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Abstract 

Accurate forecasts of demand are essential for water utilities in order to manage, plan, and 

optimize the operation of their network. This work aims to develop a new method for short-

term water demand forecasting by utilizing a new data-driven approach based on Random 

Forests, as well as consumption recordings, household, and socio-economic characteristics, 

and weather data. Initial results, obtained on real-life consumption data from the UK, 

demonstrate the potential of this method and show the importance of disaggregating 

consumption when attempting to determine the influence of weather on water demand. In this 

study, adding weather input to the model achieved improved forecasting accuracy, especially 

for the aggregation of properties with medium occupancy and affluent residents during 

summer months.  
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1 Introduction 
Predictions of urban water consumption are essential in water economies, especially 

under the threat of unprecedented water shortages [1]. Short-term water demand 

forecasting provides estimates of demand over the next hours or weeks to make 

informed operational, tactical, and strategic decisions that will improve the 

performance of the network [4, 10].  

However, predicting demand is a challenging task, due to its dynamic nature and 

inherent randomness, as well as the underlying relationships between consumption and 

multiple other household, socio-economic, and climatological factors that are not yet 

fully understood. The majority of short-term forecasting models use past consumption 

over the past week, month, or year as the main predictor, although some studies have 
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considered the effect of climatic variables such as temperature, humidity, and 

precipitation [10, 12]. 

A variety of studies have explored the application of machine learning methods such 

as Artificial Neural Networks, Support Vector Machines, and fuzzy logic in short-term 

water demand forecasting [6, 7, 8, 12, 18], or even hybrid models that combine one or 

more methods, but Random Forests have rarely been used in the water demand 

literature. The few studies that attempted this [1, 2, 10], although limited by data 

availability, demonstrated the potential of this method to accurately capture the 

dynamic nature of water consumption.  

In addition to this, very little research so far has examined the water use at multi-house 

or census tract level [4, 9]. Most studies that investigated the effect of weather on water 

demand [3, 9, 12], did not account for the variability of individual characteristics 

between households, but instead applied the methodology at large spatial (DMA 

level), or temporal (monthly) scales.  

The current work aims to utilise a very extensive dataset of consumption records, 

customer characteristics, household data and weather variables in order to enhance the 

understanding of the weather influence on water demand and use it to provide accurate 

forecasts of demand at the census tract level. 

2 Consumption Data 

The current study is based on the Southwest of England (Dorset, Somerset, Wiltshire, 

and Hampshire). The available data consists of consumption records derived from 

smart demand meters, available at 15-30 minute intervals from October 2014 to 

September 2017. The data is available at household level for almost 2,000 properties. 

In addition to this, a variety of property (garden size, rateable value, metering status) 

and customer characteristics (ACORN groups, occupancy rates) are also available for 

most of the households in the dataset.  

ACORN is a geodemographic segmentation of the UK’s population based on social 

factors and population behaviour and it is used to provide an understanding of the 

different types of people [17]. According to this, consumer groups A, B, and C are 

classified as “Affluent Achievers”, and groups D and E as “Rising Prosperity”. All 

groups A to E are classified as “Affluent” in the following. Groups F to J are classified 

as “Comfortable Communities” in the same guide, whereas groups K to Q are 

“Financially Stretched”. 

Occupancy rate groups were created based on the average UK household. Most 

households in the dataset had 2-3 occupants and were thus classified as medium 

occupancy households. More than 3 occupants were considered high occupancies 

whereas single-person households were classified as low occupancy. 
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The above variables (garden size, rateable value, metering status, ACORN group, and 

occupancy rate) can be used to segment the households into groups with uniform 

characteristics that are expected to show a similar sensitivity of water consumption to 

weather changes. 

Lastly, weather data collected at hourly to daily intervals for the same time-period 

(October 2014 – September 2017) for various weather stations across the Southwest 

(Avon, Somerset, Gloucestershire, Wiltshire, Dorset, Hampshire) was acquired from 

the Met office (UK). These datasets are part of the Met Office Integrated Data Archive 

System (MIDAS) Land and Marine Surface Stations Data that has been recorded from 

1853 to present. The following weather variables acquired from various datasets in the 

MIDAS database were included in the analysis:  

 Sunshine duration: This corresponds to the total sunshine hours over a 24-

hour period, as recorded by a Campbell-Stokes recorder. Where data is not 

available, the World meteorological organization (WMO) sunshine 

duration is used instead [15]. 

