
Bidirectional Functional Semantics for Pregroup Grammars

Gabriel Gaudreault

Concordia University, Montreal, Quebec, Canada
gabriel.gaudreault@gmail.com

Abstract

Pregroup grammars are a recent descendant of the original categorial grammars of
Bar-Hillel [1] and Lambek [10] in which types take the form of strings of basic types and
left and right adjoints, as opposed to the non-commutative functional types of categorial
grammars. Whereas semantic extraction is possible in other categorial grammars through
the λ-calculus, this approach will not be feasible for pregroup grammars. In this paper,
we show how to build a term calculus that could be used to fill this void. This system is
inspired by the λ-calculus but differs in crucial aspects: it uses function composition as
its main reduction strategy instead of function application and is bidirectional, i.e. the
direction arguments are applied to terms matters. We show how this term calculus is one-
to-one with a proper subset of pregroup types and give multiple examples to show how this
system could be used to do semantic analysis in parallel to doing grammaticality checks
with pregroup grammars.

1 Motivations

Semantic extraction from lexical expressions is commonly done in type-logical grammars [4] by
using a version of the typed λ-calculus in which logical predicates are fed arguments in a well-
defined way in coordination with the type reduction.Unfortunately, this option is not possible for
pregroup grammars without too many additional constraints to the system. Semantic analysis
in pregroups has been done, but using very different approaches. One of them is to place the
semantics in free compact 2-categories [14], another one to use vector space models [8, 9, 16]
and finally other more graphical approaches look directly at the reduction links and transfer
the information accordingly [15].

Our approach could be seen somehow as a formalisation of the third approach, where the
end of the contraction link connected to the adjoint type corresponds to an abstraction variable
and the other end a value to be applied. What we are proposing is a system that takes
into account the bidirectionally of argument passing and does so in a very natural way. To
do so, we will redefine pregroups as logical structures with derivational rules and show how
our semantic terms interact by using them as annotations for our types. We believe that the
biggest advantage of a system like ours, which can also be adapted to work with other categorial
grammars by modifying the reduction rules, is its way of handling arguments and co-arguments
in independent ways, which better reflects the reduction process as opposed to using something
like the λ-calclulus.

Pregroup grammars are also very flexible, e.g. there are no restrictions as to the order in
which types such as abl · bcl · c should reduce – contraction of the b’s first or of the c’s first –
and thus we will want our system to stay as simple complexity-wise as the original is, as it is
one of its main selling points.

12 M.K̄anazawa, L.S.M̄oss, V.d̄e Paiva (eds.), NLCS’15 (EPiC Series, vol. 32), pp. 12--28

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

2 Pregroups & Pregroup Grammar

Pregroup grammars [11, 12] are elegant and computationally simple(r) categorial grammars in
which types are made up of basic types and adjoints, as opposed to inverses such as is the case
in the original syntactic calculus [10]. Part of what makes pregroup grammars attractive is the
ease with which types can combine with eachother, giving us a greater degree of freedom and
more flexibility than with other frameworks, such as for instance the syntactic calculus. At
this point, pregroup grammars have already been used to analyse aspects of multiple different
languages such as French, English, Italian, Latin, Persian, German and Turkish.

2.1 Definition of a Pregroup

A pregroup [12] P = (P,→,r ,l , ·, 1) is a partially ordered (by→) monoid with a set of elements
P , which is a set of basic types, in which every element a ∈ P has a right and a left adjoint,
ar ∈ P and al ∈ P respectively, subject to a · ar → 1 → ar · a and al · a → 1 → a · al. More
precisely, it has the following properties:

Properties of a monoid

• Associativity:
(a · b) · c = a · (b · c)

• Identity:
a · 1 = a = 1 · a

Properties of partial orders

• Reflexitivity:
a→ a

• Antisymmetry:
a→ b b→ a

a = b

• Transitivity:
a→ b b→ c

a→ c

Property of compatibility on ordered monoids

a→ b

c · a · d→ c · b · d

We call a · ar → 1, al · a→ 1 contractions, and 1→ ar · a, 1→ a · al expansions. Frequently,
we will omit · from our types for readability reasons, e.g. we will write ab instead of a · b. The
set of types closed under the r and l operations is called the set of simple types.

