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Abstract

The second-order Copeland voting scheme is NP-complete to manipulate even if a
manipulator has perfect information about the preferences of other voters in an elec-
tion. A recent work proposes a branch-and-bound heuristic for manipulation of second-
order Copeland elections. The work shows that there are instances of the elections that
may be manipulated using the branch-and-bound heuristic. However, the performance of
the heuristic degraded for fairly large number of candidates in elections. We show that
this heuristic is exponential in the number of candidates in an election, and propose an
improved heuristic that extends this previous work. Our improved heuristic is based on
randomization technique and is shown to be polynomial in the number of candidates in an
election. We also account for the number of samples required for a given accuracy and the
probability of missing the accurate value of the number of manipulations in an election.

1 Introduction

Preference aggregation is used in a variety of applications, including artificial intelligence and multiagent
systems - to ease group decision-making when agents are faced with a number of alternatives to make a
single choice. For example, Ephrati and Rosenschein [5] use virtual elections for preference aggregation
in multiagent systems planning where agents vote on the next step of a plan under consideration. Also,
according to Bartholdi, Tovey, and Trick [2], “The Federation Internationale Des Echecs and the United
States Federation (USCF) implement tie-breaking rules that are either identical to, or are minor variants
of the second-order Copeland scheme” to determine winners in competitions.

Voting protocols, such as the Copeland and second-order Copeland schemes are appropriate can-
didates, among others, for modeling such preference aggregation. Bartholdi, Tovey, and Trick define a
voting scheme as an algorithm that takes as input a set C of candidates and a set P of preference
orders that are strict (irreflexive and antisymmetric), transitive, and complete on C. The algorithm
outputs a subset of C, who are the winners (allowing for ties). The ideal of a society is that a candidate
emerging as a winner in an election be as widely and socially acceptable as possible.

Strategic manipulation of elections by agents remains a bane of voting protocols. Thus, the in-
ability to limit or understand the effects of this menace may undermine the confidence agents have in
decisions made via such protocols. While the Copeland voting protocol can be efficiently manipulated
in polynomial time, the second-order Copeland voting scheme is NP-complete to manipulate even if a
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manipulator has complete information about the preferences of other voters in an election [2]. Although
this complexity result is daunting to deter a strategic voter from manipulation, NP-completeness is a
worst case measure. And only shows that at least one instance of the problem requires such complexity
[3]. Thus, real-life instances of an election that we care about may be easy to manipulate.

Conitzer and Sandholm [3] show that when the number of candidates in an election is small,
manipulation algorithms that are exponential only in the number of candidates might be available. In
line with this, and in an attempt to determine how few the candidates of elections can be for voting
procedures to be hard, they show that at least four candidates are needed in any Copeland election for
the manipulation to become hard in the second-order Copeland scheme [4].

Lasisi [13] in a recent work and using the hypothesis that “There are instances of second-order
Copeland elections that may be efficiently manipulated using heuristics,” proposes a branch-and-bound
heuristic for manipulation of second-order Copeland elections. The performance of the heuristic was
experimentally evaluated using randomly generated data based on three distributions, including uni-
form, normal, and Poisson. Results of experiments from the work suggest that there are instances of
the second-order Copeland elections that may be manipulated using the proposed branch-and-bound
heuristic when a voter has perfect information about the preferences of other voters. However, the
performance of the heuristic degraded for fairly large number, k ≥ 8, of candidates. This degradation
in performance is expected, as our analysis of the branch-and-bound heuristic shows that the heuristic
is exponential in the number of candidates in the elections. Considering the exponential running time
of this branch-and-bound heuristic, we propose in this paper an improved heuristic that extends this
previous work. Our main results are as follows:

• The textual description of the proposed branch-and-bound heuristic in [13] is unclear where
it needs to be precise. So, we present a pseudocode to clarify the heuristic branch-and-bound
algorithm.

• We provide an analysis of the running time of the branch-and-bound heuristic. Our analysis
shows that the heuristic is exponential in the number of candidates in an election.

