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Abstract

The lookahead approach for binary-tree-based search in constraint solving favors branch-
ing that provide the lowest upper bound for the remaining search space. The approach has
recently been applied in instance partitioning in divide-and-conquer-based parallelization,
but in general its connection to modern, clause-learning solvers is poorly understood. We
show two ways of combining lookahead approach with a modern DPLL(T )-based SMT
solver fully profiting from theory propagation, clause learning, and restarts. Our thor-
oughly tested prototype implementation is surprisingly efficient as an independent SMT
solver on certain instances, in particular when applied to a non-convex theory, where the
lookahead-based implementation solves 40% more unsatisfiable instances compared to the
standard implementation.

1 Introduction

Many practical questions can be reduced to determining whether a set of Boolean constraints
has a solution. These types of problems are generally known as constraint satisfaction problems,
and the most widely known example is the propositional satisfiability problem (SAT) of deter-
mining whether a propositional formula, represented in conjunctive normal form, is satisfiable.
SAT forms the basis of another important class of problems called satisfiability modulo theories
(SMT), where instead of Boolean atoms the formulas are built on ground atoms in first-order
logic, often in practice expressible as equalities over arithmetics or uninterpreted functions. Al-
gorithms for both SAT and SMT have been extensively studied. A well-established architecture
for SMT is to run a SAT solver that regularly queries the consistency of the first-order atoms
from the arithmetics and uninterpreted functions solvers. The information carried by the theo-
ries is communicated to the SAT solver on-the-fly during the search based on counterexamples
that violate the axioms of the theories.

Lookahead is an approach used in algorithms for solving constraint satisfaction problems
based on branching [21, 20, 7]. The approach selects a branch that results in the lowest upper
bound in some measure for the remaining search space. The basic process involves trying every
possible atom for a given branch and deducing an upper bound for the resulting search space
through a process called Boolean constraint propagation. The number of unassigned atoms after
propagation gives an upper bound for the remaining search space under the respective atom. A
solver using lookahead picks the atom with the approximated smallest remaining search space.
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Lookahead is often considered expensive because of the big number of propagations needed
for computing the upper bounds. Many modern solvers for propositional satisfiability and
SMT therefore revert to more efficiently implementable heuristics that are based on different
metrics that can be computed during the search. Most notably these include the variable-state
independent decaying sum (VSIDS) heuristic [16] and its variations, that are tightly integrated
to the respective decision procedures.

In this work we study the question of using lookahead in modern SMT solvers and show
experimentally that the lookahead heuristic can solve almost 40% more unsatisfiable instances
in some types of SMT problem collections, therefore being superior to the standard heuristic.
We first define two approaches of integrating lookahead into an SMT solver. Both use elements
of the DPLL(T ) [19] algorithm for solving SMT, and are defined for the quantifier-free fragments
of SMT theories. We further study two types of theories that are known as convex and non-
convex [18]. From the perspective of a DPLL(T ) solver, solving for convex theories requires
adding information to the SAT formula that only mention the first-order atoms that already
exist in the formula. For non-convex theories instead it is in general necessary to introduce
new first-order atoms. We show that in particular non-convex theories raise further interesting
theoretical and practical questions for lookahead.

The lookahead heuristic is defined in [21, 8] for SAT solvers using the DPLL algorithm [4,
3]. However, modern SMT solvers are based on the conflict-drive clause-learning (CDCL)
algorithm [15] that behaves very differently from DPLL. While the DPLL algorithm is based on
a binary search tree, the CDCL algorithm maintains a stack of assumptions and propagations.
During its search the CDCL algorithm derives with resolution new clauses that are then used for
backtracking and expanding the stack. Due to this difference it is not obvious how to generalize
the lookahead algorithm to a CDCL-based solver, and even less so for an SMT solver. In the
following we will use the somewhat non-standard term CDCL(T ) instead of the more established
DPLL(T ) to emphasize the difference between the DPLL-based lookahead procedure and the
DPLL(T )-based SMT-solving procedure which in most modern SMT solvers apply CDCL-based
techniques for driving the search. We identify four ways in which CDCL(T ) differs from DPLL
with respect to lookahead, and provide solutions for addressing the challenges arising from each:

• CDCL has no search tree, while lookahead assumes that each branch is associated with
an atom and its negation;

• CDCL and in particular CDCL(T ) add clauses during the search, which has implications
on propagations and as a result on what is the remaining search space of a branch;

• CDCL(T ) can theory propagate atoms, which reduce the remaining search space of a
branch but are invisible for the Boolean structure; and

• The search space of non-convex theories can increase on a branch, since theory solvers
may need to add atoms to the instance.