From this, we can deduce different interesting properties such as

a→ b iff bl → al iff br → ar

arl = alr = a

(a1...an)l = aln...a
l
1

13

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

2.2 Pregroup Grammars

A pregroup grammar G = (Σ, P,→,r ,l , 1,T) consists of a lexicon Σ and a typing relation
T ⊆ Σ × F between the alphabet and the pregroup freely generated by the simple types of P
and the ordering relation →. This means that each element of our lexicon will correspond to
one or more words made up of simple types. For instance, we will have (want, iφl) – to be used
in a sentence like You want for Mark to lead a happy life – and (want, ij̄l) – to be used for You
want to eat ice cream. The basic types we will be using are

s: declarative sentences i: infinitives of intransitive verbs
j: infinitives of complete verb phrases j̄: complete infinitives with to
n: common nouns n̄: complete noun phrases
N : proper nouns r: reflexives
π: subjects π̄: nominative pronouns
o: objects ō: accusative pronouns
p: prepositional phrases φ: quasi-sentence formed from infinitive

Some of the orders we will use are for instance n̄→ π3 and n̄→ o, which would be interpreted
as “Everything that is a complete noun phrase can also be a subject or as an object”; this is
one very important property of pregroup grammars.

3 Proof Theory

3.1 Using Pregroup Types for Semantics

The proof theory we will define and use is a bit different than the one usually found in the
literature for pregroups. For instance, as opposed to some other axiomatisations of pregroups,
such as the one by Buszkowski [2, 3], we will take some distance from the algebraic definition
of pregroups and aim for something more logical. Hence, instead of inference rules that mimic
expansion and contraction rules such as

ab η
acclb

we will opt for introduction and elimination rules for our adjoints. Formalising the grammar
as a deductive system will have the advantage that we can now make use of traditional logical
methods to analyse its different properties.

We will also distance ourselves from the linear logical way of defining pregroup types, e.g.
ArBCl as A⊥⊕B⊕⊥C, or categorial way, ArBCl as A \ 0 •B • 0 /C [3,5]. Instead of looking
at pregroup types as concatenations of simple types, we will treat the adjoints as left and right
implications, where the terms corresponding to the adjoint types have the power to bind the
enclosed term.

The reasons here are twofold. First, we believe that to do semantics, the bonds between
types should be stronger in some sense, and we cannot simply consider them as independent
pieces. We have to make it clearer what parts of a type can contribute and how they can
contribute to the meaning of of the whole. A term of type ArB will not be a pair of terms of
type Ar and B, but a function from a term of type A to one of type B. In this sense, we could
have used the notation A \B instead of ArB, but we feel that the resulting system is still very
much closer to pregroup types than categorial types, especially in the way types can combine.

14

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

The reason for those restrictions is also syntactic. Just like in categorial grammars, one
reason one rarely sees types such as B • (A \ 1) is because once reducing it with an argument
of type A, one gets a product of a term of type 1 and a term of type B, but it is hard to think
of what something non-trivial of type 1 might be. It is also not clear how A \ 1 should contract
in this case as it appears on the right edge of the type, and with what type it should contract.
And so, we will not allow this kind of type to be formula in our system.

To see why we prefer to think of adjoints as implications, consider the typing relation
(dances, πr3s). We would expect its semantic term to say something like: the meaning of the
sentence we end up with should depend on whatever gets passed over when π3 contraction
happen. We feel that having a pair as the meaning for πr3s would not really make sense as
πr3 is not a container of semantic data, its semantic role is functional: it tells us what kind of
argument we should be expecting and where. We shouldn’t think of a type such as πr3s as a
cartesian or tensor product or anything that could be split up in 2 parts. The full type for
dance should be seen more as a linear functional type

λx.dance(x) : π3 (s

And so in our system, what might seem like concatenation of pregroup types should actually
be thought of as left and right implication, and our types will have the form Ar1...A

r
nbC

l
1...C

l
m,

where b is a basic type and its meaning dependent on its arguments of type Ai’s and Cj ’s, which
can be any type, not necessarily basic. We could also introduce some sort of cartesian product
A ⊗ B for expressions with tuple meanings, although those do not often appear in pregroup
analyses or even categorial grammars in general.