• We propose a randomized method for manipulation of second-order Copeland elections. We use a
sampling procedure approach to generate samples of voters’ preferences and employ a specialized
version of the well-known Hoeffding’s inequality [12], referred to as the Chernoff’s bound to
account for the number of samples required for a given accuracy as well as the probability of
missing the accurate value of the number of manipulations in an election.

• Finally, based on our proposed randomized method for manipulation of second-order Copeland
election above, we propose an improved randomized heuristic that extends the branch-and-bound
heuristic. Our heuristic is shown to be polynomial in the number of candidates in an election.

2 Preliminaries

We present preliminaries covering definitions, notation, and examples of voting and manipulations in
first and second-order Copeland elections.

2.1 Definitions and Notation

Definition 1. First-order Copeland Voting

The Copeland voting scheme (also known as the first-order Copeland method) is a protocol in which
all candidates in an election engage in the same number of pairwise contests. A winner is a candidate
that maximizes her Copeland score: the difference between her number of victories and defeats in all
pairwise contests [17, 18].

Definition 2. Second-order Copeland Voting

163



Improved Heuristic for Manipulation of Second-order Copeland Elections Ramoni Lasisi and Abibat Lasisi

In the case of a tie in the first-order Copeland voting, the eventual winner is the candidate whose
defeated competitors have the largest sum of Copeland score. This tie-breaking rule is the second-order
Copeland voting [2].

Let k, n ∈ Z+. Let C = {c1, . . . , ck} be a set of candidates in an election, with k ≥ 4. Let
P = {p1, . . . , pn}, respectively, be the preference orders of voters, V = {v1, . . . , vn}, over C. We define
a relation, �, for each pi ∈ P over C. We say that a voter vm ∈ V ranks candidate ci over candidate
cj denoted, ci � cj , if vm prefers ci to cj in her preference order pm ∈ P . Since all candidates must
engage in the same number of contests, the preference orders are required to be complete on C. Finally,
denote by CS(ci), the Copeland score of a candidate ci ∈ C in a first-order Copeland election.

2.2 Voting and Manipulation in First-order Copeland Elections

Example 1. First-order Copeland Voting

Consider the following preferences by seven agents for three candidates, a, b, and c, in an election:

3 agents : a � c � b

2 agents : c � b � a

1 agent : c � a � b

1 agent : b � a � c

In the pairwise contests:

a vs b : a received 4 votes while b received 3 votes ⇒ a wins and b loses

a vs c : a received 4 votes while c received 3 votes ⇒ a wins and c loses

b vs c : b received 1 vote while c received 6 votes ⇒ b loses and c wins

The Copeland scores for the three candidates are:

CS(a) = 2− 0 = 2

CS(b) = 0− 2 = −2

CS(c) = 1− 1 = 0

Thus, candidate a is the overall winner in this election.

Example 2. Manipulation of First-order Copeland Voting

We consider the same set of candidates and voters as in Example 1. However, one of the voters from
that example is using a different preference order, i.e., not reporting her preference order truthfully. Let
s be this strategic voter with the truthful preference b � a � c (as given in Example 1). Let c be the
candidate that s would like to manipulate her preference for. Suppose s employs the polynomial manip-
ulation algorithm of [2], designed to place favored candidate at the top of strategic agent’s preference,
to uncover a manipulative preference order, c � a � b, and then participates in the election. The new
Copeland scores for the three candidates are:

CS(a) = 1− 1 = 0

CS(b) = 0− 2 = −2

CS(c) = 2− 0 = 2

Thus, candidate c is the overall winner in this election where the strategic agent fails to report
her preference order truthfully. Note that the preference orders of the remaining six agents remain the
same as before.
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2.3 Voting and Manipulation in Second-order Copeland Elections

Example 3. Second-order Copeland Voting

Consider the following preferences by seven agents for four candidates, a, b, c, and d, in an election:

3 agents : a � b � c � d
2 agents : d � b � c � a
1 agent : d � b � a � c
1 agent : c � d � a � b

In the pairwise contests:

a vs b : a received 4 votes while b received 3 votes ⇒ a wins and b loses

a vs c : a received 4 votes while c received 3 votes ⇒ a wins and c loses

a vs d : a received 3 votes while d received 4 votes ⇒ a loses and d wins

b vs c : b received 6 votes while c received 1 vote ⇒ b wins and c loses

b vs d : b received 3 votes while d received 4 votes ⇒ b loses and d wins

c vs d : c received 4 votes while d received 3 votes ⇒ c wins and d loses

The Copeland scores for the four candidates are:

CS(a) = 2− 1 = 1

CS(b) = 1− 2 = −1

CS(c) = 1− 2 = −1

CS(d) = 2− 1 = 1

Thus, candidates a and d tied in this first-order Copeland voting. This tie is broken by computing the
sum of the Copeland scores for the defeated competitors for both a and d. The sum of the Copeland
scores for the defeated competitors of a is CS(b) + CS(c) = −2 and that of the defeated competitors
of d is CS(a) + CS(b) = 0. Thus, candidate d emerges as the overall winner in this election after the
application of the tie-breaking rule.

Example 4. Manipulation of Second-order Copeland Voting

We consider the same set of candidates and voters as in Example 3. However, one of the voters from
that example is using a different preference order, i.e., not reporting her preference order truthfully. Let
s be this strategic voter with the truthful preference c � d � a � b (as given in Example 3). Let a
be the candidate that s would like to manipulate her preference for. Suppose s uses the manipulative
preference order, a � c � d � b, and then participates in the election. The pairwise contests are:

a vs b : a received 4 votes while b received 3 votes ⇒ a wins and b loses

a vs c : a received 5 votes while c received 2 votes ⇒ a wins and c loses

a vs d : a received 4 votes while d received 3 votes ⇒ a wins and d loses

b vs c : b received 6 votes while c received 1 vote ⇒ b wins and c loses

b vs d : b received 3 votes while d received 4 votes ⇒ b loses and d wins

c vs d : c received 4 votes while d received 3 votes ⇒ c wins and d loses

The Copeland scores for the four candidates are:

CS(a) = 3− 0 = 3

CS(b) = 1− 2 = −1

CS(c) = 1− 2 = −1
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CS(d) = 1− 2 = −1

Thus, candidate a is the overall winner in this election where the strategic agent fails to report her
preference order truthfully. Observe that the preference order used by the strategic agent avoids ties
and the tie breaking rule employed in Example 3.

Winners in both the Copeland and second-order Copeland votings can be efficiently computed in
polynomial time. However, while a strategic voter can efficiently manipulate the Copeland voting in
polynomial time, the second-order Copeland voting is NP-complete to manipulate [2]. According to
[2]: “Intuitively, it is difficult to construct a manipulative preference under Second-Order Copeland
because it is difficult to know where to place candidates in the preference. For example, placing a
favored candidate at the top can unintentionally improve the scores of rivals because of second order
effects in the scoring.”

3 The Branch-and-Bound Heuristic

Heuristics are known to provide preferable solutions to instances of hard problems in practical situations
without having to examine all the possible choices. The approach employed in the design of this heuristic
is to compute an estimated score of the current problem instance, called the bound. This bound is then
used to determine how to branch or bypass (without examination of) large instances of the problem
whose scores cannot be better than the bound found so far. For completeness, we present a pseudocode
(Algorithm 1), description, and analysis of the branch-and-bound heuristic proposed in [13].