 Radiation: This is the total radiation amount that comes directly from the 

sun but not from the rest of the sky. It’s measured in Kjoules per square 

meter over a 24 hour period [13]. 

 Rainfall: It describes the rainfall accumulation and precipitation over the 

24 hour period, recorded using rain gauges at weather stations across the 

UK [16]. 

 Humidity: This is the mean humidity value over the 24 hour period, derived 

from humidity sensors [14]. 

 Air temperature: Mean air temperature recorded from 00.00 till 24.00 hours 

[15]. 

3 Demand Forecasting Methodology   

3.1 Random Forests   

Random Forests are data driven models that consist of an ensemble of decision trees 

that can be used for classification or regression. At each split of a tree within a forest, 

a test is performed by selecting a random subset of the independent variables [2]. The 

explanatory variables that are used as input to the model represent the roots and the 

output is the leaves [1]. The number of trees to grow and the number of the independent 

variables to be randomly selected at each node are defined by the user. 

In this case study a regression Random Forest model is implemented in R software as 

an ensemble of 1,000 regression trees. The output of the model is the average daily 

consumption among the selected properties. As water consumption follows a weekly 

pattern and most water authorities will aim to manage their network at a weekly time 
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frame for operational purposes, the forecasting horizon for this study was chosen to be 

1 to 7 days in the future and 7 days of past consumption are used as input data. 

3.2 Explanatory variables   

Historical time series of consumption have proven to be the most important 

determining factor in short-term demand forecasting. Past consumption is imported in 

all models following a sliding window strategy, where the window has a fixed length 

of 7 days, meaning that when new data is added (next day), old data is removed (7th 

day in the past) [2]. These 7 values reflect average daily consumptions among all the 

properties that are included in the corresponding segmentation of data.  

Next, additional explanatory factors are added to each model in an attempt to improve 

forecasting accuracy. These factors are mainly representative of a variety of weather 

variables such as air temperature, rainfall, humidity, and sunshine hours, as well as 

temporal characteristics, i.e. season and type of day (working day or holiday). 

Previous qualitative studies [5] concluded that certain types of households (e.g. 

affluent residents and medium occupancy households) show a higher sensitivity to 

weather changes during certain times (e.g. weekdays, evenings, and summers), with 

regards to consumption. The current study attempts to test this conclusion using a 

quantitative analysis, based on Random Forests. For that purpose, the influence of 

several weather variables on water consumption is tested and demonstrated for two 

aggregations of data, one including all the properties and days in the data, and the other 

one including only consumption during the summer months, households with medium 

occupancy (2 to 3 people) and affluent residents, as their consumption is expected to 

be more sensitive to weather changes [5]. 

Nine model configurations were developed in order to compare the individual as well 

as combined effect of different variables on the forecasting accuracy, for the two 

segmentations of properties (Table 1).  

Table 1: Models developed along with their corresponding explanatory variables 
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The first model accounts only for past consumption, models 2 to 7 account for past 

consumption as well as one weather variable, whereas models 8 and 9 combine 

multiple variables and were the two configurations that produced the best results in 

this study (Table 1).  

For each model testing, the available data was divided into two sets, a calibration 

dataset (80%) used to train the model and a validation dataset (20%) used to test the 

model performance on unseen data. 

3.3 Performance indices   

Two performance metrics were used in order to assess the quality of the models’ 

predictions, the Mean Absolute Error (MAE) and the coefficient of determination (R2); 
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where yi and ypre are the observed and forecasted values, respectively, and �̅� is the 

mean value of the observed values. 

4 Results and discussion 

The forecasting accuracy of the 9 models is compared against two datasets, based on 

the MAE and R2, for different forecast horizons (1 to 7 days ahead). A summary of the 

results, based on the validation dataset, appears in Figures 1 and 2. 

Figure 1 demonstrates the MAE of forecasts for the 9 models. The graph on the left 

was created based on data for all the properties and days (1,689 households, 1,019 

days), whereas the graph on the right takes into account only properties with medium 

occupancy and affluent residents (166 households) during summer months (297 days 

in total), as this segmentation of consumption proved to be significantly affected by 

changes in the weather.  