One important inconvenience when trying to turn pregroup types into logical systems is the
fact that sometimes two lexical items will have their types reduce with each other but in two
consecutive contractions. This is the case for instance with quantifiers like somebody which is
looking for a sentence on its right but also has to act like a subject to contract with the verb’s
inverse subject type.

somebody

sslπrl
dances

πrs
s

The issue we’re faced with here is that it is not clear in how many steps this should take
place. In one big all-possible-contractions-should-happen-at-the-same-time? Or perhaps having
one kind of “external” merging operation that would take care of reducing the subject first,
merge somebody and dances together, then a second “internal” merging operation could reduce
the internal s’s in ssls. We will go in a different direction where we basically will not have to
face this type of situation and do all reductions in one step.

The problematic is also interesting from a semantics point-of-view; how much discrete in-
formation should be shared by the two expressions? Should somebody be taking in only one or
two arguments? The type πrl it contains is a double adjoint, meaning that it is looking for an
adjoint to contract with (or triple adjoint), so does it mean that the expression should expect
two arguments, one corresponding to sl and the other to πrl? In this case, what should the
argument corresponding to πr look like? Notice though that double adjoint pregroup type πrl

is the same as π, so if we associate adjoints with “receivers” of information and basic types with
the actual pieces of information passed around, then perhaps somebody should be first sending
some information to dances, and then receive some from it. In this case, what seems to make
the most sense would be that somebody send over a dummy variable to dance which would get

15

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

abstracted over when passed back, something like:(
sslπ

(λy.∀x.y) • x

)(
πrs

λz.dance(z)

)

→
(

ssls
(λy.∀x.y)dance(x)

)
→
(

s
∀x.dance(x)

)
From a technical point of view though this seems somewhat complicated as normally this

kind of binding would be illegal and some kind of α-renaming rewriting would go on first to
change x’s name in the quantifier to some other variable that’s not free in y, then the term
dance(x) could be passed to it.

We believe that what happens is better reflected in the non-expanded form s(πrs)l, as
expanding its type in a way breaks the relation between data – s – and its argument – π3.
Hence only one piece of information should be passed along during the contraction and not
two.

Something else to note, is that in most cases, if a lexical item’s type contains adjoints such
as ABlCl it will either always contract in multiple steps, or it will always contract B and C is
one swoop, in which case we believe that the non-expanded form A(CB)l is more appropriate.
Hence why we feel that lacking distributivity rules, e.g. (ABl)l ↔ BllAl is not a problem, as it
does not seem to represent anything of linguistic relevance.

This goes to other way too, it wouldn’t make sense for a lexical item such as the ditransitive
verb give to get the type i(op)l instead of the usual type iplol. It is hard to think of a situation
where that non-distributed type would be appropriate, a situation where give contracts with
another lexical item that is both a direct object and a prepositional phrase. It will basically
always follow the pattern:

give a star to Bob
iplol n̄nl n pn̄l N

→ iplol n̄ pn̄l n̄

→ iplol o p

→ ipl p → i

(Note that we used the fact that n̄ → o.) The same is also true with particles such as for
that introduce quasi-sentences [12].

John wants for Mary to live
N πr3sφ

l φj̄lol N j̄il i

→ π3 πr3sφ
l φj̄lol o j̄

→ sφl φj̄l j̄

→ sφl φ → s

On the other hand, for the quantifier somebody to contract with two different lexical items
would require it to contract first with a string of lexical items which have a combined type of
πr and then with one that has type s on its left edge. It is easy to find example for the second
lexical item, but we have never encountered any examples that would fit the first type.

somebody

sslπ
?
πr

Edward likes pie
s

s

16

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

We can even go a bit further and predict that most of the time, a type with a double adjoint
will also contain a simple adjoint next to it and that those two should actually show up as one
adjoint type. For instance, never will we see

John
N

who

n̄rn̄slπ
Carl
π

I like ice cream
s

n̄

Similarly, it is hard to find a string of lexical items that would have a type of ol in the
following case:

John
N

whom

n̄rn̄ollsl
I like ice cream

s

?

ol

n̄

We can see that interrogative sentences also follow this pattern:

was I seen?
q2(p2o

l)lπl1 π1 p2o
l

Assigning other types such as q2o
llpl2π

l
1 or q2(π1p2o

l)l to was would not make as much sense.
Hence we will stick to the contracted forms A(BCl)l and A(BrC)l instead of ACll or AClB so
that we could have one only contraction of types per concatenation of lexical items.

3.2 Inference Rules

We first define the formulæ we will be using from now on.