3.1 Description of the Heuristic

Let C,P, and V , be as defined in Section 2, with |C| = k and |P | = |V | = n. Let vs ∈ V be a strategic
voter with preference order ps ∈ P. Let cd ∈ C be a candidate that vs would like to manipulate her

preference order for so that cd wins in an election. Suppose m ≤ k of the candidates, including cd
tied under the Copeland voting protocol, then the difficulty is to manipulate the tie-breaking rule
(under the second-order Copeland scheme) such that candidate cd wins. Hence, the interest is to find
all such preference orderings p′s of voter vs different than ps, that elicits wins for cd. The preference
orders of all the voters are assumed to be fixed except that of vs, and these other orderings are known
to vs. Altogether, there are

(
k
2

)
pairwise contests among the k candidates and each of the candidate

participates in exactly k − 1 contests.

Using Algorithm 1, for every new preference order p′s of vs, compute the Copeland scores of the k
candidates in d k−1

2
e contests and set the bound for the heuristic as the maximum score in the contests,

denoted by maxCS . Estimate the overall score of cd, denoted CSest(cd), in the expected k − 1 contests
as CSest(cd) = CS(cd) + b k−1

2
c. This score gives an estimate of the upper bound on the Copeland score

that is attainable by cd since it is assumed that cd will win in all of the remaining b k−1
2
c contests. If

this estimated score is less than or equal to the bound value, i.e., CSest(cd) ≤ maxCS , then bypass this
preference order since this is the best score attainable by cd in these k−1 contests using this particular
preference order. Otherwise, compute the Copeland scores of the k candidates in the remaining b k−1

2
c

contests and determine the winner. If candidate cd wins, then the heuristic has found an instance of
the second-order Copeland voting that is manipulable.

The salient point worthy of note in this heuristic is that it allows cd to circumvent election scenarios
that lead to a tie with other candidates, thus ensuring a win in all situations where the heuristic reports
a win.
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Algorithm 1: Branch-and-Bound. Find manipulable preference orders

input : preferences of n voters (including ps of the strategic agent vs) over k
candidates and a distinguished candidate, cd

1

output: set of preferences p′s 6= ps of the strategic agent vs that ensures that cd is a
winner

2 found←− ∅
3 for every new preference order p′s of vs different than ps do
4 for dk−12 e contests do
5 for each candidate ci ∈ C do
6 compute Copeland score CS(ci) using the n voters’ preferences
7 set scorei ←− CS(ci)

8 maxCS ←− maxi∈C scorei
9 CSest(cd)←− CS(cd) + bk−12 c

10 if CSest(cd) ≤ maxCS then
11 continue

12 for the remaining bk−12 c contests do
13 for each candidate ci ∈ C do
14 compute Copeland score CS(ci) using the n voters’ preferences
15 scorei ←− scorei + CS(ci)

16 if CSest(cd) == maxi∈C scorei then
17 manipulable preference order found
18 found←− found ∪ {p′s}

19 return found

3.2 Analysis of the Heuristic

Clearly, the time expended in lines 8 and 16− 18 of the algorithm is O(k) since there are k candidates
in the election. Lines 9 and 10 − 11 is all a constant amount of work and can be ignored given the
O(k) time. In cases that we bypass some instances of the problem, we will execute only the nested
for loop in lines 4 − 7. However, in the worst case, both nested loops in lines 4 − 7 and lines 12 − 15
will be executed. The two nested loops combine to compute all the

(
k
2

)
pairwise contests among the

k candidates, for which each of the candidate participates in exactly k − 1 contests. So, the time
expended in lines 4 − 7 and lines 12 − 15 for the contest is

(
k
2

)
= k(k−1)

2
= O(k2). Since we are using

n voters’ preferences, the total time to determine the winner (i.e., computes scorei) in the contests is
O(k2n). Thus, the previous O(k) can be ignored compared to the O(k2n). Furthermore, line 3 considers
every new preference order of the strategic agent. Since there are k candidates, we will consider a total
of k! preferences (or permutations). This gives O(k!) work to generate all the permutations. Using
Stirling’s approximation, the amount of work is about O(2k log k). Finally, since the two nested loops
that gave rise to the O(k2n) work above are included in this outermost loop, the total running time of
the algorithm is O(k2n · 2k log k), which is exponential in the number k of the candidates in an election.
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4 A Randomized Method for Manipulation of Second-
order Copeland Elections

