.1, and
so C is maximally~-paraconsistent (cf. Corollary 8.2), while itis
subclassical iff{f, t} forms a subalgebra &1, in which caseCTC is
defined byA[{f,t} (cf. Corollary 8.4).
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Remark10.1 Since A is V-disjunctive, whilef is the least element of the
poset(A, <*), we have(~(zo ¥ 1) Y z1) € C(~zo ¥ z1). Therefore,
any extension of” satisfies (9.2), whenever it satisfies (9.1). In particular,
CMP = COR, O

Lemma 10.2. Let I be a finite setC € S.(A)! and B a consistent non--
paraconsistent subdirect product 6f Then,{f,t} forms a subalgebra o
andhom(B, A[{f,t}) # @.

Proof. Then, ag A4, <*) is a chain, we have(< / >)%t. Moreover,~®b €
DA = {b,t}. Thereforeb(< / >)*~*b. Let us prove, by contradiction,
that there is someé € I such thato ¢ C;. For suppose, for eache I,
b € C;. By induction on the cardinality on any C I, let us prove that there
is somea € (B N {f/t,b}!) including J x {b}. First, in case/ = @, by
Lemma 3.1, we have = (I x {f}) € B,andso(J x {b}) = @ Ca £
(d/~®d) = (I x {f/t}) € (BN {f/t,b}!). Now, assume/ # &, in which
case there is someec J C I, and soK = (J \ {j}) C I, while |[K| < |J|.
Hence, by induction hypothesis, there is same (B N {f/t,b}!) including
K x {b}. Moreover, agi € I, we haveb € C; = =;[B], in which case
there is someé € B such thatr;(b) = b, and soc £ (b(A/V)E~®b) € B,
while, for everyi € I, m;(c) = b, if m;(b) = b, andr;(c) = (f/t), otherwise,
in which casec € {f/t,b}!, while 7;(c) = b, and so, as/ = (K U {j}),
we eventually getJ x {b}) C (a Y® ¢) € (B n {f/t,b}!), as required.
In particular, when/ = I, we havea = (I x {b}) € B, in which case we
get{a,~%a} C DB, and soB, being consistent, is-paraconsistent. This
contradiction shows that there is sorhez I such thatb ¢ C;, in which
caseh = (m;|B) € hom(B,C;), while C; forms a subalgebra &, whereas
C; = (A[C;). Finally, asC; is consistent, in which case € C;, and so
t = ~%f € C;, we eventually conclude that; = {f,t}, forb ¢ C;, as
required. O

Theorem 10.3.CNY is consistent ife” is ~-subclassical, in which cas, t}
forms a subalgebra ot and CN? is defined byd x (A[{f,t}).

Proof. First, assumé&' is ~-subclassical.

Then, any~-classical extension af' is a both consistent and nen-pa-
raconsistent extension ¢f, and so a consistent extension@¥*’, in which
case this is consistent too.

Moreover, by Corollary 8.4{f, t} forms a subalgebra &, in which case
we have theZ-matrix B = (A x (A[{f,t})). Consider any finite set, any
C € S.(A)! and any subdirect produ® € Mod(CNY) of C, in which
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caseD is not~-paraconsistent. Put = hom(D,B). Consider anyu €
(D\DP), in which caseéD is consistent, and so, by Lemma 10.2, there is some
g € hom(D, A[{f,t}) # @. Moreover, there is somec I, in which case
f = (m1D) € hom(D, A), such thatf(a) ¢ D*. Then,h = (f x g) € J
andh(a) ¢ DB. In this way, ([[As) € homg(D,B”). Thus, by (2.7)
and Theorem 2.2;NF s finitely-defined by the six-valuel, and so, being
finitary, for both the three-value@ and (2.5) are so, is defined Iy
Conversely, assum@™? is consistent, in which case ¢ T = CNF (@),
while, by the structurality oON, (m¥, T) is a model of CNP (in par-
ticular, of C), and so is its consistent finitely-generated submafix=
(§my, T N Fmy,), in view of (2.7). Hence, by Lemma 2.1, there are some
finite set/, someC € S, (A)?, some subdirect produ@ of it, being a strict
surjective homomorphic counter-image of a strict surjective homomorphic
image of B, in which case, by (2.7)D is a consistent model af'"', so
it is not ~-paraconsistent. Thus, by Lemma 10.2 and Corollary 8.4s
~-subclassical, as required. O