The first algorithm we present, Plain, assumes the structure of the CDCL(T ) search but in-
stead of applying the VSIDS heuristic, chooses the atoms based on lookahead. However, the
algorithm Plain is not a straightforward extension of the CDCL(T ) algorithm, since computing
the lookahead heuristic can result in resolution steps and therefore the CDCL(T ) branching
needs to be modified accordingly. The second algorithm, Tree, maintains instead an explicit
DPLL tree, and extends and prunes the tree by simulating the branches of the DPLL tree on a
CDCL(T ) solver’s stack. This results in a dramatically different algorithm from the standard
CDCL(T ).
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Based on a comparative study we identify the more promising approach for lookahead. The
approach is implemented directly on the SMT solver OpenSMT2 to facilitate the evaluation of
the experimental results. In particular the theory solvers are implemented in an efficient but
simple form, thus avoiding complicated interaction between lookahead and certain optimiza-
tions such as solver layering [6] used in many other SMT solvers. We evaluate the implemen-
tation on the algorithm Tree on all the instances of the widely used SMTLIB benchmark set’s
quantifier-free categories of equality and uninterpreted functions (QF UF), linear real arith-
metics (QF LRA), and linear integer arithmetics (QF LIA). We show that the approach is
particularly efficient on QF LIA, suggesting that lookahead might be an interesting alternative
to provide efficient search methodology for non-convex theories. In general the lookahead-based
solver is slower than the corresponding VSIDS-based implementation. This however depends on
the benchmark instance, and we could identify several instances that are much more efficiently
solved on the lookahead implementation also in the category QF LRA.

Related work. The lookahead heuristic is originally introduced in [21] in the context of
SAT solving. It found one of the biggest early successes in applications to computing stable
models in [20], and later again in sequential SAT solving in [7]. A CDCL solver for SAT that
uses lookahead is presented in [2]. Unlike the two algorithms we present in this work where
CDCL and lookahead are tightly integrated, lookahead in [2] is used as a pre- and in-processing
technique.

An algorithm similar to Tree presented in this work was first used in parallel SAT solving
approaches based on divide-and-conquer in [10], and later for SMT solving in [12, 14]. However,
the lookahead-based partitioning algorithm was never published for lack of space. Unlike in the
previous works, in this work the algorithm Tree is extended to non-convex theories and used
as a stand-alone solver instead of as an aide for parallelization. Recently, a lookahead-based
parallelization technique was also successfully applied in constructing a large-scale proof in [9].

The experiments in this paper done on QF LIA show that the lookahead heuristic can be
used for guiding the search in non-convex SMT theories to accomplish in some cases termination
of a straightforward, incomplete implementation. An orthogonal approach involves altering the
cutting plane algorithm, as proposed in, e.g., [1, 13].

Finally, a recent result in [17] shows that the non-chronological backtracking of a CDCL
solver might be harmful in some SAT instances. We believe that some of the performance gains
we observe in the lookahead implementation are due to a similar phenomenon in SMT where
the solver backtracks too much during its search.

Structure of the paper. We first give the necessary background for lookahead, CDCL
solvers, and SMT solvers in Sec. 2. We then describe our two approaches Plain and Tree
to lookahead-based SMT solving in Sec. 3. In Sec. 4 we discuss some of the most central
implementation details including observations on the use of Tree for parallel SAT and SMT
solving. We report our experiments in Sec. 5, before concluding in Sec. 6.

2 Preliminaries

An instance of the propositional satisfiability problem (SAT) connects a finite set of literals
of form either x or ¬x, where x is a Boolean atom, with Boolean connectives conjunction
(∧), disjunction (∨) and negation (¬). We equate the literal ¬¬x with x. All SAT instances
can be represented in an equisatisfiable formula in conjunctive normal form (CNF), that is,
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a conjunction of clauses, which are disjunctions of literals, with a polynomial increase in the
number of atoms. We assume that a CNF instance does not have multiple copies of the same
clause and that a clause does not have multiple copies of the same literal, and therefore represent
clauses as sets of literals and the CNF instance as a set of clauses. In addition we assume that
tautological clauses, containing both the literal x and ¬x, are removed. We represent the
atoms appearing in a CNF formula φ by At(φ), and use the same notation At(l) for the atom
of a literal l. The truth values of the atoms are represented by a partial truth assignment
σ ⊆ {x,¬x | x ∈ V ar(φ)} such that for no atom x both x ∈ σ and ¬x ∈ σ. If x ∈ σ, then x
is true, if ¬x ∈ σ, then x is false, and if neither is in σ, then x is unassigned. Similarly, for
a literal l, if l ∈ σ we say that l is true. We define two constant literals, > and ⊥, that are
respectively true and false under any truth assignment. A set of literals σ such that for some
x both x ∈ s and ¬x ∈ s is called an inconsistent truth assignment.

Unit propagation is a polynomial-time process that, given a formula φ and a partial truth
assignment σ, determines how σ must be extended with new literals in order for it to satisfy φ.
Given a truth assignment σ and a CNF formula φ, the unit propagation operator upφ(σ) returns
either (1) a new truth assignment σ′ ⊇ σ of the literals of φ such that for all clauses c ∈ φ, if
c ∩ σ = {l} for some literal l, then l ∈ σ′; or, if such a σ′ in case (1) would be inconsistent, (2)
the constant literal ⊥. The unit propagation closure UP(φ, σ) returns the smallest, unique set
of literals U ⊇ σ that is closed under upφ, if such a set is not inconsistent.