Since it is non-trivial to consider every possible preference orders of a strategic voter to uncover possible
manipulations in second-order Copeland elections as demonstrated in the previous section, a scientific
approach is to consider samples from the population of the preference orders. The information contained
within a sample can then be used to investigate properties of the population from which the sample
is drawn [[10],page 294]. We represent the set P of preference orders by a corresponding set Π of
permutations of the k candidates in an election. Consider an election with three candidates, a, b, and
c. If a voter’s preference order pi ∈ P is, b � a � c, then the corresponding permutation πi ∈ Π of
the preference order is given as bac. Similarly, the preference order pj : a � b � c corresponds to the
permutation πj : abc.

The idea of our randomized method for manipulation of the second-order Copeland elections that
we propose in this section comes from a similar sampling procedure for approximating power indices
in [1]. The method involves sampling permutations and checking whether each permutation results in
a preference order that is manipulable. Thus, we can approximate the actual number of manipulable
preferences in an election by taking large enough samples of the preference orders of the strategic agent
that are different from her truthful preference order. The amount of permutations sampled determines
the accuracy of the randomized method. Similar to [1], our proposed method determines the number η
of samples required for a given approximation accuracy ε > 0 and probability ρ of missing the accurate
value of the number of manipulable preferences in an election.

4.1 A Manipulable Preference Order

We need an operation in our randomized method to determine if a preference is manipulable. Given
preferences P of n voters (including the preference ps of the strategic agent vs) over k candidates and
a distinguished candidate, cd. Let cd ties with some candidates in the Copeland election and loses in
the second-order Copeland election when the strategic agent vs votes truthfully using ps.

Given a new preference order p′s different than ps, we can easily check in polynomial time if p′s is
manipulable, i.e, p′s results in a win for cd in a Copeland election. We use permutations πs, π

′
s ∈ Π to

represent ps, p
′
s ∈ P , respectively. Let procedure Manipulable(Π, πs, π

′
s, C, cd) be a polynomial algo-

rithm for checking if the preference p′s is manipulable. The procedure returns true if p′s is manipulable
and false otherwise. The running time of the procedure is precisely O(k2n). See Algorithm 2.

4.2 Random Sampling of Permutation

We define a sampling procedure. See Algorithm 3. Let the permutation πs represents the original prefer-
ence order ps of the strategic agent vs. This procedure simply generates a new random permutation π′s
of the candidates C, ensures that it is different than πs, and has not been found before. A hashset data
structure named found, is maintained and is also used to check for duplicate permutations. Further, the
procedure calls the Manipulable procedure of Subsection 4.1 to check if π′s is manipulable. The pro-
cedure returns a 1 if π′s is manipulable and 0 otherwise. The two operations of generating a permutation1

and checking that the permutation is different than πs can be completed in linear time of the num-
ber of candidates in the permutation, i.e., O(k). Checking the existence of duplicates in the found
hashset can be done in constant time. The overall running time of this procedure is O(k3n) since it
calls the Manipulable procedure each time. Let procedure RandomSample(Π, πs, C, cd, found) be the
polynomial algorithm for sampling a permutation as shown in Algorithm 3.

This sampling procedure models the Bernoulli distribution. This is a random trial or experiment
in which the outcome can be classified into two mutually exclusive ways called success or failure. Let

1There are several techniques for generating permutation that are linear in the size of the permutation.
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Algorithm 2: Manipulable(Π, πs, π
′
s, C, cd). Checks if preference p′s corresponding to

the permutation π′s is manipulable

input : Π, πs, π
′
s, C, and cd

1

output: return true if preference p′s corresponding to the permutation π′s is
manipulable or false otherwise

2 Π←− Π \ {πs} ∪ {π′s}
3 for m = 1 to |Π| = n do
4 for i = 1 to |C| − 1 = k − 1 do
5 for j = i+ 1 to |C| = k do
6 conduct pairwise contest between candidates ci and cj in permutation πm
7 update Copeland scores CS(ci) and CS(cj)

