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Construction workers are usually faced with many safety and health risks due to the hazardous nature 
of the construction work environment. The application of emerging safety technologies such as 
wearable sensing devices (WSDs) and the Internet of things (IoT) has been identified as one of the 
most effective means of predicting future performance and preventing these risky events. In spite of 
the benefits of these devices, their implementation on construction sites to protect workers and 
improve their safety performance is still limited. Several IoT-based wearable sensing devices are 
being used in other industries to monitor metrics that are similar to those that can be monitored to 
manage workers’ safety on construction jobsites. Hence, there is a need to develop some criteria for 
evaluating these devices for their applications in construction. The main purpose of this study is to 
develop a conceptual decision-making framework that stakeholders can use to select Wearable 
Internet of Things (WIoT) devices for applications in construction. The research approach involves 
a review of literature on WIoT devices and the development of a decision-making framework using 
the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). This study presents 
an initial attempt geared toward providing stakeholders with an effective decision-making tool that 
can be used to select WIoT devices for implementation in the construction industry. 
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Introduction 
 
Workers on construction jobsites are often faced with many safety and health risks due to the hazardous 
nature of the construction work environment. According to the reports of the U.S. Bureau of Labor 
Statistics, the construction industry accounts for one of the highest counts of fatal and non-fatal injuries 
among industrial sectors (BLS, 2020). Although different safety management approaches have been 
developed and are currently being applied for the reduction of the unpalatable trends, these approaches, 
characterized by the use of lagging indicators have not proven to be effective in achieving zero injuries 
and fatalities on construction jobsites (Hinze et al., 2013; Awolusi & Marks, 2017). An alternative 
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approach is the use of leading indicators, which can be utilized to predict future performance and 
prevent injuries, illnesses, or accidents (Hallowell et al., 2013; Mark et al., 2016).  
 
Researchers and industry practitioners have identified the application of emerging safety technologies 
such as wearable sensing devices (WSDs) and the Internet of things (IoT) as one of the most effective 
means of preventing accidents and predicting future safety performance on construction sites (Nath et 
al., 2017; Choi et al., 2017; Awolusi et al., 2018; Yeo et al., 2020; Nnaji et al., 2020). Advances in 
wearable and big data technologies provide an effective method of collecting and transforming safety 
and health data in real-time, which has great potential to improve safety performance by reducing illness 
and injury-related risks (Wu et al., 2016; Shen et al., 2017; Yeo et al., 2020). Wearable devices perform 
a wide range of functions including data collection from on-body sensors, preprocessing the data, 
temporary data storage, and data transfer to internet-connected immediate neighbors such as mobile 
phones or a remote server (Hiremath et al., 2015; Arias et al., 2015).  
 
The WIoT is a novel concept that provides the possibility of safety and health monitoring using IoT-
based WSDs that offer huge potential to collect and analyze rich data and provide insights for improving 
safety performance. Despite the benefits of these devices, their implementation on construction sites to 
protect workers and improve their safety and health performance is still limited (Choi et al., 2017; 
Awolusi et al., 2019). Several IoT-based wearable devices have been used in other industries to monitor 
metrics that are similar to those that can be monitored and tracked to manage workers' safety on 
construction jobsites. Because there is little information available to allow the construction manager to 
make informed decisions to identify and implement suitable devices among these commercially 
available ones, there is a need to develop some criteria for evaluating these devices for applications in 
construction. The main purpose of this study is to develop a conceptual decision-making framework for 
selecting WIoT devices for implementation in the construction industry. 
 
 

Literature Review 
 

Construction Incident Statistics and Safety Hazards 
 
Globally, the construction work environment is one of the most dangerous when compared to other 
industries. In 2019, a total of 1,061 U.S. workers lost their lives in the construction industry (BLS, 
2020). A large number of people who work in construction jobsites are regularly exposed to a wide 
variety of safety and health hazards which increase the potential for developing illnesses, getting 
injured, disabled, or even losing their life. Some of the common safety and health hazards for 
construction workers include: falls from height due to improper erection of scaffolding or use of ladders; 
electrocution due to contact with energized sources; struck by or caught-in or -between moving 
equipment working close to workers; repetitive motion injuries; and heat exhaustion or heat stroke due 
to body temperature rising to dangerous levels. There is a need to explore other effective methods of 
improving construction workers' safety performance and the implementation of emerging safety 
technologies such as WIoT has been identified as one of the most promising methods. In this study, the 
construction focus four hazards (falls, electrocution, struck-by, and caught-in or -between) will be used 
for evaluating WIoT devices that can be selected for use for safety management on construction jobsites. 
 