DPLL-based SAT solvers. A SAT solver is a tool that determines whether the atoms of a
CNF instance φ can be assigned truth values such that all clauses c ∈ φ contain a true literal.
DPLL-based SAT solvers build a labelled binary tree called the DPLL search tree, where each
node corresponds to a partial truth assignment for the formula φ. The labelling L is a bijection
between the nodes of the tree and {x,¬x | x ∈ At(φ)} ∪ {>}. Let n0 be the root of the tree,
and nk an arbitrary node in the tree. We denote by n0, . . . , nk the unique path from the root to
nk. Semantically node nk corresponds to the truth assignment σnk

= {L(n0), . . . , L(nk)}. In
addition to a label, the nodes of the tree are marked either closed, indicating that the algorithm
has shown that the corresponding truth assignment is not a subset of any satisfying truth
assignment for φ, or open, indicating that it is not known whether the truth assignment can
be extended to a satisfying assignment. The solver determines the labels heuristically so that
sibling nodes have the label x and ¬x for some atom x ∈ At(φ) that the heuristic considers
promising. The atom labelling the children of nk is chosen from the unassigned atoms at node
nk, that is, from the set At(φ)\{At(l) | l ∈ UP(φ, σnk

)}. If the closure is consistent, the search
will continue in this branch. If the closure is inconsistent, the problem corresponding to φ ∧ σ
is unsatisfiable. Therefore the node is marked closed, and the solver backtracks to the nearest
ancestor of nk that has a non-closed child. If the both children of a node are marked closed, also
the node is marked closed. The search terminates if (1) the root of the tree is marked closed
indicating that the instance is unsatisfiable, or (2) when in some node nk, after computing
the unit propagation closure, all atoms in At(φ) are assigned, indicating that UP(φ, σnk

) is a
satisfying truth assignment for φ.

Lookahead. Given a literal l and an assignment σ, the propagation score of l assuming σ is
PSφ∧σ(l) = |UP(φ, {l}∪σ)\UP(φ, σ)|, if UP(φ, {l}∪σ) 6= ⊥, and undefined otherwise. We ex-
tend the propagation score to atoms x by defining la-scoreφ∧σ(x) = min(PSφ∧σ(x),PSφ∧σ(¬x)).

The lookahead approach for DPLL-based SAT solvers labels nodes with the literals that have
the highest propagation score. In the lookahead phase, given a node nk and the corresponding
truth assignment σk, the propagation scores are computed for all unassigned atoms at nk as
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la-scoreφ∧σk
(x). The highest scored atom xbest is chosen as the labels xbest, ¬xbest of the two

children. However, lookahead is not simply a heuristic but can also give insight into the satisfi-
ability of the problem. If during the lookahead phase PSφ∧σk

(l) results in an inconsistent truth
assignment, then any satisfying truth assignment for φ∧σk must include ¬l. If also PSφ∧σk

(¬l)
results in an inconsistent truth assignment, then σk cannot be extended to a satisfying truth
assignment, and the node nk can be marked closed. Similarly, the lookahead heuristic can be
used, for instance, for computing equalities of atoms under truth assignments [8].

Clause-learning, conflict driven SAT solvers. Unlike a DPLL-based SAT solver, a clause-
learning, conflict driven (CDCL) SAT solver does not maintain an explicit search tree but
guarantees the completeness of a search by computing new clauses that satisfy certain criteria.
The CDCL solver alternates between heuristically selecting a decision literal and computing
unit propagation closure. During the search, a CDCL solver maintains a decision stack s =
(E0, . . . , En), where n is defined as the decision level of s, and E0 = UP(φ, ∅). For i > 0, Ei =
{di, l1i , . . . , lki } where di is the decision literal and l1i , . . . , l

k
i are the new literals propagated by di,

that is, {l1i , . . . , lki } = UP(φ,
⋃i−1
j=0Ej ∪ {di}) \

⋃i−1
j=0Ej). We use the infix notation · to denote

pushing an element to a stack. More formally, we write (E0, . . . , En) · En+1 = (E0, . . . , En+1).
Each literal in Ei is associated with the decision level i. If a unit propagation closure at
some decision level n is inconsistent, the CDCL solver learns a conflict clause c where exactly
one literal l ∈ c is in the decision level n and all other literals appear negated in some Ei,
where i < n. The clause c is learned essentially through simulating resolution steps on the
clauses that implied literals during previous unit propagations. The instance φ is updated
to consist of φ ∪ {c}, and the decision stack is backtracked until the second highest decision
level i′ appearing in the clause c. The CDCL solver then recomputes the stack element Ei′ as

UP(φ∪{c},⋃i′

j=0Ej)\
⋃i′−1
j=0 Ej , repeating the process until either a consistent unit propagation

closure is found at some stack element Ei′ or UP(φ,E0) is inconsistent. In the former case the
CDCL solver chooses a new literal di′+1 heuristically and extends the decision stack by the
corresponding Ei′+1, while in the latter case the instance φ is shown unsatisfiable.

CDCL solvers are sound, as can be seen from the following reasoning. First, assume that φ is
unsatisfiable. The algorithm learns new clauses through resolution on the previous clauses, and
therefore the new clauses are logical consequences of the old clauses. Therefore an inconsistent
unit propagation closure on φ implies that also the original instance is unsatisfiable. Second,
assume that φ is satisfiable. If there is a complete truth assignment σ such that unit propagation
closure UP(φ, σ) is consistent, then σ satisfies φ and all its learned clauses. CDCL solvers are
guaranteed to terminate on satisfiable instances since they will eventually find a complete
truth assignment if one exists. CDCL solvers are also guaranteed to terminate on unsatisfiable
instances, since an execution of the solver forms an ordered sequence of decision stacks, the
sequence having a maximal element: each new learned clause propagates at least one new
literal on a lower decision level, and the maximum element of this sequence is the one with all
literals assigned on the decision level 0 [15].