8 if CS(cd) == maxi∈C CS(ci) then
9 return true

10 return false

Algorithm 3: RandomSample(Π, πs, C, cd, found). Samples a permutation π′s and re-
turns 1 if it is manipulable or 0 otherwise

input : Π, πs, C, cd and found
1

output: return 1 if preference p′s corresponding to the sampled permutation π′s is
manipulable or 0 otherwise

2 π′s ←− generatePermutation() of size |C|
3 ensure that π′s 6= πs and π′s /∈ found
4 if Manipulable(Π, πs, π

′
s, C, cd) then

5 p′s ←− getCorrespondingPreference(π′s)
6 found←− found ∪ {p′s}
7 return 1

8 return 0

Xi be Bernoulli random variables associated with different trials in which Xi is 1 if π′s is manipulable
and 0 otherwise. The Bernoulli random variable is defined by the parameter p, 0 ≤ p ≤ 1, which is the
probability that the outcome is 1, i.e., P (Xi = 0) = 1− p and P (Xi = 1) = p.

Consider η independent repetitions of such trials. Let X be the number of successes in this series
of the Bernoulli trials, X =

∑η
i=1Xi is said to have a Binomial distribution with parameters η and p,

denoted X ∼ B(η, p). The Binomial distribution gives the number of successes obtained within a fixed
number of η trials. Observe that parameter p, the probability of success which is the probability that
π′s is manipulable is unknown. Since X ∼ B(η, p), then the estimate for p, is p̂ = X

η
. This estimator

p̂, is an unbiased estimate for the probability p [10]. Clearly, p̂ is the estimate of the proportion of the
number of manipulable preferences p′s for the original preference ps in a sequence of η independent
Bernoulli trials.
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4.3 Estimating Manipulations in a Second-order Copeland Election

We now estimate the amount of p′s that are manipulable for a given ps in an election. We employ a
specialized version of the well-known Hoeffding’s inequality [12], referred to as the Chernoff’s bound
to obtain a relationship among the number η of samples required for a given approximation accuracy
ε > 0 and probability ρ of missing the accurate value of the number of manipulable preferences in an
election. That is we are willing to accept with probability ρ of having our estimator p̂ miss p by more
than ε.

Theorem 1. (Hoeffding’s inequality). Let X1, . . . , Xη be independent random variables on R such that
ai ≤ Xi ≤ bi with probability one. If X =

∑η
i=1Xi then for all ε > 0

Pr(|X − E[X]| ≥ ε) ≤ 2e
− 2ε2∑

(bi−ai)2 (1)

Hoeffding’s inequality specializes to Chernoff’s bound as follows. If Xi are independent and identi-
cally distributed Bernoulli random variables, then ai = 0, bi = 1, and X ∼ B(η, p). Since E[X] = ηp,
Chernoff’s bound is given as:

Pr

(∣∣∣∣1η
η∑
i=1

Xi − p
∣∣∣∣ ≥ ε) ≤ 2e−2ηε2 (2)

which simplifies to the following

Pr

(∣∣∣∣Xη − p
∣∣∣∣ ≥ ε) ≤ 2e−2ηε2 (3)

Pr(|p̂− p| ≥ ε) ≤ 2e−2ηε2 . (4)

We ensure that the Chernoff’s bound given in Equation 4 does not exceed the probability ρ of
missing the accurate value of the number of manipulable preferences in an election and simplify the
expression using the Power Confidence Interval Theorem of [1]. Thus, we have