One thing that becomes apparent from Figure 1 is that when averaging across all 

properties, past consumption and day of the week seem to be the most important 

driving factors, since Model 2 achieves a reduction of MAE from ~16.8 l/property/day 

to ~14.5 l/property/day for forecasts 7 days ahead, an improvement of almost 14% 

(Figure 1, left graph, model 2). Including a combination of further explanatory 

variables (consumption, type of day, radiation, sunshine duration, rainfall, and 

humidity) achieves a slightly better performance (decrease of the MAE by a further 
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6%) (Figure 1, left graph, model 9). On the other hand, when looking at the properties 

and time of the year when the weather has the strongest influence on consumption 

(Figure 1, right graph), accounting for the above weather variables can reduce the error 

by up to 44%, taking the MAE from ~25 l/property/day to ~14 l/property/day for 

forecasts 7 days ahead (Figure 1, right graph, model 9). When looking only at summer 

months and medium occupancy households, humidity alone reduces the error by 24% 

(25 to 19 l/property/day) (Figure 1, right graph, model 7). 

The improvement in performance becomes larger as the forecast horizon grows. 

Although it is relatively easier to predict water demand for one day ahead (max 

absolute error improvement is 33%, from ~12 to ~18 l/property/day) (Figure 1, right 

graph, model 9), accounting for explanatory factors becomes more important the 

further the prediction moves into the future, resulting in reducing the error by an 

additional 11% for forecasts 7 days ahead (Figure 1, right graph, model 9). 

When attempting short-term forecasts of a few hours or days ahead, information 

relating to the weather is incorporated in the information about past consumption, as 

in the UK there are not typically rapid changes in the weather from one day to the next 

one. However, as the forecast horizon increases, information about the weather 

becomes valuable when attempting to predict demand, especially when water is used 

for outdoor activities (recreational and gardening) that primarily happen during the 

summer months, in affluent households. In addition, segmenting properties with 

medium occupancy ensure that this correlation can be identified and the relationship 

between water consumption and demand is not going to be concealed by the erratic 

water use of single-person households, or even large families. 

Figure 1: Mean Absolute Error (MAE) for 1-7 day forecasts, based on the validation 

dataset, for all properties in all months (left) and for the properties with medium occupancy 

and affluent residents during summer months (right). 
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Figure 2 shows the R2 values for the 1-7 day forecasts made by the 9 models. For all 

properties and days in the data, including weather input increases the value of the R2 

from ~20% to ~30% for forecasts 7 days ahead, i.e. by a maximum of just over 10% 

(Figure 2, left graph), which remains relatively stable over the forecasting horizon. 

However, adding weather inputs for the properties that are more influenced by the 

weather variations can increase the R2 values from ~30% to ~72% for forecasts 1 day 

ahead, or from ~16% to ~72% for forecasts 7 days ahead (Figure 2, right graph). This 

corresponds to an improvement in correlation of 40% and 56% for forecasts 1 and 7 

days ahead, respectively. 

5 Conclusions 

This study attempts to investigate the influence of multiple weather variables on water 

consumption by developing a new modelling approach based on Random Forests. 

Results show that the benefit of adding weather input to demand forecasting models is 

not univariate across all properties and times of the year but for households with high 

weather induced consumption it can be significant.  

 

Results obtained also demonstrate the additional value of weather input as the forecast 

horizon increases, even in the moderate UK climate. When looking at summer months 

and properties with medium occupancy and affluent residents, adding weather input 

achieved a reduction of the MAE by up to 44% for forecasts 7 days ahead and an 

increase of the R2 value by ~56%, as opposed to 20% and 40% respectively for the 

case where all properties in all months were considered. 

Figure 2: Coefficient of determination (R2) for 1-7 days forecasts, based on the validation 

dataset, for all properties in all months (left) and for the properties with medium 

occupancy and affluent residents during summer months (right) 

Smart Water Demand Forecasting: Learning from the Data M. Xenochristou et al.

2357



Acknowledgements 

This study was conducted as part of the WISE Centre for Doctoral Training, funded 

by the UK Engineering and Physical Sciences Research Council. 

References 
[1] G. Chen, T. Long, J. Xiong, Y. Bai, Multiple Random Forests Modelling for Urban Water 

Consumption Forecasting, J. Water Resources Management 31 (2017) 4715-4279. 