SMT solvers based on CDCL(T ). Most SMT solvers are built as an extension of a
CDCL solver where periodically the CDCL solver sends to the theory solver T a subset σT =
{l1, . . . , lk} ⊆ UP(φ,

⋃n
j=0Ej) of literals that have an interpretation in T . The theory solver

then attempts to guide the search further depending on the satisfiability of the set σT and the
state of the solver.

An SMT theory is called convex if for every finite set of literals σT and for every non-empty
disjunction of atoms (x1 = y1), . . . , (xn = yn) over At(σT ) it holds that σT |= xi = yi for some
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1 ≤ i ≤ n if and only if σT |=
∨

1≤i≤n xi = yi. In particular, assume that T is a convex theory,
σT is an assignment over literals of T such that σT |= ¬ ((x1 = y1) ∧ . . . ∧ (xn = yn)). Then
the clause ¬(x1 = y1)∨ . . .∨¬(xn = yn) can be used for guiding further the search as a learned
clause. Dually, if T is not convex, there is in general no such clause even if σT is inconsistent
with the axioms of the theory T , and the search needs to be guided in a different manner.

A theory solver may reply to a query in five different ways that we name in the following
list:

inco-e: If σT is inconsistent in T and the inconsistency can be expressed in terms of At(φ),
the solver returns as an explanation a clause that is a subset of ¬l1, . . . ,¬lk corresponding
to a tautology in T that σT does not satisfy.

inco-n: If σT is inconsistent in T but the inconsistency cannot be expressed in terms of
At(φ), the theory solver introduces new atoms not in At(φ) to express the conflict, and
returns a clause that consists of the new literals that the solver needs to satisfy in future;

inco-o: If σT is inconsistent in T , and the inconsistency can be expressed by a clause that
the theory solver has already communicated to the CDCL solver, the theory solver asks
the CDCL solver to continue the search, that is, to try to extend σT .

con-p: If σT is consistent in T , the theory solver might still be able to return a clause
consisting of theory literals in At(φ) that are tautological in theory T and imply a literal
in UP(φ, σT ), through a process called theory propagation.

con-n: If σT is consistent in T but the theory solver cannot find theory implications,
the theory solver simply states that σT is consistent with the theory and asks the CDCL
solver to continue the search similar to case inco-o.

Depending on the theory, not all the cases listed above are relevant. In particular the cases
inco-n and inco-o only occur in theories that are not convex, either inherently or because of
being a combination of two or more convex theories.

The CDCL(T ) solvers are designed to be sound, but depending on the theory they might be
incomplete either due to the undecidability of the theory, or since complete decision procedures
for the theory are slower than incomplete implementations.

3 Algorithms for Lookahead-Based SMT Solving

The core idea of the lookahead implementation for SMT is to combine a tree-based lookahead
search with a CDCL(T ) SMT solver. However, there are several interesting design choices that
need to be evaluated to build an algorithm for lookahead-based SMT solving. Perhaps most
importantly, the combination can be done in two ways:

• Selecting decision atoms in the CDCL(T ) framework using lookahead, or

• Building a DPLL tree by computing the lookahead heuristic using a CDCL(T ) solver.

In the following we will cover the two approaches in more detail. The first approach, that
we call Plain, is relatively straightforward to implement as an extension to the CDCL(T )
algorithm. The second approach, called Tree, is somewhat more involved. We generalize the
lookahead procedure described in Sec. 2 in a number of ways. First, we always include the theory
propagations from con-p in the unit propagation closure computations, which will then be taken
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into account when computing the lookahead scores. Second, every time a new clause is learned
either through inco-e or through standard CDCL learning, we update the propagation scores
accordingly to reflect the new propagations resulting from the clause. Third, the lookahead
phase provides information on whether setting some literal true would result in the cases inco-n
or inco-o before committing to choosing the literal as a decision literal. We integrate this
information into the score of the literals, giving low score to atoms that result in inco-n or
inco-o.

3.1 Lookahead Heuristic in the CDCL(T ) Framework

Algorithm 1 describes the CDCL(T ) algorithm Plain that uses lookahead heuristic for selecting
the decision literals. The algorithm gets as input the SMT instance φ in CNF and returns
either SAT or UNSAT depending on the satisfiability of φ. The algorithm maintains the
decision stack s = (E0, . . . , En) where n is the decision level of s. Lines 2 – 6 correspond
to computing the unit propagation closure UP(φ, s), and conflict resolution. The procedure
Propagate computes both Boolean and theory unit propagation closure. If UP(φ,

⋃n
i=0Ei) is

inconsistent, the Propagate(s) call results in a conflict clause c. Otherwise, s is updated to
include the propagation closure. The simplified learned clause is inserted to φ on Line 4 and
guides backtracking on Line 5. On Line 7, if the stack is consistent and all atoms are assigned,
the algorithm returns SAT. The lookahead phase is implemented on Lines 10 – 17, where the
solver computes the propagation scores of all unassigned atoms of At(φ). The propagation score
is computed on Line 11 by calling Propagate on each unassigned atom. In case of a conflict,
the algorithm returns to the conflict resolution process (Lines 2 – 6) by the goto statement on
Line 13. In case of no conflicts, the algorithm extends the decision stack by the new frame
containing the heuristically best literal xbest on Line 18 and returns to the main propagation
phase.