Definition 1. Formula:
- If A is a basic type, then A is formula
- If A and B are formulæ then ABl and ArB are also formulæ
- Nothing else is a formula

Already, by defining our formulæ as such, we make it impossible to get a whole range of
formulæ such as of those of the forms AB, where none are adjoints, or AlB, or even AClB,
which in the original pregroups is equal to the form A(BrC)l after distribution of the l-operator
and cancellation of the double left and right adjoints. That will not be a problem as most of
those forms, e.g. 1/A, A× (C \B), also rarely show up in categorial grammars.

The system then makes it pointless to try to show relations such as (AB)l = BlAl, which
aren’t really relevant linguistically to us, as those aren’t even considered types (or formulæ) in
our system. One thing that could be useful though is if we could show relations of the form
A(BC)l = AClBl, which is not possible now, but even then, it is not clear whether we actually
do need it or not.

Note that types such as ArBl could be recovered by adding the identity type 1 to the system,
and types AlB or BCr by having an identity type and allowing product types.

The reader might have noticed that this way of defining pregroup types actually makes
them very similar to types of the associative syntactic calculus [13] – [ABl] ⇒ [A]/[B] and
so on – but we will see below that the system differs crucially in the way types combine.
Whereas \/-Elimination can be seen as function application, rl-Elimination acts more like
function composition.

17

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

We give a natural deduction presentation of our type system. Here Γ stands for a possibly
empty list of formulæ separated by commas. We also use Σr and Σl to signify a possibly
empty sequence of right or left adjoints within a same formula, e.g. if Σl = (EF)lGl, then
ArBCl(EF)lGl = ArBClΣl.

...

u
B
...

A lIu
ABl

ABl BΣl lE
AΣl

u
B
...

...
A rIu
BrA

ΣrB BrC rE
ΣrC

Note that A, B, and C do not have to be basic or even simple types, they can be just
about any formula. We can rewrite the rules using the provability relation `; read Γ ` A as
“A is provable in context Γ”. Here Γ stands for a possibly empty list of formulæ separated by
commas.

init
A ` A

Γ, A ` B
lI

Γ ` BAl
Γ1 ` ABl Γ2 ` BΣl

lE
Γ1,Γ2 ` AΣl

A,Γ ` B
rI

Γ ` ArB
Γ1 ` ΣrB Γ2 ` BrC rE

Γ1,Γ2 ` ΣrC

From those, it is easy to derive relations such as:

lExpansion :

A ` A
` AAl

⇒ ` AAl

Transitivity

A ` B
B ` C
` BrC

A ` C
⇒ A ` B B ` C

A ` C

Geach′sLaw

ABl ` ABl
BCl ` BCl
` BCl(BCl)l

ABl ` ACl(BCl)l
⇒ ABl ` ACl(BCl)l

Functoriality

A ` B
ADl ` ADl C ` D

ADl ` ACl
ADl ` BCl

⇒ A ` B C ` D
ADl ` BCl

18

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

Note that for most of our linguistic purposes we will not need to use the introduction
rules, just like we do not need to use expansions in the regular pregroup grammars to test
grammaticality, only contractions.

An extra subtyping rule is also derivable in the system if we decide to encode ordering
relations A→ B as A ` B:

Γ ` Σr1AΣl2

A ` B lI` BAl
init

AΣl2 ` AΣl2 lE
AΣl2 ` BΣl2 rI
` (AΣl2)rBΣl2 rE

Γ ` Σr1BΣl2

Γ ` Σr1aΣl2 a ` b
Subtyping

Γ ` Σr1bΣ
l
2

4 τ-Calculus

4.1 System Description

The term calculus we will be using in the semantic layer is very much inspired by the λ-calculus
in both its structure and the way it will be used for semantics. At its core it is simply a way to
represent functions that require both a variable (left) and co-variable (right), and thus can be
a useful framework for semantics or syntax as it makes it more natural to deal with arguments
coming from different sides.

Just as in the λ-calculus, the two fundamental operations on terms are application and
abstraction, which will show up in this calculus as left and right application and left and
right abstraction. These two sets of operations, namely left application and abstraction, and
right application and abstraction, are completely disjoint from eachother. There is no way for
instance to reduce a right abstraction using a left application. One of the main differences from
the λ-calculus is the way abstraction inside of an incoming term is in some cases pushed to the
exterior layer of the term to abstract over it. We call this term calculus τ -calculus.

One specificity of this calculus is how the terms are typed by pregroup types, as opposed to
regular function types A→ B.