Lemma 10.4. Suppos€f, t} forms a subalgebra of( (i.e., C' is ~-subclas-
sical; cf. Corollary 8.4). Then, ((B>(ii) and) (ii)=-(iii) =(iv), where:

(i) Aisregular;
(i) Ks1) £ {(f.f),(b,f),((b,t),)(t,t)} forms a subalgebra of?;

(III) CnAy{ﬂt}(@) = CHA(@);
(iv) Ais notimplicative.

Proof. (First, assume (i) holds. L& be the subalgebra @ generated by
K,, in which case it is a subalgebra #ifx (2A{f,t}), for {f,t} = m1[K}4]
forms a subalgebra &. If (t,f) was inD, there would be somg € Fm$,
such that bothp® (f,b, b, t) = t and®(f,f,t,t) = f, in which case, since
a C b, for everya € {f,t}, by the regularity of2, we would getf C t.
Therefore, as-® (f/t) = (t/f), we conclude thab = K, and so (ii) holds.)

Next, when (i) holds(mg 1] [ K3(41)) € hom[ss] (A% K341y, A[{f, t}]),
in which case (2.7) and (2.8) yield (iii).

Finally, (iii)=-(iv) is by (2.1) and Corollary 9.6. O

Lemma 10.5. Suppos€f,t} forms a subalgebra ol (i.e., C' is ~-subclas-
sical; cf. Corollary 8.4). Then, (8 (ii) <(iii) =(iv), where:

(i) ~(zo A ~wo) & C(2);
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(i) neither~*b = b (thatis,C(zg) = C(~~xg)) norb <* t;
(i) Ls = ((Ax {f,t})\ {(b,f)}) forms a subalgebra o#(?;

(iv) CNP has a proper non-axiomatic extension being both that'aind a
proper sublogic of>™¥ | being, in its turn, an axiomatic extension(f
and so ofCNF.

Proof. First, (i)=(ii) is immediate.

Next, if (~%b = b)/(b <¥ t), then we havg~2"(b,t)/((b,t) A%’
(t,f))) = (b,f) & L5, in which caseLs; O {(b,t), (t,f)} does not form a
subalgebra o®(?, and so (iii}=(ii) holds.

Further, assume (iii) holds, in which case (ii) holds too, as it has been
proved above. Then, by (2.7) and Theorem 10.3, the consistwgic C’
of the consistent submatri® = (A2[Ls) of B = (A%[(A x {f,t})), defin-
ing CN?, is a consistent extension 6fINF] and so a sublogic of *¢ =
CMP (cf. Corollary 8.5, Theorem 9.3 and Remark 10.1). Moreover, (9.1)
is not true inD under[zy/(b,t),z1/(f,t)], and soC’ is a proper sublogic
of CMP_ And what is more, since, for at € D = L, it holds that
(~®a € DP) = (a = (f,f)), while A is V-disjunctive, whereag ¢ D,
we conclude tha{~zg,zo ¥ 1} b x is true inD but is not true inB
under(zo/(b, f), z1/(f,t)], and saC" is a proper extension @¥"1. In ad-
dition, (mo[ D) € hom®(D, A), in which case, by (2.8), we havg(@) C
CNP(g) C C'() C C(@), and soC’ is not an axiomatic extension of
CNP1. Finally, by (i), A is =-negative, wherexzg £ ~(zgA(~~xgY~g)),
in which case it, being/-disjunctive, isz-implicative, wherg(zy 3 ;) £
(mzo Y x1), and so Corollary 9.6 completes the argument of (iv), as re-
quired. O

Lemma 10.6. Let C’ be an extension af’. Suppos€9.1)is not satisfied in
C’ and L5 does not form a subalgebra @f? (in particular, ~(x¢ A ~x¢) €
C(2), i.e., either~®b = b — that is,C(zg) = C(~~mzg) —orb < t; cf.
Lemma 10.5(iii}= (i) < (i)). Then,C’ is a sublogic ofCNF.