It is interesting to note that implementing lookahead to the CDCL(T ) solver results in an
algorithm that is genuinely different from CDCL(T ), since the clause learning takes place in two
different phases, first on Line 2 as in the standard CDCL(T ), and then inside the computation
of the score on Line 11.

3.2 DPLL-based CDCL(T ) Solver with Lookahead

Instead of integrating the lookahead as a heuristic to CDCL(T ) the integration can be done
in the opposite way, so that CDCL(T ) is called as a sub-procedure in the DPLL-search. This
approach is natural since DPLL is the basis of the original propositional lookahead algorithm.
The resulting algorithm Tree is shown in Alg. 2.

In the Tree algorithm we “simulate” the DPLL tree with the CDCL(T ) reasoning engine
while still allowing the resulting system to learn clauses and even perform non-chronological
backtracking. Let nk be a node in the tree and σ =

∧k
i=0 L(ni) the conjunction of the literals

labelling the nodes in the path from the root n0 to nk. We call this simulation forcing the
decision stack. To determine the labels of the children nk+1, n

′
k+1 on Lines 35 – 37, first we

force the decision stack correctly for the CDCL(T ) algorithm on Lines 7 – 21, and then run
lookahead on Lines 25 – 34.

Forcing the decision stack. To determine the labels for the children of nk we backtrack
the CDCL(T ) solver to decision level zero. The decision stack of the solver is then set to
(E0, . . . , Ek) using the literals L(ni) for the decision literals di (Lines 7 – 21). The DPLL tree
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Input : An SMT instance in CNF φ.
Output: {SAT , UNSAT}
Data : Decision stack s, literal xbest, map scores : At(φ)→ (N ∪ {−∞})

1 while True do
2 while Propagate(s) results in conflict clause c do
3 if the decision level of s is 0 then return UNSAT ;
4 φ← φ ∪ {c}
5 Backtrack s until c becomes implying

6 end
7 if s contains all x ∈ φ then return SAT ;
8 xbest ← >
9 scores← {xbest 7→ −∞}

10 for all x ∈ At(φ) not in s do
11 scores(x)← la-scoreφ∧

∧n
i=0 Ei

(x)

12 if conflict during a propagation then
13 goto line 2
14 else if scores(x) > scores(xbest) then
15 xbest ← x
16 end

17 end
18 s← s · ({xbest})
19 end

Algorithm 1: The Lookahead-Based CDCL(T ) algorithm Plain.

is built in depth-first order using a DFS stack during the stack forcing phase. The decisions are
maintained in the stack of the CDCL(T ) solver and apart from forcing the stack, the CDCL
algorithm is run in a normal way. Forcing the stack has two possible outcomes:

• the CDCL(T ) solver successfully reaches the decision level k (Lines 9 and 19), or

• the CDCL(T ) solver encounters a conflict at some unit propagation on a frame Ej , j ≤ k
(Lines 13 and 17).

In the former case the CDCL(T ) solver enters the lookahead phase. In the latter case the
solver is backtracked to the decision level j indicated by the conflict. The decision stack is then
re-forced from the node nj onwards.

On lines 7 – 21 the CDCL(T ) solver stack is set according to the current node nk. The
loop handle situations where the decision forced by the DPLL tree have already been assigned
in previous propagations. The node nk can be closed if either propagating the decision L(nk)
results in conflict on Line 12, or the negation of the decision literal is already in the CDCL(T )
stack on Line 16. The CDCL(T ) stack is forced normally if propagating L(nk) does not result
in conflict on Line 9, and an empty decision stack element is inserted on Line 19 if L(nk) was
already asserted previously. If the node ni was closed while forcing the CDCL(T ) stack, the
search on ni is abandoned and a new node is taken from the stack on Line 13. If after forcing
the stack until nk there are no unassigned atoms, the algorithm can deduce that the problem
is satisfiable on Line 22.

Observations on forcing the stack. In general the CDCL(T ) solver must explicitly be set
to decision level k by backtracking it to a level j based on conflict analysis and forcing the
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Input : An SMT instance in CNF φ.
Output: {SAT , UNSAT}
Data : Decision stack s, literal xbest, DFS stack q, DPLL root n0, map

scores : At(φ)→ N ∪ {−∞}
1 L(n0)← >
2 q.push(n0)
3 while True do
4 s← ()
5 nk ← q.pop()
6 if nk is closed then continue;
7 for ni in n0, . . . , nk do
8 if At(L(ni)) not assigned in E0 ∪ . . . ∪ Ei−1 then
9 s← s · ({L(ni)})

10 if Propagate(s) results in conflict then
11 if the decision level of s is 0 then return UNSAT ;
12 close ni
13 goto line 3

14 end

15 else if ¬L(ni) ∈ E0 ∪ . . . ∪ Ei−1 then
16 close ni
17 goto line 3

18 else
19 s← s · (∅)
20 end

21 end
22 if s contains all x ∈ At(φ) then return SAT ;
23 xbest ← >
24 scores← {xbest 7→ −∞}
25 for all x ∈ At(φ) not in s = (E0, . . . , Ek) do
26 scores(x)← la-scoreφ∧