Wearable Sensing Devices and the Internet of Things 
 
Wearable devices have attracted much attention from the academic community and industry within the 
last decade and have recently become very popular. Wearable electronics have been described as 
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devices that can be worn by humans to continuously and closely monitor an individual’s activities, 
without interrupting or limiting the user’s motions (Gao et al., 2016; Haghi et al., 2017). The most 
commonly used wearable sensors include wearable body temperature sensors, pulse, and blood oxygen 
level sensors, accelerometers for motion sensing, airflow sensors, electrocardiograms, and galvanic skin 
response sensors (Davenport & Lucker, 2015; Kumari et al., 2017). These sensors and systems are 
capable of detecting, monitoring, and tracking both personal and environmental properties or data that 
can be used for workers' safety management in high-risk work environments such as construction 
jobsites. Although not currently prevalent in the construction industry, these sensors and systems are 
deployed in wearable devices used in sectors such as healthcare, athletics, and business for monitoring 
health, safety, productivity, among others. 
 
The IoT is the network of physical objects which are supported by embedded technology for data 
communication and sensors to interact with both internal and external objects states and the 
environment (Haghi et al., 2017). With IoT, digital and physical entities can be linked, using appropriate 
information and communication technologies, to enable a unique class of applications and services. The 
concept of IoT provides a solid framework for interconnecting edge computing devices–– wearable 
sensors and smartphones––and cloud computing platforms for seamless interactions (Hiremath et al., 
2015). Using the IoT, application-specific solutions can be created by interconnecting physical objects 
through the internet, and allowed to collaborate to achieve assigned tasks. Although IoT has emerged 
as a disruptive technology finding its applications in different industrial sectors and areas (Kumari et 
al., 2017), its adoption in the construction industry, particularly for safety management is still at the 
nascent stage. 
 
The recent growth in the popularity of interconnected wearable devices with sensing, computing, and 
communication capability has been very rapid, paving the way for a new category of technology called 
Wearable Internet of Things (WIoT). Although more prevalent in other industries (such as healthcare, 
sports, and fitness), the use of IoT-Based wearable devices (i.e. WIoT devices) has only found limited 
applications in the construction industry for safety management. Given the recent development, there 
is a pressing need to explore the decision-making process to evaluate and select the most appropriate 
WIoT devices for safety management on construction sites. 
 

Technology Selection Framework 
 
Technology selection is the process of assessing the potential value of technologies and their 
contribution to the competitiveness and profitability of organizations (Farshidi et al., 2018). Because so 
many factors need to be considered, the technology selection process is usually complex and often 
modeled as a multi-criteria decision-making (MCDM) problem which entails the evaluation of a set of 
alternatives and taking into account a set of decision criteria (Becker et al., 2013; Nnaji et al., 2018; 
Farshidi et al., 2018). MCDM is the process of making decisions between several alternatives by 
defining the decision criteria and their weights. The procedure enables the determination of the optimal 
choice among a set of options over the set of multiple criteria (Rani & Mishra et al., 2020). The process 
leads to the ranking of alternatives, from the most to the least favorable, thus allowing comparison of 
alternatives (Milenković et al., 2018). A few of the MCDM approaches that have been used in different 
fields (such as management, engineering, and economy) include the analytic hierarchy process (AHP) 
(Zubaryeva et al., 2012; Kumru & Kumru, 2014; Milenković et al., 2018), the technique for order of 
preference by similarity to ideal solutions (TOPSIS) (Chen et al., 2014; Milenković et al., 2018), grey 
evaluation method (GE) (Pai et al., 2007; Milenković et al., 2018), simple additive weighting (SAW) 
(Jakimavičius & Burinskiene, 2009; Milenković et al., 2018), ELimination and Choice Expressing the 
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REality (ELECTRE) (Hassan et al., 2018), and Strengths-Weakness-Opportunities-Threat (SWOT) 
analysis (Milenković et al., 2018). Table 1 presents a summary of these different MCDM approaches. 
 

Table 1 
Common MCDM Approaches for Technology Selection 
MCDM 
Approach Description Strengths Weaknesses 

Analytical 
hierarchy 
process (AHP) 
applications 

Based on decomposing 
a complex MCDM 
problem into 
hierarchies. 

• Seeks consistency in 
judgments. 

• Enables users to 
formulate their 
opinions. 

• Ineffective handling  
human’s subjective 
judgments. 

ELimination 
and Choice 
Expressing the 
REality 
(ELECTRE) 

Deals with the 
“outranking relations” 
using pair-wise  

• Treats qualitative and 
quantitative scales of 
criteria.  