Proof. The case, whe@NT is inconsistent, is evident. Otherwise, by The-
orem 10.3,C is ~-subclassical, in which cas,t} forms a subalgebra of
2, CNP being defined by the submatrix = (A x (A[{f,t})) of A%, and
so it suffices to prove tha@ € Mod(C"). On the other hand, &’ does not
satisfy the finitary (9.1), by Theorem 2.2, there are some finitd sepme

C € S.(A)! and some subdirect produtt € Mod(C") of it not being a
model of (9.1), in which case there are some D? C {b,t}! and some
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b€ (D\ DP) such that~®a V® b) € DP,andsoJ = {i € I | m;(a) =
b} DK 2 {icl|mb)=Ff . PutL 2 {i cI|m(b) =t} Then,
givenanya € A®, set(aglailaztaziay) = (((I\(LUK))NJ)x{aoHU((I\
(LUJ)) x{ar UL\ T) x {az})U((LNT) x {as}) U(K x {as})) € A”.
In this way:

D3>a=(bititibb), (10.1)
D>b=(btbitrtf). (10.2)

Moreover, by Lemma 3.1, we also have:
D3> f2(fafififif), (10.3)
D3> ~Pf=(titittt). (10.4)

Consider the following exhaustive (as'b € DA = {b,t}) cases:
o ~%p =h.
Then, in casé <* t, by (10.1) and (10.2), we have:

D3e2 (an®b)=(bibitibf), (10.5)

D> ~%e=(b1bif1bt), (10.6)

D3c2 (eY® ~®b) = (bibitibt), (10.7)

D> ~%c=(bibifibf). (10.8)

Likewise, in caséb(< / >)*t, by (10.1) and (10.5)/(10.2), we have:
D>d%2 ((e/b)V® ~*a) = (blbit2bb), (10.9)
D>~%d=(bibifibib). (10.10)

Consider the following complementary subcases:

- LCJ.
Then, sincd O K # @ = (L \ J), by (10.3), (10.4) and (10.9),
(9,1 x{g}) | g € A} is an embedding ofd into D, in which
case, by (2.7),A is a model ofC’, for D is so, and so i3, for
{f,t} forms a subalgebra é&\.
-L¢J.
Then, consider the following complementary subsubcases:
* there is some € Fm such thatp® (b, f) = f andp?(f, )
=1,
in which case, by (10.3) and (10.10), we have:

D5 ¢®(~2d, f) = (Frfrtafef), (10.11)
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o ~op=t,

D3 ~2p%(~2d, f) = (titrfrtet). (10.12)

Then, sincgL \ J) # @ # K, taking (10.3), (10.4), (10.9),
(10.10), (10.11) and (10.12) into account, we see that

{({g,h),(grgthiglg)) | (g,h) € B}

is an embedding oB into D, and so, by (2.7)B is a model
of C’, for D is so.

there is nop € Fm$, such thatp® (b, f) = f andp®(f,f) =
t,

Then,b <* t, for, otherwise, we would have <* b, in
which case we would gep®(b,f) = f andp*(f,f) = t,
wherep & ~(zg A ~z1) € Fm$. Consider the following
complementary subsubsubcases:

- ((INLUK))YNJ)UIN\N(LUJ))U(LNJ)) =2.
Then, taking (10.5), (10.6), (10.7), (10.8), (10.9) as well
as (10.10) into account, d§ # @ # (L \ J), we con-
clude that{{{(g, k), (b2b2h b2 g)) | {(g,h) € B} isan
embedding of3 into D, and so, by (2.7)3 is a model of
C’,forDis so.