We define our types recursively starting with a set of basic types – a type for entities e and
one for propositions p – from which we can build functional types. As said before, adjoints are
not usually described as “functional”, but we think this is appropriate considering how we use
them.

Definition 2. Semantic types

Type σ, φ := e | p | σrφ | σφl

We now define the set of τ -terms of type σ, Termσ. In the following, Ωl,Ωr stand for possibly
empty sequences of left and right adjoints respectively, and Var =

⋃
Varσ and Con =

⋃
Conσ

are set of variables and constants.

19

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

Definition 3. Termσ Formation Rules

x ∈ Varσ
x ∈ Termσ

c ∈ Conσ
c ∈ Termσ

t ∈ TermΩrφ s ∈ Termφrπ

(t)s ∈ TermΩrπ

t ∈ Termπφl s ∈ TermφΩl

t(s) ∈ TermπΩl

t ∈ Termσ x ∈ Varφ

t|x〉 ∈ Termσφl

x ∈ Varφ t ∈ Termσ

〈x|t ∈ Termφrσ

There is no need for parentheses around abstraction brackets as abstraction is associative
in our calculus, just like pregroup types are.

〈x|a|y〉 = (〈x|a)|y〉 = 〈x|(a|y〉)

and
Termφrσπl = Term(φrσ)πl = Termφr(σπl)

Since our calculus is bidirectional, unlike the λ-calculus, we cannot really get rid of parentheses
without allowing ambiguity.

The two kinds of abstraction here should simply be seen as two different λ-abstractions that
differ in the incoming direction of their argument. For instance,

t[x] |x〉(s) =β t[x := s]

(s)〈x| t[x] =β t[x := s]

but

〈x| t[x] (s) 6=β t[x := s]

By t[x] we mean that x appears somewhere in t, and by t[x := s] the replacement of all free
occurrences of the variable x by the term s.

We define the set Free(t) of free variables of the τ -term t recursively.

Definition 4. Free(t)

• Free(x) = {x}, if x ∈ Var

• Free(c) = ∅, if c ∈ Con

• Free(t(s)) = Free((s)t) = Free(s) ∪ Free(t), if s, t ∈ Term

• Free(〈x|t) = Free(t|x〉) = Free(t) \ {x}, if t ∈ Term, x ∈ Var

We also define reduction rules, which are pretty standard except for β-reduction which
reflects the way we can concatenate adjoints following type contraction.

Definition 5. Reduction Strategies

β-reduction
t|x〉 (b|x1〉...|xn〉) =β (t)[x := b] |x1〉...|xn〉,

20

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

if t|x〉 ∈ Termσφl and b|x1〉...|xn〉 ∈ Termφπl
1...π

l
n

(〈xr1|...〈xrn|b) 〈x|t =β 〈xr1|...〈xrn| (t)[x := b]

if 〈x|t ∈ Termφrσ and 〈xr1|...〈xrn|b ∈ Termπr
1...π

r
nφ

α-renaming
s |x〉 =α (s)[x := y] |y〉

〈x| s =α 〈y| (s)[x := y]

η-reduction
if x doesn’t appear free in s:

s(x) |x〉 =η s

〈x| (x)s =η s

Definition 6. Term Substitution

(x)[x := u] = u x ∈ Var
(y)[x := u] = y y 6= x, y ∈ Var
(c)[x := u] = c c ∈ Con
(s(t))[x := u] = (s)[x := u] ((t)[x := u]) s, t ∈ Term
((s)t)[x := u] = ((s)[x := u]) (t)[x := u] s, t ∈ Term
(s|x〉)[x := u] = s|x〉 s ∈ Term, x ∈ Var
(〈x|s) [x := u] = 〈x|s s ∈ Term, x ∈ Var
(s|y〉)[x := u] = (s)[x := u]|y〉 s ∈ Term, x ∈ Var
(〈y|s) [x := u] = 〈y|(s)[x := u] s ∈ Term, x ∈ Var, y 6= x

Here’s an example of β-reduction that shows how abstractions combine:

T (x)(y) |y〉 |x〉 (S(z) |z〉) =β T (S(z))(y) |y〉 |z〉

The corresponding type reduction would look something like:

σφlψlψπl → σφlπl

As a side note, notice that we could get rid of parentheses in our term calculus as they are in
1-1 relation with their semantic types. And so contractions σlσ → 1 will happen in conjunction
to reduction |x〉a → ε (empty string), where any x on the left of the expression gets replaced
by a. Although this requires us to be extra careful about variables to avoid ambiguity.