• Treats reasons for and 
against an outranking. 

• Inappropriate for 
scoring actions. 

• No property of 
independence with 
respect to irrelevant 
actions. 

Grey relational 
analysis (GRA)  

Estimates a set of 
alternatives in terms of 
decision attributes. 

• Suitable to handle both 
incomplete information 
and unclear problems. 

Does not attempt to 
find the best 
solution. 

Simple additive 
weighting 
(SAW) 

Based on weighted 
summation of rating the 
performance of each 
alternative on all 
alternative criteria. 

• Can be used to perform 
judgments more 
precisely because it is 
based on pre-defined 
value and preference 
weight. 

• Requires 
normalizing 
decision matrix to a 
scale comparable to 
the ratings of 
existing alternatives. 

Strengths-
Weakness-
Opportunities-
Threat (SWOT) 
analysis 

Structured method that 
evaluates the strengths, 
weaknesses, 
opportunities, & threats 
of alternatives. 

• Allows expert 
knowledge acquisition 
from both explicit and 
implicit knowledge. 

• Does not provide 
solutions or offer 
alternative 
decisions. 

• Cannot be used to 
choose the best 
ideas  

Technique for 
Order 
Preference by 
Similarity to 
Ideal Solution 
(TOPSIS) 

Basic concept is that the 
chosen alternative 
should have the shortest 
distance from the ideal 
solution and the farthest 
from the negative ideal 
solution. 

• Limited amount of 
subjective input is 
needed.  

• Identifies the best 
alternative quickly. 

• Applicable to qualitative 
and quantitative data 

• Risk determination 
of decision maker 
while giving 
different input 
ratings. 

 
 

Research Method 
 
This section explains the research methodology implemented for this study. The research approach 
involves a review process and the presentation of the elements of the decision-making framework 
developed in this study. The study is divided into two major phases which are phase I – review of 
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literature on WIoT devices and phase II – decision-making benchmarking of the WIoT devices. In 
consideration of those two phases, a mixed-method research design was used in this study. During phase 
I, a qualitative method was adopted through a systematic literature review. The implementation of the 
systematic literature review focused on commercially available WIoT devices and information publicly 
available for the devices. This was done by probing the “Google” search engine and using keywords 
informed by preliminary and previous studies conducted by the research team. In phase II, a decision-
making framework is developed to evaluate and select the WIoT devices that can be applied for safety 
management in construction. The Technique for Order of Preference by Similarity to Ideal Solution 
(TOPSIS) is used in the development of the decision-making framework and will be implemented as a 
quantitative method to evaluate and select the WIoT devices. TOPSIS is considered a powerful MCDM 
approach for the study because it requires a limited amount of subjective input and permits the quick 
identification of the best alternative. However, the elements of the decision-making framework and 
metrics for evaluating the WIoT devices are presented in this paper. 
 
 

Decision Support Framework for WIoT Devices Selection 
 
This section presents the development of a decision support framework that supports construction 
stakeholders in making decisions on suitable WIoT devices. The implementation Phase II - Decision 
Making Benchmarking of the IoT Wearable Devices through the Technique for Order of Preference by 
Similarity to Ideal Solution (TOPSIS) will focus on developing the decision-making parameter to rank 
the IoT Wearable Devices to mitigate the fatal four. This phase II will be grounded on the results from 
phase I - review of literature on WIoT devices. For each WIoT, the device name, manufacturer, and 
source of information will be recorded in a dataset. Each WIoT device will have a unique identifier 
composed of the letters “WIoT” followed by a sequential number (i.e. WIoT-1).  A second dataset will 
be created with the following decision-making characteristics of the device that include: metrics 
monitored or captured, device type, alert methods, dimensions, weight, battery life, wireless 
connectivity, data log, and functions. The two datasets will be linked by the unique identifier. The 
decision to create two datasets was made as the information in the first dataset will not be used as part 
of the decision-making process.This phase II will be done in nine stages: Stage II.1 – Identify Measures; 
Stage II.2 – Identify measures needed to mitigate the fatal four; Stage II.3 – Establish Fuzzy Decision 
Matrix; Stage II.4 – Define Linguistic Values to Triangular Fuzzy Value; Stage II.5 – Normalize 
Linguistic Values (if needed); Stage II.6 – Calculate Objective Weight; Stage II.7 – Normalize 
Objective Weight; Stage II.8 – Determine Distance; Stage II.9 – Determine Ranking Values. 
 