(N @UK) N U\ (LUI)UELND) 2.
Let & be the subalgebra & x 2 generated by(B x
{bYU{((i,0).i) | i € {f.t}}). Then, ag((I\(LUK))N
JYU(I\(LUJ)U(LNJ)) # @ ¢ {K, L\J}, by (10.3),
(10.4), (10.5), (10.6), (10.7), (10.8), (10.9) and (10.10),
we see tha{(((g, k), j), (j Lithtjig)) | ((g,h),j) €
G} is an embedding of = ((B x A)|G) into D, in
which case, by (2.7) is a model ofC’, for D is so. Let
us prove, by contradiction, thatD® x {f}) N G) = 2.
For suppose€(D? x {f}) N G) # @. Then, there is
somey € Fm}, such thaty®(t,b,b,b,b,b,b,f) = f
andy®(t,t,t,t,f,f,f,f) = t, for 7, [D®] = {t}. Let
© 2 p(~xy, ~ag, ~To, ~T0, T, To, To, T1) € Fm.
Then,o*(b,f) = f and?(f,f) = t. This contradic-
tion shows that(D? x {f}) N G) = @, in which case
(m0]G) € hom$ (G, B), and so, by (2.7)3 is a model of
C’, for G is so.
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Consider the following exhaustive (d4, <*) is a chain poset) sub-
cases:

—b<¥t.
Then, by (10.1) and (10.2), we get:

D>c 2 (aVY®b)=(brtitit1b), (10.13)
D>d 2~2d =@tifififrt), (10.14)
D>¢e 2~2d = (fitititf), (10.15)

D> fl2 (AP d)=(brfrf2f2b). (10.16)

Consider the following complementary subsubcases:
* (IN(LUJ)U(L\J)Uu(LNJ))=@.
Then, sincel O K # @, by (10.3), (10.4) and (10.13), we
see that{(g,I x {g}) | g € A} is an embedding af into
D, in which case, by (2.7)4 is a model ofC’, for D is so,
and so isB, for {f,t} forms a subalgebra &f.
x* (I\N(LUJ)U(L\JHU(LNJ)) # 2.
Then, ask # @, by (10.3), (10.4), (10.13), (10.14), (10.15)
and (10.16), we conclude th4t{(g, h),(gthithihlg)) |
(g, h) € B} is an embedding oB into D, in which case, by
(2.7),Bis a model ofC’, for D is so.
-t <%b.
Then, by (10.1) and (10.2), we get:

D> 2 (aY®b)=(bibitiblb), (10.17)
D3d"& P = (mtfitt), (10.18)
D3e" 224" = (fFifitifif). (10.19)

Consider the following complementary subsubcases:

x* L CJ.
Then, ask # @ = (L\ J), taking (10.3), (10.4) and (10.17)
into account, we see thatg, I x {g}) | g € A} is an em-
bedding ofA into D, in which case, by (2.7)4 is a model
of C’, for D is so, and so i, for {f,t} forms a subalgebra
of 2.

* L g J.
Then, asLs does not form a subalgebra %f, and so of its
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subalgebr&s, there is some € Fm52 such thatp® (f, t, f, b,
t) = b and®(f,f,t,t,t) = f, in which case, by (10.3),
(10.4), (10.17), (10.18) and (10.19), we get:

D3 °(f,d" ", " ,~®f)=(bibifibib), (10.20)

and so, a¥{ # @ # (L \ J), taking (10.3), (10.4), (10.17),
(10.18), (10.19) and (10.20) into account, we see that

{{{g,;h),(gtgthigtyg)) | {g,h) € B}

is an embedding oB into D, in which case, by (2.7)3 is a
model ofC’, for D is so. O