∧k
i=0 Ei

(x)

27 if conflict during a propagation then
28 if the decision level of s is 0 then return UNSAT ;
29 q.push(nk)
30 goto line 3

31 else if scores(x) > scores(xbest) then
32 xbest ← x
33 end

34 end
35 Create child nodes nk+1, n

′
k+1 for nk

36 L(nk+1)← xbest
37 L(n′k+1)← ¬xbest
38 q.push(nk+1)
39 q.push(n′k+1)

40 end

Algorithm 2: The DPLL-based lookahead with CDCL(T ) Tree.

decisions L(nj), . . . , L(nk) because of possible conflicts arising from the newly learned clauses,
as well as to keep the sets of literals obtained with both Boolean and theory unit propagation in
the different decision levels consistent. A conflict obtained at the stack (E0, . . . , Ek) that results
in backtracking to the stack (E0, . . . , Ej), j < k, implies that UP(φ, d1∧ . . .∧dk) is inconsistent,
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but not necessarily that UP(φ, d1 ∧ . . . ∧ dj+1) is unsatisfiable. As a result, a conflict at level
k means that the corresponding node nk must be closed but the algorithm needs to still study
the remaining open nodes between nj and nk in the DPLL tree.

Lookahead. Once the stack has been forced on the node nk, the labels of the children of
nk are determined in the lookahead phase, which attempts to compute the heuristic score of all
unassigned atoms of φ∧UP(φ,

∧k
i=0Ei) (Lines 23 – 34). There are again two possible outcomes

of the lookahead phase the algorithm needs to consider:

• the lookahead phase runs to completion, in which case the atom xbest with the highest
propagation score is identified and the children of nk will be labelled with xbest and ¬xbest
(Lines 35 – 37); or

• the lookahead phase finds a conflict in which case the CDCL(T ) solver returns to forcing
the decision stack according to the DPLL tree (Line 29).

The actual lookahead phase is performed on Line 26. If the phase detects a conflict on
decision level zero, the algorithm returns UNSAT on Line 28, and for conflicts on higher decision
levels the algorithm tries to force the stack again, now with the newly learned clauses in φ.
Finally, after a successful lookahead phase, the algorithm extends the DPLL tree with the
nodes nk+1, n

′
k+1 labelled with the atom with the highest propagation score.

3.3 Algorithm Comparison

The two algorithms Plain and Tree are dramatically different in their pseudocode implementa-
tion. We show schematically the two algorithms in Fig. 1 highlighting their shared components
and their differences. We emphasize that this representation is by nature informal and intended
to clarify the relationship of the two approaches visually rather than to serve as a reference
implementation. The boxes labelled Lookahead and Conflict Handling correspond to comput-
ing the lookahead and analysing and learning the conflict clauses, and are shared between both
algorithms. In contrast, the CDCL(T ) solver stack is built differently in the two approaches.
Plain chooses a literal to propagate in the box Propagate chosen literal, while Tree does this
in the box Propagate forced stack. In addition Tree maintains the search tree, denoted in the
figure by the box DPLL Tree.

For Alg. 1, the box Propagate chosen literal corresponds to Line 2, the box Conflict Handling
corresponds to Lines 2 – 6, and the box Lookahead corresponds to the Lines 10 – 17. For Alg 2,
the box DPLL Tree does not correspond to specific lines but represents the concept of the
tree that the algorithm maintains. The box Propagate forced stack corresponds to the Lines
7 – 21, the box Lookahead corresponds to the Lines 25 – 34, while the box Conflict Handling
corresponds to the Lines 10 – 17.

4 Implementation

We have only implemented the algorithm Tree and not Plain. Tree more closely follows the
original structure of lookahead implementations, and differs sufficiently from a standard CDCL
implementation to offer a complementary view to how SMT solving can be done. The compar-
ison of Tree and Plain is left for future work. The implementation of Tree (Alg. 2) is based on
our SMT solver OpenSMT2 [11]. The solver supports the quantifier-free fragments of the logics
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Figure 1: The algorithms Plain and Tree. The executions of the algorithms Plain and Tree
start, respectively, in the box labelled Propagate chosen literal, and DPLL Tree.

of uninterpreted functions with equality, linear real arithmetics, and linear integer arithmetics,
allowing us to experiment with both convex and non-convex theories.

The implementation of the lookahead phase includes two important optimizations. First,
the heuristic needs to often backtrack due to inconsistent unit propagation, and if the atoms
have a fixed order x1 ≺ . . . ≺ xn in which their propagation score is computed, this results in
the lookahead score of the atoms in the beginning of the order being computed much more often
than that of the atoms at the end of the order. To allow a more fair propagation schedule, we
order the atoms as a ring so that xn ≺ x1, and, after computing an inconsistent unit propagation
closure at atom xi, we continue the computation at atom x(i+1) mod n.