Stage II.1: This stage will focus on identifying the measurements about the workers and the 
environment needed to predict and prevent construction injuries and accidents as shown in Table 2.  
 

Table 2 
Worker and Environmental Measurements 
ID Measurements  Unit of Measure 
Worker Measurements 
WM1 Body Position x-y-z 
WM2 Body Direction (rotation and orientation)   Azimuth & Zenith (Degree) 
WM3 Body Velocity (Vector) ft/sec 
WM4 Body Acceleration  ft/sec2 
Environmental Measurements 
EM1 Environment Objects Position x-y-z 
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EM2 Environment Object Composed Volume / 
Surface with respect to Person 

ft3/ft2 

EM3 Environment Objects Direction  Azimuth & Zenith (Degree) 
EM4 Environment Objects Velocity (Vector) ft/sec 
EM5 Environment Objects Acceleration (Vector) ft/sec2 
EM6 Environment Objects Type Mass, Empty Space, Energized 

During this stage, technical and publically available information for each unique WIoT summarized in 
phase I will be converted to the specific measurements and units of measure shown in Table 2. This 
will be done to ensure homogeneity of the data to be analyzed. It is anticipated that for some of the 
WIoT devices, the information will not be explicitly found in technical and publicly available 
information and therefore, the research team will infer the information to create the most comprehensive 
and accurate dataset to make decisions using Table 2. 
 
Stage II.2: This stage will correlate the worker measurement (WM) and environment measurements 
(EM) needed to predict and prevent construction injuries and accidents with each of the construction 
hazards (CH) identified as the construction fatal four (Falls, electrocution, struck-by, and caught-in or 
-between) as described under the literature review section. 
 
Stage II.3: This stage will ascertain for each WIoT device the WMs and EMs with possible 
Construction Hazard Adaptations (CH) as illustrated in Table 3. This stage is particularly important, as 
it is anticipated that most of the WIoT devices that will be found in phase I would not have been 
designed to mitigate a particular construction hazard. In fact, it is anticipated that most of the WIoT 
devices might not have been designed for the construction industry. Therefore, this dataset will allow 
the linking of the WIoT devices for workers and environment measures with their potential capability 
to be adapted to mitigate one or more construction hazards. Furthermore, this dataset will be composed 
of fuzzy measurement allowing the research team to evaluate each measurement in a range of linguistic 
metrics with five options (Very High, High, Medium, Low, and Very Low) likelihood to adapt for this 
measurement and/or construction hazard as shown in Table 3. 
 

Table 3 
Derived Measurements and Fuzzy Decision Matrix (Linguistic Values) 

Devic
e ID 

Workers Measurements Environmental Measurements Construction Hazard 
Adaptation 

WM1 WM2 WM3 WM4 EM1 EM2 EM3 EM4 EM5 EM
6 CH1 CH2 CH

3 CH4 

WIoT
1 

VH, 
H, M, 
L, 
VL 

   

VH, 
H, 
M, L, 
VL 

     

VH, 
H, 
M, 
L, 
VL 

   

VH = Very High (If purpose indicated in Information Source) 
H = High (If research consider easy to adapt for this measurement/construction hazard 
M = Medium (If research consider possible to adapt for this measurement/construction hazard) 
L = Low (If research consider hard to adapt for this measurement/construction hazard 
VL = Very Low (If research consider very unlikely to adapt for this measurement/construction hazard) 
 
Stage II.4: This stage will define the linguistic values to triangular fuzzy values (from the dataset 
developed in the previous stage). Three fuzzy value options will be considered as shown in Table 4 
because as part of this decision support framework, only five linguistics options (VH, H, M, L, VL) will 
be allowed for simplicity and consistency (of the decision-making framework) as opposed to the 
traditional seven linguistic options on fuzzy decision matrix that also include Medium High (MH) and 
Medium Low (ML). Therefore, Option 1 will use the regular values for each of the fuzzy values. Option 
2 will use the average fuzzy values of High and Medium High to represent High and the average fuzzy 
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values of Low and Medium Low to represent Low. Option 3 will use the fuzzy values corresponding 
Medium High to represent High and the fuzzy values of Medium Low to represent Low. The three fuzzy 
value options (Alpha1..3, Beta1..3, and Gamma1..3) will be recorded in three different datasets each 
containing for each WIoT device all the values for  WM1…4, EM1…EM6, and CH1…CH4. It is 
expected that an analysis of the three options will serve as a sensitivity evaluation of the decision support 
framework to identify the need or not to increase the five linguistics options (used in the framework) to 
seven linguistics options. 
 