Theorem 10.7. Suppose& is [not] non—~-subclassical. Then, extensions of
C form the(2[+2])-element chairC’ C CNF = [Cn%, (a14r.0) GICMFIR =
[CPC = Cn% ey &) Cng, CNF [not] being axiomatick-disjunctive, [iff

Ls does not form a subalgebra @f? (in particular, ~(z¢ A ~x¢) € C(2),

i.e., either~®b = b — that is,C(xy) = C(~~zg) — orb <* t), in
which caseC" is V-disjunctive, while, providingd is J-implicative, where

3 € Fmi,/ K341 forms a subalgebra of(? (in particular, 2 is regular),
CPC is relatively axiomatized b{9.3y C*C (@) = C(9), in which caseC"°

is an axiomatic extension 6f/ both proper consistent extensiong’oare not
axiomatic, and s@' has a unique/no proper consistent axiomatic extension].

Proof. By Theorems 9.3, 10.3, Lemmas 10.4, 10.5, 10.6, Corollaries 8.2, 8.4,
8.5, 9.4, 9.6 and Remark 10.1. O

Concluding this section, we briefly discuss various representative instanc-
es, assuming that D Z(ND[.)O” 2 ({~,A,V(,D)], L, T]}), where both/ and
A (as well asD) are binary [while bothL and T are nullary, whereag® = f
andT? =t].

First of all, taking Corollary 4.4 into account, the case, whetb = b,
A=A, Y =Vandb <% t, covers arbitrarghree-valuedexpansions of the
Y.-logic of paradoxL P [6] {cf. [7] for the equivalent matrix definition of
it tacitly used herg, including those by constants — as regular ones — [in
particular, theboundedX... o1-expansionL Py, of LP] (as well as arbitrary
three-valuedexpansions of th&2-logic of antinomied. A [1], when(a >%

b) = (max(1 — ag, bp), max(1 — ag, b)), foralla, b € A, inwhich cased is
D-implicative [in particular, thdooundeoZE701-expansionLA01 of LA]). In
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this way, Theorem 10.7 subsumes respective results obtained originally in [7],
[8] and [11]ad hoc Moreover, this case covers the axiomatic extensions of
arbitrary non-maximally~-paraconsistent four-valued logics studied in [12]
by theExcluded Middle Lavaxiomzg V ~x¢ including L{ P/A} 1)

Likewise, taking Corollary 4.4 into account, the case, whetb = b
and2lis a(A, V)-lattice with zerob and unitt (in which caseA is neithera-
conjunctive not/-disjunctive, though), and so(a, v)-lattice, wherex = A™
andY = v~, with zerof and unitb (it is this non-artificial instance that
warrants regarding the case, wheg® b), in which cased is J-implicative,
where (o 3 21) = ((~xo A ~z1) V 71), covers arbitranthree-valued
expansions of th& . -logic HZ [3]. In this way, Theorem 10.7 subsumes
respective results obtained originally in [9] and [BH hoc

And what is more, the case, whesb = t, in which case~* is not
regular,A = A, Y = v andb <* t (as well as(a D% b) = min{c €
A | b < max(e,a)}, for all a,b € A), in which case, whelt = £},
{f,t} forms a subalgebra &1, while K3} does{not} form a subalgebra
of °A%2 — it is this case that warrants involving; in addition to K, and
so A is not (D-)implicative, in view of Lemma 10.4, is equally covered by
Theorem 10.7. In this connection, the subcase, when 2(3())1, and soC
is actually dual — via both the lattice duality and the truth predicate comple-
ment — to theX.. o;-fragment of (resp., to) &del's three-valued logic [2]
(itself), deserves a particular emphasis. Thift} forms a unique subal-
gebra of2, while 2, £ (A[{f,t}) satisfies the identityzy A ~x) ~ L
not being true il under[zy/b]. Therefore, that subprevarieBs of the
prevarietyP; generated by, which is relatively axiomatized by the iden-
tity involved is generated bgl, — the reader is referred to [8] as for the
conception oprevariety Moreover2(/2, is embeddable into any/ non-one-
element member ofP3 \ P2)/P2, respectively. HenceR, is the only sub-
prevariety ofP5 distinct from this and containing a non-one-element algebra.
On the other hand, according to Theorem 1@7has two distinct proper
consistent extensions. In this way, as opposed to the above instances, when
DA={ac A|UE (xo ~ (o V ~x0)[a]}, the general study [8] is not ap-
plicable to the one under consideration. This highlights a particular value of
Theorem 10.7 as well as of the case involved, though being, to some extent,
rather artificial.

