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ABSTRACT 

WeChat social network is one of the most popular social platforms in China, providing not only communication 
services but also enabling a number of service innovations. Understanding how information diffuses in an online 
social network such as WeChat is critical to the design and evaluation of existing or new services. This paper 
studies the diffusion pattern and predictability of WeChat cascade. We propose an analysis framework for WeChat 
cascade based on the characteristics of cross-scenario diffusion. By analyzing a real WeChat dataset, we reveal 
some typical diffusion patterns. We also obtain good prediction performance.  
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1. INTRODUCTION 

The boundary of service systems is disappearing with the emerging of various kinds of new services thanks to the 
advancement in information technology such as IoT, social networks, and so forth [1]. The increasing popularity of 
social network platforms such as Facebook and WeChat not only facilitates communication between people but also 
creates new service innovations. For example, WeChat is providing many mini-apps that provide all kinds of services 
to users, including payment, finance, food, entertainment, travel, education, and so forth.  

In China, WeChat is probably the most popular platform for online social interactions currently. It has more than 1 
billion Monthly Active Users. Almost all Chinese net citizens use WeChat to communicate with friends and obtain 
multimedia information. WeChat offers multiple ways for information diffusion, including Chat and Moments, which 
inherently leads to high complexity of information diffusion. Therefore, understanding the diffusion patterns of 
WeChat can help improve the design of online services.  

Using real WeChat diffusion dataset, this paper analyses the diffusion process of WeChat articles by incorporating 
diffusion cascade and user behavior record. First, we obtain the diffusion pattern of WeChat articles. Then, we use 
machine learning algorithm to predict future evolution of WeChat diffusion. Finally, using visualization, we perform 
case studies on cascades in different content topics. 

There are existing studies on diffusion mechanism of social platforms like Facebook, Twitter, and Weibo [7, 10, 
11, 12, 13, 14]. However, the study of diffusion mechanism in WeChat network is still a relatively new area. This 
paper tries to enrich this research area by analyzing the WeChat data. It was found that WeChat network is rich in 
diffusion patterns. WeChat exhibits a cross-scenario diffusion characteristic that makes its structural pattern of 
diffusion cascade full of complexity. This paper uses advanced machine learning algorithms to predict WeChat 
diffusion process. It was found that content topics might be an important factor that influences the evolution of the 
diffusion structure. Results of this paper add values to research on analyzing information diffusion  and 
communication behaviour in WeChat network. The results may be used to better design social networks to achieve 
beneficial goals such as blocking spreading of rumors, promoting positive emotions, and even facilitating new service 
innovations. 



2. RELATED WORKS 

This section reviews some important work in social network analysis and information diffusion process. In social 
network analysis, a well-known phenomenon: “Six-degree-of-Separation” was proposed and experimentally verified 
[2]. Under this phenomenon, a person could reach any other one in the world along the relationship chain within 6 
people on average. The Small-world Theory [3] introduced a model via re-wiring to capture characteristics of real 
world networks, such as local clustering and short distance. 

For network structure, Barabasi and Albert proposed the scale-free network model in which degree distribution 
follows a power law. This model relies on the preferential attachment and growth process that generate a network with 
a few “hub” users, which also represents many real world networks [4]. Community Detection is another hot research 
topic that studies heterogeneous communities [5]. 

The process of information diffusion is one of the key research questions in social network analysis. In order to 
explain how information diffuses across social networks, traditional explanatory model can be used. One example is 
the Epidemic Model. In this model, each user can receive and distribute diseases/information, which is governed by a 
certain probabilistic infection mechanism [6]. Another explanatory model is the Social Influence model, which 
evaluates and maximizes the influence of individual (or community) in a social network [7,8]. 

One major goal of the study of information diffusion is to predict the diffusion process in advance. Predictive 
models concentrate on improving the predictability of information cascade. Along this line of research is the 
independent cascade model, which regards the diffusion process as a tree structure and consider users who contribute 
to information spreading. Ref. [9] claimed that the cascade predictability was determined by “skill” and “luck”, and 
discussed possible sources of prediction error. Ref. [10] examined the prediction error when adding different 
categories of features and explored the limitation of prediction accuracy. Ref. [11] considered the diffusion process 
based on truth and rumor, and compared the cascade structural pattern by using a Twitter dataset. Ref. [12] explicitly 
defined the cascade prediction problem to avoid the side effect of sample imbalance. Ref. [13] proposed the metric of 
structural diversity and distinguished viral cascade from non-viral ones. Ref. [14] presented other alternative 
structural metrics, such as the number of connected components within a user’s friends network. 