Table 4       
Linguistic Values and Correspondent Fuzzy Values to Evaluate WIoT Adaptation 

Abbreviation Scale Option 1 
Fuzzy Value 

H=H 
L=L 

Option 2 
Fuzzy Value 

H=Avg (H, MH) 
L=Avg (L, ML) 

Option 3 
Fuzzy Value 

H=MH 
L=ML 

Very High VH (0.9   1.0   1.0)   
High H (0.7   0.9   1.0) (0.6   0.8   0.95) (0.5   0.7   0.9) 
Medium M (0.3   0.5   0.7)   
Low L (0.0   0.1   0.3) (0.05   0.2   0.4) (0.1   0.3   0.5) 
Very Low VL (0.0   0.0   0.1)   

 
Stage II.5: In this stage, linguistic values from the previous stage will be normalized (if needed). The 
normalization is expected for the WIoT decision-making characteristics quantitative values as well as 
for the WMs, EMs, and CHs with no extreme values (VH or VL). The normalization will consist of 
adjusting the values (through a Min-Max scaling) to establish a scale from a minimum value of zero (0) 
to a maximum value of one (1) for all parameters that will be considered in the decision-making 
framework. 
 
Stage II.6: In this stage, the objective weight (Entropy Method) will be calculated. This will be 
performed in three steps: a- Defuzzification, b- Projection Variable, and c- Objective Weights 
Calculations. The defuzzification will involve turning all the fuzzy values back to a single value. The 
single value will be calculated by adding Alpha plus twice Beta plus Gamma and then dividing the 
results of the addition by four. This calculation will be done for each of the parameters. The projection 
variable will be calculated as the coefficient dividing each defuzzified value by the corresponding 
summation of all defuzzified values for each WIoT device. The objective weight calculation will be 
done for each of the parameters by using entropy (e) as expressed in the following equation: 
 

𝑒𝑗 = 	−𝑘	' 𝑝𝑖𝑗 ∗ (ln	(𝑝𝑖𝑗)
!

	 

 
Where j corresponds to the particular parameter to be evaluated (i.e. 1, 2, to n), k is calculated as 1 / ln 
(m), m is the total number of WIoT devices been evaluated, and pij corresponds to the particular 
parameter been evaluated for each of the WIoT devices. 
 
Stage II.7: In this stage, the objective weight will be normalized using the weights for measurements 
and adaptation. The first step in this process will be to calculate the dispersion. The dispersion will be 
the opposite of the entropy and will be calculated by subtracting the entropy for each parameter from 1 
(e.g. 1 - 0.42 = 0.52). The objective weight for each parameter will be the dispersion of each parameter 
divided by the summation of all parameter weights (normalized). The researchers will then fuzzify the 
objective weight using Table 4 to select one of the five proposed linguistic values of VH, H, M, L, or 
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VL. Using the fuzzy objective weight, each of the parameters to be considered in the decision-making 
framework will be normalized. 
 
Stage II.8: This stage will involve the determination of the distance of each WIoT device for its 
corresponding WM, EM, and CH. This decision-making framework will take advantage of the TOPSIS 
ability to identify a solution that is the closest to the positive ideal solution (PIS) with a fuzzy value of 
(1,1,1) and the farthest to the negative ideal solution (NIS) with a fuzzy value of (0,0,0). Thus, the PIS 
and NIS will be calculated for each parameter of each WIoT using the Pythagorean Theorem. Then all 
of the PIS for each WIoT device will be added to create an overall PIS for each WIoT device and then 
all of the NIS for each WIoT device will be added to create an overall NIS for each WIoT device. 
 
Stage II.9: This stage will involve the determination of the ranking (Nearness Values) for each WIoT 
device to mitigate each of the construction hazards. A coefficient will be created by dividing the NIS 
of each WIoT device by the summation of the PIS and NIS, the higher the coefficient, the further from 
the NIS, and therefore the higher the rank of the WIoT device. 
 
 

Conclusion 
 

In this paper, a comprehensive literature review on the emergence of IoT-based wearable or WIoT 
devices and their usefulness for safety management was presented. A search of commercially available 
WIoT devices that can be used in the construction industry was also conducted. The findings of the 
literature search were used in the development of a decision-making framework for evaluating and 
selecting WIoT devices. The elements of the decision-making framework are presented in this study. 
This study presents an initial attempt geared towards providing construction stakeholders with an 
effective decision-making tool that can be used for evaluation and selecting WIoT devices for 
implementation in the construction industry. The framework presented in this study will be deployed 
and tested in further studies by the research team. 
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