After all, the following counterexample collectively with Lemma 10.5(iii)
=(iv) show that the condition of 5’s not forming a subalgebra @f? cannot
be omitted in the formulations of Lemma 10.6 and Theorem 10.7:
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Example 10.8.LetY = X, ~%b =t, A = A, Y = vandf <% t <% b,
in which case{f,t} forms a subalgebra & (i.e., C' is ~-subclassical; cf.
Corollary 8.4), whileL; forms a subalgebra &f?. O

11 DISJUNCTIVE THREE-VALUED PARACONSISTENT LOGICS
WITH SUBCLASSICAL NEGATION AND CLASSICALLY-VAL-
UED CONNECTIVES

An n-ary, wheren € w, operationf on A is said to beclassically-valuedif
(img f) C {f, t}.

Throughout this section, it is supposed thats V-disjunctive (that is,A
is so; cf. Lemma 9.1) and all primary operationbére classically-valued,

in which case:
o ~Aph=t;

e {f,t} forms a subalgebra ¢, and soC is both ~-subclassical (cf.
Corollary 9.5) and maximally--paraconsistent (cf. Corollary 9.9);

¢ A is both—-negative A-conjunctive andd-implicative, where:

) é N(.’L‘O Y fﬂo),

(1‘0 K Il) _|(_|I0 Y _\Il),

> 1>

(.Qiozll‘l) (_\J)oyl‘l),

and soCFC is an extension of any consistent extensiog’@tf. Corol-
lary 8.5) and the only proper consistent axiomatic extensiofi ¢¢f.
Corollary 9.6), whiles3 is an axiomatic binary equality determinant
for A (cf. Remark 4.2).

It is remarkable tha¥® = V2 while the >-implicative ~-super-classical
{~, D}-matrix S with ~®b = t and>® = 3% defines the/~, D}-logic P*
[13]. In this way, P! is a term-wise definitionally minimal instance of the

case under consideration.

Theorem 11.1. There is an increasing countable chain of finitary extensions
of C, and so such finitary extension @fthat is not (relatively) finitely-axio-
matizable, in which case this is consistent.

Proof. We use Theorem 2.2 witki = Mod(C) tacitly.
Letn € (w\ 1) andC, the finitary (forC, being three-valued, is so) ex-
tension ofC relatively axiomatized by the finitary rulg,, = (({~x; | i €
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n}U{V(z;)ien}) F z,). Then, ag”, beingV-disjunctive, satisfies (2.3), and
so does any € K, whenR,, is nottrue inB under any : V,,.; — B, for ev-
erym € (w\n), Ry, isnottrue in3 undervU[z; /v(x0); Tm /v(2n)] je(m\n)-
So,(Ch)iecn IS an increasing denumerable chain of finitary extensiorns. of

Claim 11.2. For anyn € (w \ (1(+1))), there is a consistent subdireat
power A,, € Mod(C) of A such thatR,, is [not] true in A,y (and
DA = {n x {t}}).