[2] M. Herrera, L. Torgo, J. Izquierdo, R. Perez-Garcia, Predictive models for forecasting hourly urban 

water demand, J. Hydrology, 387 (2010) 141-150. 

[3] M. Bakker, H. van Duist, K. Van Schagen, J. Vreeburg, L. Rietveld, Improving the performance of 

water demand forecasting models by using weather input, Procedia Engineering, 70 (2014) 93-102. 

[4] A.S. Polebitski, R.N. Palmer, Seasonal Residential Water Demand Forecasting for Census Tracts, 

J. Water Resources Planning & Management, 136 (2010) 27-36. 

[5] M. Xenochristou, Z. Kapelan, C.J. Hutton, J. Hofman, Identifying relationships between weather 

variables and domestic water consumption using smart metering, CCWI (2017) Sheffield. 

[6] C. Pena-Guzman, J. Melgarejo, D. Prats, Forecasting Water Demand in Residential, Commercial, 

and Industrial Zones in Bogota, Colombia, Using Least-Squares Support Vector Machines, J. 

Mathematical Problems in Engineering (2016). 

[7] A. Candelieri, D. Soldi, F. Archetti, Short-term forecasting of hourly water consumption by using 

automatic metering readers data, Procedia Engineering 119 (2015) 844-853. 

[8] M. Romano, Z. Kapelan, Adaptive water demand forecasting for near real-time management of 

smart water distribution systems,  J. Environmental modelling & Software 60 (2014) 265-276. 

[9] A. S. Polebitski, R.N. Palmer, Seasonal Residential Water Demand Forecasting for Census Tracts, 

J. Water Resources Planning Management 136 (2010). 

[10] E. Pacchin, S. Alvisi, M. Franchini, A short-term water demand forecasting mdoel using a moving 

window on previously observed data, Water 172 (2017).  

[11] P. Bachari, D. Nekipelov, S.P. Ryan, M. Yang, Machine learning methods for demand estimation, 

American Economic Review 105 (2015) 481-485. 

[12] C.C. Dos Santos, A.J. Pereira Filho, Water Demand Forecasting Model for the Metropolitan Area 

of Sao 

Paulo, Brazil, Water Resources Management, 28 (2014) 4401–4414. 

[13] Met Office, MIDAS: Global Radiation Observations. NCAS British Atmospheric Data 

Centre, 07.03.2018. http://catalogue.ceda.ac.uk/uuid/b4c028814a666a651f52f2b37a97c7c7 

(2006). 

[14] Met Office, MIDAS: UK Hourly Weather Observation Data. NCAS British Atmospheric Data 

Centre, 07.03.2018. http://catalogue.ceda.ac.uk/uuid/916ac4bbc46f7685ae9a5e10451bae7c 

(2006). 

[15] Met Office, MIDAS: UK Daily Weather Observation Data. NCAS British Atmospheric Data 

Centre, 07.03.2018. http://catalogue.ceda.ac.uk/uuid/954d743d1c07d1dd034c131935db54e0 

(2006). 

 [16] Met Office, MIDAS: UK Daily Rainfall Data. NCAS British Atmospheric Data 

Centre, 07.03.2018. http://catalogue.ceda.ac.uk/uuid/c732716511d3442f05cdeccbe99b8f90 

(2006). 

[17] CACI Limited, The ACORN user guide, London, 2014. 

[18] A.K. Sampathirao, J.M. Grosso, P. Sopasakis, C. Ocampo-Martinez, A. Bemporad, V. Puig, Water 

demand forecasting for the optimal operation of large-scale drinking water networks: The Barcelona 

Case Study, 19th IFAC World Congress (2014) South Africa 10457-10462. 

 

Smart Water Demand Forecasting: Learning from the Data M. Xenochristou et al.

2358

http://catalogue.ceda.ac.uk/uuid/b4c028814a666a651f52f2b37a97c7c7
http://catalogue.ceda.ac.uk/uuid/916ac4bbc46f7685ae9a5e10451bae7c
http://catalogue.ceda.ac.uk/uuid/954d743d1c07d1dd034c131935db54e0
http://catalogue.ceda.ac.uk/uuid/c732716511d3442f05cdeccbe99b8f90