Second, since the propagation heuristic we implemented looks for the atom x ∈ At(φ) that
maximizes minp∈{x,¬x} |UP(φ, p)|, we can often avoid computing the propagation scores for
certain atoms for which an upper bound of the propagation is already known. In particular,
let l be a literal and Ub(l) be an upper bound for |UP(φ, l)| that is initially set to zero.
During the lookahead phase the algorithm maintains the current best atom xbest. Whenever
l ∈ |UP (φ, q)| for some literal q for which the lookahead score is being computed, we update
Ub(l) ← max(|UP (φ, x)|,Ub(l)). When computing the score for an atom xk, if Ub(xk) <
la-score(xbest) or Ub(¬xk) < la-score(xbest), we know that la-score(xk) < la-score(xbest), and
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therefore there is no need to compute the exact score of xk.

We also implemented a simple restart scheme for building the DPLL tree of Alg. 2. In case
the algorithm reaches a geometrically increasing restart limit on number of conflicts on the
calls to Propagate, the algorithm is re-started while preserving the learned clauses added to the
instance φ.

4.1 Applications of the Lookahead Heuristic to Parallelization

Often a randomization helps in obtaining better results in SMT solving through algorithm
portfolios. However, the lookahead heuristic is by nature very deterministic. We introduce a
simple form of randomization to the lookahead heuristic. Instead of maintaining a single best
scored atom xbest, we maintain the k best scored atoms x1best, . . . , x

k
best, and choose the decision

literal randomly among them.

Finally, we adapted Alg. 2 for the divide-and-conquer approach in [12, 14]. The idea is to
construct the DPLL tree until depth k to produce 2k partitions, corresponding to the instances
φi = φ ∧ L(ni0) ∧ . . . ∧ L(nik) where ni0 = n0 is the root of the tree, and nik are the 2k nodes
at depth k. The instances φi can, for instance, be solved in parallel. This is done by adding a
check immediately after the Line 22 of Alg. 2 on whether the decision level is k, and in that case
jumping to the beginning of the while-loop. Note that due to the completeness of the algorithm
Tree it is possible that not all 2k partitions are created. In the extreme case, for example, the
instance is shown unsatisfiable before reaching the level k for the first time. Results of this
implementation for equality and uninterpreted functions and linear real arithmetics have been
reported in [12, 14].

4.2 The Linear Integer Arithmetics Solver in OpenSMT2

The core components of a solver for linear integer arithmetics in modern SMT solvers are (1) a
simplex solver that finds a solution to the query where free first-order constants are interpreted
to range over the real numbers; and (2) a system that adds cuts that forbid non-integer values
in future queries. A careful selection of cuts is critical for efficient implementation of the solver.
In our current implementation in OpenSMT2 we limit the cuts to be of the form x ≤ c and
x ≥ c + 1, where x is a free first-order constant of the original query and c ∈ Z is obtained
from a rational solution given by the simplex solver by rounding upwards or downwards to
the next or previous integer. This implementation could be made more efficient by using more
sophisticated methods for choosing the cuts. Fore more details, see, for example [13, 1, 6].
While we plan to study the relationship of more sophisticated cuts in the future in conjunction
with the lookahead approach, we now prefer to keep the solver implementation simple to better
understand the effect of lookahead in isolation.

5 Experiments

The goal of our experiments is to understand how the lookahead algorithm and its modifica-
tions work on different types of practical SMT instances in comparison to a standard SMT
implementation which we refer to as CDCL(T ) in the results.

The experiments were executed on a cluster where each node has 16 Intel(R) Xeon(R) E5-
2630 v3 CPUs running at 2.40GHz. We executed 20 solvers simultaneously on each node and
set the memory limit to 4GB for each solver. The evaluation was done on the SMTLIB bench-
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Figure 2: The Tree algorithm (vertical axis) compared to CDCL(T ) (horizontal axis) on linear
integer arithmetics (QF LIA) formulas.

mark set1 using the set’s quantifier-free formulas over equalities and uninterpreted functions
(QF UF), linear real arithmetics (QF LRA) and linear integer arithmetics (QF LIA). The set
consists of 14531 instances in total. Each job, consisting of a solver and an instance, has a run
time limit of 1000 seconds2, and performing the full set of experiments reported in this paper
takes roughly two days of computing in our setup, where we usually obtain 16 nodes simulta-
neously. To maximize our confidence on the correctness of the approach, we cross-checked all
results against the results reported by the Z3 SMT solver [5]. The source code for our tool
OpenSMT is available at http://verify.inf.usi.ch/content/lookahead. We use scatter-
plots for reporting the results. The idea is to plot results on a plane, taking the horizontal
and vertical coordinates from the two approaches that we compare. Time-outs are drawn on
the edges of the plots, and the diagonal line represents the points where the results of the two
approaches would be on a par. In the figures we use the convention of boxes (�) denoting
unsatisfiable and crosses (×) denoting satisfiable instances.