Proof. Since all primary operations &f are classically-valued, the sdt, =
({F, 68" U {{(i,b)} U ((n\ {i}) x {f}) | i € n}) > (n x {f}) forms a
subalgebra of(", so we have the consisteffor n # 0} subdirectn-power
A, 2 (A" A,) € Mod(C) {cf. (2.7)} of A (with DA» = {nx {t}}, asn #
1). Then, asA is Y-disjunctive,R,, is not true inA,, under[z;/({(i,b)} U
((n\ {i}) x {f})); zn/(n x {f})]ien butis true inA4,,, . O

Then, by Claim 11.2, the increasing chdifl,,),¢ .\ 1) is injective, and
so countable, in which case the finitary (for bath being three-valued, and
all R,, n € (w) 1), are so) extensiof,, of C relatively axiomatized by
{R, | n € (w\ 1)} is a proper extension af,, for anyn € (w\ 1),
and so, by the Compactness Theorem for classes of algebraic systems closed
under ultra-products (cf. [5])., is not (relatively) finitely axiomatizable, as
required. O

As it has been demonstrated in the previous section, the conditi@i’s of
primary operations’ being classically-valued cannot be omitted in the formu-
lation of Theorem 11.1. It is remarkable thB;y = (2.5), in which case
C:; = CONP, while C,, being a consistent extension ©f is a sublogic of
CPC, and so the infinite chain involved appears intermediate betwéen
and CT€, in contrast to Theorem 10.7. And what is more, in contrast to
Lemma 10.2, we have:

Lemma 11.3. B & Ay € Mod(CMF) C Mod(CNP) (cf. Claim 11.2) is a
consistent subdirect square dfsuch thathom (B, A[{f,t}) = @.

Proof. Then,B £ A, € Mod(C) is a consistent subdirect square .4f
Moreover, a2 ¢ 2, DB = {(t,t)}, while, for everyb € B, it holds that
(~B(t,t) VB b) = ((f,f) VB b) € DB impliesb € D", in view of the V-
disjunctivity of A and the fact that ¢ D4. Hence, (9.1) is true if8. Finally,
let us prove, by contradiction, thabm(B, Al{f,t}) = @. For suppose
hom(B, Al{f,t}) # @. Take anyh € hom(B, Al{f,t}), in which case
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h({t,t)) =t, for (t,t) € DB. Therefore, if, for any: € {(b,f), (f,b)} C B,
it did hold thath(a) = t, we would havef = ~*t = h(~Ta) = h((t,t))
t. Hence h((b,f)) = f = h((f,b)). Then, we gef = (f V¥ f) = h((b,f) V¥
(f,b)) = h((t,t)) = t. This contradiction completes the argument. [

As a consequence, in contrast to Theorem 10.3/both Theorem 9.3 and Re-
mark 10.1, we get:

Corollary 11.4. CNP/MP s not defined byp 2 ((A x (A[{f,t}))/(Al{f,
t}))./ In particular, CM?P =£ C® is not V-disjunctive.

Proof. By contradiction. For supposeN"/MF is defined byD. Then, by
Lemma 11.38 £ A, € Mod(CNP/MP) s a consistent subdirect square of
A such thahom(B, A[{f,t}) = @, in which case it s finite, for is so, and

so is a finitely-generated consistent modeC8f”/MF/, in which case this is
consistent. Therefore, by Lemmas 2.1, 3.3, 3.4, 3.5 and Remark 4.2, there
are some sef, someC € S(D)!, some subdirect produét of it and some

g € homg(E,B), in which casef is consistent, foi5 is so (cf. (2.7)), and
sol # @. On the other hand, by Lemmas 3.3, 3.4, 3.5 and Remarky4s2,
injective, and sd(m /Aysyy) om0 g7 ') € hom(B, Al{f,t}) = @, where

i € I # @. This contradiction/ and Theorem 9.3 completes/complete the
argument. O

Finally, P! collectively with Theorem 11.1 show that, despite of Theo-
rem 10.7, three-valued (even both conjunctive, disjunctive and subclassical)
paraconsistent logics with subclassical negation need not have finitely many
extensions.

12 CONCLUSIONS

Aside from quite useful non-trivial general results and their numerous illus-
trative applications, the present paper (like [12]) demonstrates a special value
of the conception of equality determinant initially suggested in [10].
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