Pr(|p̂− p| ≥ ε) ≤ 2e−2ηε2 ≤ ρ

2e−2ηε2 ≤ ρ

−2ηε2 ≤ ln
ρ

2

Then,

η ≥ − 1

2ε2
ln
ρ

2

≥ ln

(
ρ

2

)− 1
2ε2

≥ ln

(
2

ρ

) 1
2ε2

≥ 1

2ε2
ln

2

ρ

Thus, the number η of samples required for a given accuracy ε > 0 and probability ρ of missing the

accurate value of the number of manipulable preferences is at least
ln 2
ρ

2ε2
.
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Algorithm 4: RandomizedHeuristic(Π, πs, C, cd, ε, ρ). Find manipulable preferences
using randomization

input : Π, πs, C, cd, ε, and ρ
1

output: set of preferences p′s of the strategic agent vs that ensures that cd is a winner
2 counter = 1
3 found←− ∅
4 repeat
5 if RandomSample(Π, πs, C, cd, found) == 1 then
6 manipulable preference order found

7 counter += 1

8 until counter ≥ ln 2
ρ

2ε2

9 return found

5 Randomized Heuristic

We now propose a randomized heuristic for manipulation of second-order Copeland election based on
the randomized method of Section 4.

5.1 Description of the Heuristic

Let procedure RandomizedHeuristic be our randomized heuristic. RandomizedHeuristic accepts as
input, permutations Π representing the preferences P of n voters in a second-order Copeland election,
a permutation πs ∈ Π representing the truthful preference ps ∈ P of the strategic agent vs ∈ V , the set
C of candidates with a distinguished candidate cd ∈ C, approximation accuracy ε > 0, and probability
ρ of missing the accurate value of the number of manipulable preferences in the Copeland election.

RandomizedHeuristic repeatedly samples permutations by calling the procedure RandomSample
of Subsection 4.2, which in turn calls the Manipulable procedure of Subsection 4.1. The heuristic
starts with an empty value for the hashset, found. The data structure is continuously updated in the
RandomSample procedure when a new manipulable preference is found. The heuristic checks the values
return by each call of RandomSample procedure. A value of 1 indicates that a manipulable preference
has been found, and 0 otherwise. The heuristic continues to sample permutations until enough samples

η have been generated, i.e., when η ≥
ln 2
ρ

2ε2
. The pseudocode of the heuristic is given in Algorithm 4.

5.2 Analysis of the Heuristic

It is easy to see that the running time of the randomized heuristic for manipulation of second-order

Copeland election is Ω

(
k3n ·

ln 2
ρ

2ε2

)
, which is polynomial in the number |C| = k of candidates in the

election. This is because the running time of the heuristic is entirely due to line 5 of the algorithm
which consists of an O(k3n) statement as demonstrated in Subsection 4.2. This statement is contained

in a loop that is repeated for at least
ln 2
ρ

2ε2
times.

6 Related Work

Voting and elections play major roles in artificial intelligence, multiagent systems, and human soci-
eties. We use elections to make hiring decisions, nominate representatives to various arms of govern-
ment, decide winners in competitions, and many more. There are several well-known voting protocols,
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including, simple majority, Borda count, plurality, Copeland voting, second-order Copeland, runoff, and
maximin, for group decision-making in the literature. See [21, 22, 23], for a general introduction to the
theory of voting and elections.

The ideal of a society is that a candidate emerging as a winner in an election be as widely and
socially acceptable as possible. However, the problem of manipulation in elections and voting systems
are pervasive in human societies and multiagent systems, and has received attention of many researchers
in recent years. See, for example, [8, 11, 14, 15, 16, 19]. The famous Gibbard-Satterthwaite theorem
states: Every voting scheme with at least three outcomes is either dictatorial or manipulable [9, 20]. This
implies that in any non-dictatorial voting protocol with at least three candidates, there exist some
preferences of the voters such that some voters achieve better outcomes voting strategically i.e., not
truthfully representing their preferences.

