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Abstract

Decomposing a network into communities is one of the most used techniques in network
science. Modularity is typically used to measure the goodness of such a decomposition.
In this paper we develop a method which allows us to begin with a crisp decomposition
(no overlaps) and move to an overlapping decomposition while increasing the modularity.
We also show that the same technique can be used to improve existing overlapping
decompositions.

1 Introduction

The notion of decomposing a network into communities (or clusters, modules) in order to better
understand its structural makeup has been an active part of network science since its inception.
Indeed, in their seminal work [20], Wasserman and Faust spend two full chapters on subgroups,
the predecessors of what we now call communities. Since in a real life network one generally has
no real idea of how many communities there are or how big they are, discovering these groupings
is a primary focus. Much of the considerable effort put toward community detection has been
in finding crisp (or hard) decompositions, meaning that the vertex set is broken into a partition
so that each vertex belongs to one and only one of the blocks of the partition (community). The
widely used IGraph package for R includes no fewer than nine algorithms for crisp community
detection [11, 4, 17, 18, 15, 10, 2, 3, 16, 19, 14].

More recently, with the recognition that naturally occurring communities are often not
disjoint, attention has been focused on less restrictive decompositions having either overlapping
communities or fuzzy communities (or both). A decomposition with overlapping communities
corresponds to what is mathematically called a cover of the vertex set and in this case a given
vertex may belong to several communities. There are several competing ideas about what
fuzzy decomposition ought to be, but one common definition is that each vertex has a certain
probability of belonging to a given community [9, 6].

The aim of this work is to develop a method whereby we can take the output from one
of the many available crisp community detection algorithms and use it to discover associated
overlapping decompositions. These overlapping decompositions should represent in some sense
(specifically using a notion of modularity) an improvement over the crisp decomposition which
gave rise to them. The same technique is also shown to be useful for improving existing
overlapping decompositions.
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2 Notations And Terminology

Now we introduce the notations and terminology which we will use throughout the discussion.
The networks considered here are unweighted and undirected graphs G = (V, E) with |V| =n

vertices and |E| = m edges. It is assumed that they have no loops and no multiple edges.
A = (ay,0) is the adjacency matrix for G and ||A|| = > a,;;. The degree sequence for G is
ij=1..n

de= (dy,,-..,dy,). Let C = (C4,...,Cy) be a cover of V, meaning that | J g1 xCr = V. Then
ny denotes the number of vertices in Cj, my denotes the number of edges which C} contains
(when considered as the subgraph induced by its set of vertices), and s, denotes the number of
communities to which v belongs.

3 Two Types Of Modularity

The idea of modularity was originally created by Newman and Girvin in [11] as a function for
quantifying the quality of a community decomposition. This formulation only applies to crisp
decompositions, and it basically compares the density of edges within a community with the
expected density with respect to a chosen null model, usually the ErdAﬂs—RA@nyi random
graph. This NG-modularity varies between -1 and 1 and the higher the value, the better
the decomposition. Since Newman and Girvin’s work, a number of alternate definitions or
extensions of modularity have been put forward, many of them designed to handle overlapping
and fuzzy communities as well as crisp ones. For the purposes of this paper, we are particularly
interested in two of them.

LAV Modularity

This version of modularity was introduced by Lazar, Abel, and Vicsek in [7] (hence the acronym
in its name). To summarize their approach (with some notational changes),

Z av,w - Z av,w

weCy wgCy,

Ay =
k dy - Sy

)

is interpreted as the contribution of v to the modularity of community C). Note that the first
summation in the numerator is the number of connections v has with members of C) while
the second is the number of connections it has outside of Cj. This provides a kind of measure
for the intuitive notion that a valid community should have many internal connections and
few external ones. Dividing by the degree of the vertex serves to normalize the measure and
dividing by the number of communities to which v belongs is intended to prevent situations
where v belongs to many almost identical communities. The overall contribution of community
Cy, is then given by

mg

1
Mp=— > Ay~
w2

Here the final factor gives the density of community Cj and the entire expression is normalized
by dividing by the number of vertices in C. Finally, the overall LAV modularity is defined to
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be the average of the contributions of the communities:
Auch—lz:M
, N " k=1...r *

This does not claim to be an extension of Newman-Girvin modularity to include overlapping
communities (and indeed it is not such an extension). Nevertheless, it is a reasonable and
intuitively appealing measure of the goodness of a decomposition. To put this in a concrete
light, we will use a TriTail graph which is very simple, yet has a characteristic of a node that
belongs to overlapping communities as an example. Consider the following small TriTail graph
with a crisp community decomposition shown in Figure 1, it is easy to see that

0 0

0 0
A=11s —1s

-1 1

and we then have My =0, M, = %, and M = % = 0.1666667.

Figure 1: The TriTail Graph With A Crisp Decomposition

Soft Modularity

Soft modularity was invented by Havens, Bezdek, Leckie, Ramamohanarao, and Palaniswami
in [8]. This approach essentially follows from the observation that classical Newman-Girvin
modularity can be defined in a matrix formulation which can in fact be applied to any
decomposition - crisp, overlapping, or fuzzy. It thus represents a true generalization of Newman-
Girvin modularity and can be usefully employed to compare modularities across all types
of decompositions. It is thus particularly good for comparing modularities across different
decompositions of whatever variety since its connection with classical modularity is so clear.
Our ultimate goal is to make changes which will improve the soft modularity. The details
(specialized to our situation) are as follows. Let

T
(dg)” -dc
Al
where the exponent T" denotes the transpose. We represent the communities by an n X r matrix

U = (uy,r) where u, , = 1 if vertex v belongs to community Cj and u, , = 0 otherwise. Then
this extended or soft modularity is given by

B=A—
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B trace (UT -B- U)
Al

In the case of the TriTail graph and its crisp decomposition shown above, we have

~1/2  1/2  1/4 —1/4
1/2 —1/2 1/4 -1/4
1/4  1/4 —9/8 5/8

~1/4 —1/4 5/8 —1/8

T (00
UBU—(OO)

and

so that Q = 0.