There are also other predictive models. For instance, Linear Threshold Model and Game Theory Model. The 
former model focuses on the study of the triggering threshold of diffusion [15], while the latter one concentrates on 
equilibrium analyses of among information spreaders [16]. 

In summary, existing works have built a basic research framework for the analysis and prediction of diffusion 
cascade in social networks. This paper contributes to this area by providing an in-depth study into the diffusion 
process of WeChat network. 

3. BASIS OF WECHAT DIFFUSION RESEARCH 

3.1. CROSS-SCENARIO DIFFUSION CHARACTERISTIC 

WeChat has three diffusion scenarios, which make the diffusion process different from those in other social 
platforms (such as Weibo, Facebook, and Twitter). These three diffusion scenarios are: initial release scenario, chat 
scenario, and moments scenario.  

Figure 1: Cross-scenario diffusion characteristic of WeChat. 



WeChat diffusion process cascades step by step as follows: An article is initially published by Official Account. 
The link of this article first appears in the Initial Release Scenario. Then subscribers are able to share this link to both 
Chat scenario and Moments scenario, thus cascading the diffusion of the article. 

3.2. MEASURING WECHAT CASCADE STRUCTURE 

WeChat cascade is composed of “feeds”. Each feed is a link to an article. The feeds can appear in any scenarios. In 
order to evaluate the influence and structural complexity of WeChat cascade, four basic metrics are employed, 
including mass, breadth, depth, and wiener index. 

 

Figure 2: Component feed and metrics of WeChat cascade. 

Mass is defined as the number of feeds in cascade. Mass value reflects the level of overall diffusion coverage. 
Therefore, the order of magnitude of mass is a main measure for the diffusion performance.  

Breadth is defined as the maximum number of feeds that single cascade layer holds. Breadth value reflects the 
horizontal size of cascade. Larger breadth could imply the characteristic of “broadcast diffusion”. The order of 
magnitude is also a main measure. 

Depth is defined as the maximum distance between leaf nodes to root node. Depth value equals the number of 
layers, indicating the penetrability of information diffusion. Larger depth value suggests that the cascade have at least 
a few long chains that enrich its diffusion structure. 

Wiener index is defined as the average distance of all node pairs. We need to obtain cascade wiener index by 
treating the cascade in undirected view, then construct the distance matrix and apply the division formula. Wiener 
index reflects the overall structural complexity and provides a quantitative measure of the structural pattern of the 
diffusion. 

3.3. DATASET DESCRIPTION 

Our dataset includes 7504 independent diffusion cascades. Each cascade corresponds to one article randomly 
sampled from overall WeChat Official Account published content. The corresponding articles were released between 
March 1st and March 7th in 2016. 

The dataset is composed of five data fields, including sharing cascade record, article reading record, user 
relationship record, user attribute record, Official Account subscribers record. 

4. DISCOVERING DIFFUSION PATTERN IN WECHAT 

4.1.  DISTRIBUTION OF STRUCTURAL METRICS ON FINAL CASCADE 

We first examine the frequency distribution of WeChat cascade structural metrics. From the complementary 
cumulative distribution function curve in logarithmic coordinate system, it is observed that the distribution of these 
structural metrics are extremely uneven. The major cascades are in small mass and breadth, with low depth and 
Wiener Index. However, there exist some extremely huge cascades in terms of coverage size and structural 
complexity. There are nearly 1% of cascades that could be called “enormous” as their mass exceeded 10,000. This 



situation is similar to the distribution of breadth value. For metrics of depth and Wiener Index, the largest observed 
values are around 33 and 20, respectively, confirming the existence of a highly structural and complicated cascade in 

WeChat diffusion. 

Figure 3: Distribution of final cascade metrics value. 

4.2.  CORRELATION PATTERN OF STRUCTURAL METRICS 

Next, we analyze the correlation between mass and other structural metrics. The heat maps in Figure 4 reveal 
several findings. First, breadth and mass values are  positively correlated. This means that if a WeChat cascade is large 
in mass, it has very high probability to hold high breadth value at a similar magnitude. Mass is also found to have 
positive correlation with depth and Wiener Index. The heat map presents a diverging trend especially when mass is 
large. Cascades tend to hold lower depth and smaller Wiener Index when their mass value is below medium. This 
phenomenon may be explained by using the uncertainty theory. Once a WeChat cascade grows larger in mass, it 
suffers from more uncertainty in structure evolution. The current cascade could either stay in simple structure or 
transfer to complex structure. 

Figure 4: Joint distribution of structural metrics to mass, plotted in heat map. 