Previous works on strategic manipulations in Copeland elections have been devoted to compu-
tational complexity results. Faliszewski et al. [6] study the complexity of manipulation for a family
of election systems derived from Copeland voting via introducing a parameter α that describes how
ties in head-to-head contests are valued. They show that the problem of manipulation for unweighted
Copelandα elections is NP-complete even if the size of the manipulating coalition is limited to two. In
a follow up research, Piotr et al. [7] resolved an open problem regarding the complexity of unweighted
coalitional manipulation, namely, the complexity of Copelandα-manipulation for α ∈ {0, 1} posed in
[6]. They show that the problem remains NP-complete for α ∈ {0, 1}. As stated in the introduction,
Bartholdi et al. [2] show that the second-order Copeland voting scheme is NP-complete to manipulate
even if a manipulator has complete information about the preferences of other voters in an election. This
result is a clear demonstration of how to use computational complexity in the real-world to deter would-
be strategic voter from engaging in manipulation.

However, it is possible that real instances of elections that we care about are easy to manipulate,
and for elections with fewer number of candidates and voters, exponential-increasing work may not
be a deterrent to manipulators. Bartholdi et al. further raised an interesting concern about election
manipulation that “It might be that there are effective heuristics to manipulate election even though
manipulation is NP-complete.” Lasisi [13] in a recent work proposes a branch-and-bound heuristic
and examines the empirical behavior of the second-order Copeland election under assumptions that
are realistic in familiar kinds of voting, e.g., many voters, but a relatively small candidates. The
empirical investigation into this question takes the form of a large number of experiments where a
voter manipulates the outcome of an election. There is definitely a place in the literature for the
empirical understanding of this type of model when used to abstract some real-world scenarios.

In this paper, we show that the proposed branch-and-bound heuristic of [13] is exponential
in the number of candidates in an election. Thus, giving partial explanation for the second-order
Copeland scheme being resistant to manipulation for fairly large number of candidates in Lasisi’s
experiments. Furthermore, we propose a randomized heuristic that extends this previously known
branch-and-bound heuristic for manipulation of second-order Copeland elections.

7 Conclusions and Future Work

The second-order Copeland voting has been shown to be NP-complete to manipulate even if a manipu-
lator has perfect information about the preferences of other voters in an election. Lasisi [13] in a recent
experimental work and using the hypothesis that “There are instances of second-order Copeland elec-
tions that may be efficiently manipulated using heuristics,” proposes a branch-and-bound heuristic for
manipulation of second-order Copeland elections. The performance of the heuristic was experimentally
evaluated using randomly generated data based on three distributions, including uniform, normal, and
Poisson. Results of experiments from the work suggest that there are instances of the second-order
Copeland elections that may be manipulated using the proposed branch-and-bound heuristic when a
voter has perfect information about the preferences of other voters.

In this paper, we first note that the textual description of the proposed branch-and-bound heuristic
of Lasisi [13] is unclear where it needs to be precise. So, we present a pseudocode to clarify the branch-
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and-bound heuristic. Second, we provide an analysis of the running time of the heuristic. Our analysis
shows that the heuristic is exponential in the number of candidates in an election. The exponential
running time of this heuristic that we demonstrate in the present paper complements the performance
degradation of the heuristic for fairly large number of candidates as reported in [13]. Third, we propose a
randomized method for manipulation of second-order Copeland elections. We use a sampling procedure
approach to generate samples of voters’ preferences and employ a specialized version of the well-known
Hoeffding’s inequality [12], referred to as the Chernoff’s bound, to account for the number of samples
required for a given accuracy as well as the probability of missing the accurate value of the number of
manipulations in an election. Finally, we propose an improved heuristic that extends the branch-and-
bound heuristic based on our proposed randomized method for manipulation of second-order Copeland
election. Our heuristic is also shown to be polynomial in the number of candidates in an election.

The following are some ideas for future work on this area of research. We plan to implement the
proposed randomized heuristic in this work and empirically evaluate it using similar experimental setup
of [13]. Also, we seek to find a theoretical bound on the approximation factor by which our heuristic is
from the optimal value of the number of manipulable preferences that may be present in a second-order
Copeland election. Furthermore, there are still several other interesting open problems on manipulation
of second-order Copeland elections from [13]. Finally, developing methods to reduce the effects of this
problem in second-order Copeland voting scheme is an interesting research problem.
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