Figure 2 (left) compares the run times of the Tree algorithm (Alg. 2) and the CDCL(T )
algorithm on SMT instances with first-order atoms consisting of equalities and inequalities in
linear integer arithmetics. On instances solved by both CDCL(T ) and Tree, the CDCL(T )
is usually faster. However, a closer analysis of the results shows that Tree solves 2% more
instances than CDCL(T ), and almost 40% more unsatisfiable instances than CDCL(T ). In
total in the QF LIA benchmark set using OpenSMT2, the CDCL(T ) solves 390 satisfiable
and 421 unsatisfiable instances within the time limit, while Tree solves 252 satisfiable and
576 unsatisfiable instances. Surprisingly, two of these instances that are only solved by Tree
are also satisfiable. Some of the instances are on the diagonal, and the search in most of these
cases consists of a single, relatively expensive query to the theory solver. In general the results
suggest that lookahead works extremely well in combination with a simple non-convex theory
solver, and we assume that this is at least partly due to the tendency of the lookahead approach

1http://smtlib.cs.uiowa.edu/
2We set the limit on the user time as defined by the Linux kernel.
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Figure 3: The Tree algorithm (vertical axis) compared to standard CDCL(T ) (horizontal axis)
on linear real arithmetics (QF LRA) formulas.

to search for promising literals instead of exploring branches containing decision literals that
have a high VSIDS score but in the end result in the algorithm getting into a loop. In Fig. 2
(right) we show the number of conflicts obtained on the instances that both approaches solved.
Interestingly, there is no big consistent bias in the unsatisfiable instances either for CDCL(T ) or
for Tree, while the conflicts for the satisfiable instances are lower for Tree. These observations
support the conclusion that the efficiency of Tree in QF LIA is due to its ability to avoid the
branches which might cause our implementation to enter a loop.

In Fig. 3 we compare the Tree algorithm against the standard CDCL(T ) algorithm on the
linear real arithmetics instances. The results show that, while in most cases the CDCL(T )
algorithm is an order of magnitude faster, there are certain unsatisfiable instances where the
lookahead-based implementation is clearly faster, and a handful of instances where CDCL(T )
times out while Tree determines the solution. We believe that the reason for the efficiency
of Tree is that the lookahead phase can quickly find many theory conflicts that would appear
shallow in the search, but which go unnoticed by VSIDS for a longer time. In addition to
the run time in Fig. 3 (left), we report also the number of conflicts reached by the time of
determining the satisfiability of the instance in Fig. 3 (right). The graph shows that, at least on
the instances that were solved by Tree, the number of decisions is often lower on the lookahead-
based implementation than on the CDCL(T )-based implementation.

In Fig. 4 we make a similar comparison on the category QF UF. Apart from a small
number of exceptions, similar behavior where our implementation of Tree would outperform
the standard CDCL(T ) implementation is absent. This is true both for run times (left) and,
although less dramatically, for the number of conflicts (right). We note that if the CDCL(T )
can determine the satisfiability of the instance in few conflicts, the Tree algorithm almost never
determines the satisfiability as fast. However, if the CDCL(T ) algorithm does not determine the
satisfiability in a few conflicts, there are some cases where Tree can determine the satisfiability
in significantly less conflicts.

In Fig. 5 we report the results on implementing the restarts on Alg. 2. The results suggest
that in the QF LRA category there are many unsatisfiable instances where restarts give a small
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Figure 4: The Tree algorithm (vertical axis) compared to CDCL(T ) on formulas over equality
and uninterpreted functions (QF UF) (horizontal axis)
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Figure 5: Effects of restarts on the Tree algorithm on linear real arithmetics (QF LRA) formulas.

but consistent speed-up.

In general the efficiency of the algorithm Tree varies significantly depending on the bench-
mark, and it is safe to say that most benchmarks in the SMTLIB2 benchmark set we exper-
imented with strongly favor the standard CDCL(T ) algorithm. This is not a very surprising
result given that a similar behavior is observed in SAT solving. However, we find it very in-
teresting that there are some instances in the standard benchmark library for which lookahead
consistently performs better, especially on QF LIA, but also on QF LRA. We believe that it
is possible to implement Tree more efficiently in comparison to our prototype, and this will
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further increase the number of instances that are solved faster with lookahead.

6 Conclusions

Lookahead is an expensive but powerful heuristic based on greedily branching on atoms that
result in a lowest upper-bound on remaining search space. In this work we study the possibility
of integrating lookahead with conflict-driven clause learning SAT solvers and in particular with
DPLL(T ) based SMT solvers. We believe that our results contribute to the understanding of
the interaction between lookahead and SMT both in theory and practice.

On the theoretical level, we discuss how the lookahead concept of upper bound for search
space changes in SMT and in particular in the non-convex theory of linear integer arithmetics.
We propose two ways of integrating lookahead with SMT, the algorithms Plain and Tree, and
provide a pseudocode implementation for both. We describe certain optimizations to make the
lookahead computation more efficient and discuss applying the algorithm Tree to parallelization
of SMT solvers.

On the practical level, we report experimental evaluation of the algorithm Tree on the full set
of instances from the widely used SMT benchmark categories QF UF, QF LRA, and QF LIA.
Our evaluation shows that lookahead in QF LIA allows us to solve significantly more instances
compared to the baseline implementation, and is efficient on some benchmarks from QF LRA,
suggesting a non-trivial interaction between lookahead and SMT.

In future we are interested in applying lookahead in combinations of SMT theories. In
addition we are interested in understanding whether the proofs produced by solvers applying
lookahead-based ideas are suitable for constructing inductive invariants in model checking.
Finally, we plan to study better implementation techniques for lookahead, such as generalizing
the two-watched-literal scheme [16] to a three-watched-literal scheme that would detect clauses
that can be made implying by assigning a single atom.
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