In order to distinguish whether a WeChat cascade is structurally simple or complicated, we define the structural 
patterns as “star-like” and “chain-like”. The numerical indicator is Wiener Index. Our definition starts from the 
boundary condition: if the mass is n, the Wiener Index value of “pure star” is (2-2/n), and ((n+1)/3) for “pure chain” 
structure. From a mathematical point of view, “pure chain” is structurally more complicated than “pure star” at any 
mass value n. From the empirical dataset, the structural complexity of most WeChat cascades are somewhere in 
between “pure star” and “pure chain”, except for a few extremely small ones. The distribution area is restricted 
between the asymptote of “pure star” and “pure chain” as shown in the right heat map. It is observed that, the major 
structural pattern of WeChat cascades is closer to star pattern, especially for large cascades. In addition, with the 
increasing uncertainty in diffusion process when cascade mass grows larger, the element of chain is gradually added 
into the cascade structure, leading to a larger variance of Wiener Index. 

5. PREDICTING CASCADE STRUCTURAL EVOLUTION 

5.1. FEATURE EXTRACTION 

Our empirical dataset provides information about cascade diffusion and related user behavior. After preprocessing 
and feature engineering, six categories of useful features are extracted for each cascade. They would serve as the input 
for prediction in the next subsections. All these features are captured in cascade midway at mass of k. 



First category is Content Feature. This category includes three features as follows: article content length (in byte 
count), subscriber amount of Official Account, post time indicator (to distinguish A.M. post or P.M. post). 

Second category is Cascade Structural Feature (at mass of k). This category includes three features as follows: 
cascade depth, cascade breadth, cascade Wiener Index. 

Third category is User Relationship Graph Feature. As the relation graph is very sparse, two extracted features are 
considered: number of connected components, and fraction of users belonging to the largest connected component 

Fourth category is Forwarding User Attribute Feature. Features in this category are only about those users who 
have contributed to the cascade. This feature category provides user identity record, such as average age, sex ratio, 
average educational level, average account activation years, and average number of friends. In addition, this category 
also consists of features that reflect a user’s activity level on WeChat in the recent month (i.e., March 2016), including 
average amount of chat messages sent and received by this user, and average amount of Moments post and view by 
this user. 

Fifth category is Reading User Behavior Feature. As some users may not share an article with others after reading 
it,  this feature category evaluates the relationship between reading and forwarding: reading frequency of all reading 
users, reading frequency of forwarding users, ratio of users who have read the article more than once, ratio of reading 
platform (mobile/PC), user conversion rate (from reading to forwarding). 

Sixth category is Temporal Feature. This feature category embodies the effect of dynamics, including time elapsed 
(since original post), average time gap between each two consecutive feeds (from the first feed to the k/2 feed, and 
from the k/2 feed to the k feed), and the variance of time gap. 

5.2. PROBLEM DEFINITION 

The objective of our prediction task is to achieve a high prediction accuracy and stability of the final diffusion 
coverage and structural complexity  when a cascade is at its beginning stage. Specifically, the prediction problem is 
defined as a binary classification task: for a given cascade, predict whether the final metric value (mass, depth, 
breadth, Wiener Index) of this cascade would exceed the median value comparing with its peers that also currently 
hold a mass of k. Using the median value to distinguish positive and negative samples can balance the sample ratio, 
thus reducing the risk of sample imbalance. 

5.3. PREDICTION PERFORMANCE OF MACHINE LEARNING MODELS 

To perform the binary classification task, several machine learning algorithms are tested, including Logistic 
Regression, Naïve Bayes, Support Vector Machine, and Decision Tree. Furthermore, in order to improve the model 
performance, ensemble learning methods like bagging and boosting are applied to Decision Tree, obtaining the 
Adaboost and Random Forest model. The observation size is k=100 and F1-score is used to evaluate the classification 
performance.   

Figure 5: Prediction accuracy with different machine learning algorithms, in single model and ensemble model. 

Figure 5 gives the prediction performance of single and ensemble models. For single models, Decision Tree and 
Logistic Regression generally perform better than the other two models. As for the predictability of the four metrics, 
breadth and mass are obviously more predictable than depth and Wiener Index. Decision Tree is generally a reliable 
model, which gives F1-scores of 0.85, 0.92, 0.68, 0.65 for the four metrics, respectively. 



The prediction performance of ensemble models suggests that, both Random Forest and Adaboost performs better 
than the single Decision Tree model, while the performance of Random Forest is slightly better. For instance, in the 
depth prediction task, Random Forest model could improve F1-score from 0.67 to 0.73, compared to the single 
Decision Tree model. In addition, based on bagging method, Random Forest model is efficient to deploy in 
application with the help of parallel computing. Therefore, Random Forest model is used in the following prediction 
task.  