An Empirical Comparison

LAV modularity and soft modularity are mathematically quite distinct. As we have indicated,
soft modularity is a genuine extension of Newman-Girvin modularity, while LAV modularity
represents an independent heuristic approach. Thus it would be difficult to establish a
direct relationship between the two. However, using a selection of real-world networks which
commonly appear in network science, we compared the two modularities as shown in Figure 2.
The Pearson correlation between the two sets of modularity values is 0.5495717, so while not
the same, they are clearly correlated.

Soft Modularity Versus LAV Modularity
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Figure 2: Comparing LAV and Soft Modularity

4 Improving A Decomposition

Having seen the correlation between LAV modularity and soft modularity, it is reasonable to
expect that increasing the LAV modularity will also result in an increase for soft modularity.
our approach toward moving from a crisp decomposition to an overlapping one (or to improving
a given decomposition of whichever kind) is to attempt to identify vertices which would make
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a positive contribution to the overall modularity if they were added to some new community.
For this purpose, the matrix A produced by the LAV modularity computation is ideal since
it ascribes a modularity contribution to each vertex-community pair. Lazar, Abel, and Vicsek
were primarily interested in A, j in the case when v € Cj, and they interpreted it as a measure
of how “justifiable” it is to assign v to the community Cj. Here we are looking at A, , whether
v belongs to Cj or not, as an indicator of the contribution to overall modularity that putting
v into C} would effect.

In order to increase the LAV modularity, we examine the matrix A row by row. If, in
row v we discover a positive entry A, ; and v does not belong to Ci, we add v to Cj, (while
leaving it in any communities it already belonged to). Once a pass through A is complete, A
is reevaluated and the process repeated until a pass results in no vertex movements.

For example, with the crisp decomposition for the TriTail given earlier, Az, = 1/3 > 0
and vertex 3 does not belong to community C7, so we add vertex 3 to community C7, which
is the only movement from pass 1 through A. The result is the overlapping decomposition
shown in Figure 3. This increases the LAV modularity from its initial value of 0.1666667 to
0.5694444. At the same time, the change decreases the soft modularity from its initial value
of 0 to -0.015625 (which shows the correlation between the two measures of modularity is not
perfect).

Figure 3: The TriTail Graph With An Overlapping Decomposition

For the second pass, the A is

1 0
1 0

A= 16 —1/6
1 1

where Ay ; > 0 indicates that vertex 4 should be added to community C;. When we do this, we
get the decomposition shown in Figure 4, which shows that the technique can not only produce
overlapping communities, but decompositions containing embedded communities as well. For
this decomposition, the LAV modularity is 0.3333333 (higher than the original modularity,
but lower than it was after just one pass) and the soft modularity is 0, which represents an
improvement over the value at the end of pass 1 and in fact a return to the value that it had
for the original crisp decomposition. A third pass yields no vertex movement. Bear in mind
that the behavior in this very small artificial example is not typical - the example is intended
merely to insure that the concepts involved are clear.
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Figure 4: The TriTail Graph And Its Ultimate Decomposition

5 Applications

To test the efficacy of our approach, we employed two methods, both based on real life networks.
In the first group of tests, we obtained a crisp decomposition using the IGraph library for R
and its cluster fast greedy method. With that decomposition as a starting point, the above
“optimization” technique was then used to obtain a (possibly overlappinng) decomposition. Of
course, in some cases the crisp decomposition is quite appropriate to the network structure and
no changes are made to that decomposition. This happened, for example, with the well known
Zachary’s Karate Club network [22, 12]. More typical is the C. Elegans Neural Network [21, 12].
Here our technique resulted in a 4.5% increase in soft modularity and the overlap percentage
(the percent of vertices which belong to more than one community) went from 0% for the crisp
fast greedy decomposition to 1.7%.

More impressive results were obtained by beginning, not with a crisp decomposition, but
with a decomposition produced by CFinder [1, 13]. This freely available software uses the clique
percolation method [5] to identify communities (possibly overlapping) in networks. In fact, it
usually produces a number of different possible sets of communities based on the value of a
parameter k which specifies the size of clique to begin with. For testing, we chose the value of k
which gave rise to the highest soft modularity among the CFinder decompositions. Due to the
way the CFinder algorithm works, there are, in general, some vertices which are not assigned
to any community. Since our technique requires that every vertex must belong to at least one
community, there are two obvious things that can be done with these “leftover” vertices. First,
we can put each one of them into its own new community. Second, we can group them all
together into a single new community. The second method gives better results in almost all
cases, so that is what we discuss here. Using the C. Elegans Neural Network as before, the
soft modularity increases from an initial value of 0.1983418 for the CFinder decomposition to
0.4047188 (a 104% increase). At the same time, the overlap percentage goes from 27% to 56%.
Naturally such dramatic increases cannot always be achieved, but with the networks we studied,
double digit increases in both soft modularity and overlap percentage were common.

6 Conclusions
In this paper we introduce and discuss a method that we developed to improve modularity.

The method begins with a crisp decomposition (no overlaps) and moves to an overlapping
decomposition while increasing the modularity. The tests we conducted using some real life
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networks have shown that our method improves not only soft modularity but the existing
overlapping decompositions as well. In the future, we plan to test the method on more different
variety of complex networks using other available crisp community detection algorithms and to
use relevant different modularity measurements besides LAV and Soft that were used in this

paper.
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