5.4. PREDICTION PERFORMANCE WITH FEATURE SET AND OBSERVATION SIZE 

In real application, observation size k and selected feature set are two key factors affecting system performance. It 
is desired to obtain a certain level of prediction accuracy by consuming the least computational resources and 
detecting abnormal diffusions as early as possible. To obtain a certain level of prediction accuracy, smaller size of 
feature set and smaller observation size k are preferred. Therefore, the prediction performance is tested under different 
observation sizes and different single feature categories. 

Figure 6: Evolution curve of prediction accuracy with different input feature set and observation size. 

In predicting mass and breadth, it is found that, the complete feature set performs the best, with a prediction 
accuracy around or higher than 0.9 at all observations. When single feature set is considered, structural features and 
temporal features give the top two performances. This indicates that the current structure and dynamics are 
intrinsically reflective to future coverage of cascade. For other feature categories, prediction accuracy varies from 0.6 
to 0.75, due to large fluctuation.  

For the prediction of depth and Wiener Index, the complete feature set performs the best, with a prediction 
accuracy around 0.8. The performance of single feature sets is generally poorer and has no essential difference among 
each other.  For single feature categories, prediction accuracy ranges from 0.5 to 0.7, also suffering from large 
fluctuation as the observation size increases. In addition, an apparent trough at k=100 is detected in almost all curves. 
This observation implies that k=100 might be a key demarcation point of predictability for cascade structural 
complexity. Once cascade mass grows larger than 100, the structural predictability goes back to its early stage. 

In summary, first,  mass and breadth are more predictable than depth and Wiener Index. Second, the complete 
feature set leads to the best prediction performance, while the structural and dynamical features set seem to contribute 
a lot. Third, observation size k has little impact to prediction performance, confirming the robustness of our prediction 
model. 



6. CASE STUDY OF WECHAT CASCADE 

6.1. CASE ONE: “STAR-LIKE” CASCADE 

Case one examines the typical “star-like” pattern. The article content is public instruction about how to choose best 
insurance to buy. The content topic could be categorized as “Life Guidance”. 

Figure 7: “Star-like” case with visualization of structure and dynamics  

In this case, the cascade structure presents a “star” like shape. From the visualized topology in Figure 7, it is clear 
that the cascade is driven by two scenarios in balance, as the message feeds and Moments feeds account for similar 
proportion. Based on the statistics of final structural value, this cascade has medium mass value, low depth value, high 
relative breadth (the widest layer holding nearly half of all feeds), and low Wiener Index. The structural complexity is 
relatively low. From the dynamical evolution curve on timeline, the initial bursts in terms of all metrics are obvious. 
This observation indicates that, the major diffusion process has quickly come to the completed stage within only a few 
days after initial release. One explanation is that this topic of content could have drawn attention from all adults with 
different backgrounds. Therefore, the diffusion path is uniformly distributed on the underlying social network, 
presenting “star-like” pattern in final structure. 

6.2. CASE TWO: “CHAIN-LIKE” CASCADE 

Case two examines the typical “chain-like” pattern. The article content is commercial advertisement driven by 
induced forwarding in title. The content topic could be categorized as “Commercial Marketing”. 

Figure 8: “Chain-like” case with visualization of structure and dynamics 

In this case, the cascade structure presents a “chain” like shape with several hierarchical branches as shown in 
Figure 8. The cascade is dominated by the Moments scenario diffusion. Based on the statistics of final structural value, 
this cascade has medium mass, very high depth, quite low breadth value, and extremely large Wiener Index. The 
complexity of overall structure is rather high. The dynamical evolution curve presents a smooth growth process in 
terms of each metric value. The cascade consistently grew deeper and generated more branches along the timeline. 
This content is designed to attract specific people to buy certain goods, by using the approach of collecting “likes” in 



each user’s Moments post. Therefore, it is not surprising that this cascade is Moments-scenario driven and diffused 
along the relatively determined path.  

7. CONCLUSIONS 

This paper built an analyzing system framework to discover patterns, test predictability and perform case study on 
WeChat information diffusion cascades. Several typical diffusion patterns emerged in terms of cascade structure, user 
behavior, and content topic. This finding indicated that the diffusion process on WeChat network has a huge 
complexity. The prediction performance obtained by advanced machine learning algorithms was satisfactory, which 
revealed the predictability of WeChat diffusion process. Cascade mass and breadth were more predictable than depth 
or Wiener Index. Prediction accuracy was stable at different observation sizes. By using case study with visualization, 
it was suggested that the content topic factor might intrinsically determine the pattern of structural and dynamical 
evolution. Our work enriched the knowledge of information diffusion mechanism on WeChat network, and facilitated 
the analysis and prediction practice. Future work includes obtaining more interesting diffusion patterns on 
comprehensive dataset, and improving prediction performance and by applying more effective features and more 
reliable learning algorithms. 
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