Let’s look at an example.

π πrσφl φ φl ψ ψrφ ψl ψ
a b x |x〉 z c |z〉 d

→ π πrσφl φ φl ψ ψrφ
a b x |x〉 d c

→ σφl φ φl φ
ab x |x〉 dc

→ σφl φ
ab dc

→ σ
abdc

21

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

We now know the type of the whole string, σ, and can deduce which terms are passed to
what other terms by looking at their respective types: b has type πrσφl, and so a must be its
left argument; c has type ψrφ, and so d must be its argument, which put together gives out a
type φ, from which we deduce that the whole dc is the right argument of b.

Not having parentheses requires us though to figure out the reduction links in the types
first. For instance, if we had the string of terms:

abc

and knew that a : σ and b : σrφ, we could be tempted to treat a as b’s argument and make
a term of type φ. Although if c’s type turns out to be (σrφ)rσrπ then they are actually both
arguments to c and that a should not be passed to b. And so we have to know the types of
every subterm and figure out how they contract before doing term application.

4.2 Annotated Proof Theory

We can now put both pieces together and annotate the typing rules using our functional terms.
We write Γ ` a : A for “The term a has type A in context Γ”.

init
x : A ` x : A

Γ, x : A ` b : B
lI

Γ ` b|x〉 : BAl
Γ1 ` a : ABl Γ2 ` b : BΣl

lE
Γ1,Γ2 ` a(b) : AΣl

x : A,Γ ` b : B
rI

Γ ` 〈x|b : ArB

Γ1 ` a : ΣrA Γ2 ` b : ArB rE
Γ1,Γ2 ` (a)b : ΣrB

For more clarity, here’s what lE rule looks like if we perform β-reduction directly:

Γ1 ` a|x〉 : ABl Γ2 ` b|xn〉...|x1〉 : BCln...C
l
1 lE

Γ1,Γ2 ` a[x := b] |xn〉...|x1〉 : ACln...C
l
1

4.3 Linguistic Justifications

Let us reitereate the two main differences between our τ -calculus and the λ-calculus:

1. Our system has term composition as main method of reducing terms as opposed to term
application

2. Our system is bidirectional: The two sides of a term act independently of one another

The first difference was essential as we want to model pregroup contractions as closely as
possible, which can be naturally thought of as function composition.

For instance, passing terms g : BCl to f : ABl gives us:

f : ABl (g : BCl)→ f ◦ g : ACl

which, if we think of f : ABl as a function of type B → A, and g accordingly, gives us the
composition f ◦ g of both functions of type C → A.

This is as opposed to type-logical grammars [4], where composing functions is usually a
multi-step process where extra hypotheses are introduced then discarded (x : C in the following)

22

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

f : A/B

g : B/C
u

x : C
/E

g(x) : B
/E

f(g(x)) : A
/Iu

λx.f(g(x)) : A/C

In pregroups, all of it takes place in only one step, hence we want our term-calculus to
reflect this and made it so that some of the incoming abstracted variables end up abstracting
the resulting term:

f(x)|x〉 : ABl g(y)|y〉 : BCl
lE

f(g(y))|y〉 : ACl

The consequence for the semantic layer is now that terms can combine as freely as their
corresponding types do, as a functional term does not have to wait anymore for a non-functional
term to be applied to it, but can combine with other functions to create new constituents.

the

ı(x)|x〉 : n̄nl
green

green(y)|y〉 : nnl
lE

ı(green(y))|y〉 : n̄nl
apple

apple : n
lE

ı(green(apple)) : n̄

the

ı(x)|x〉 : n̄nl

green

green(y)|y〉 : nnl
apple

apple : n
lE

green(apple) : n
lE

ı(green(apple)) : n̄

The nodes of the tree tell us something about the kind of constituent the concatenation of
the lexical items at its leaves form and tell us also about its meaning, e.g.

the green:

• a noun phrase still looking for a noun to its right to be completed, just like the or the very
big beautiful

• represents a single green entity predicate still looking for that entity which will come from
the right.

Here we do not mean constituent as in the generative sense, but a more general notion of
constituent: a string of lexical items is a constituent of syntactic category C with meaning s,
when the lexical items can be combined together in order using inference rules to reach a pair
of syntactic type and semantic term (s, C).

The same string of lexical items can form different constituents with different meanings:

flies

plural(fly(x)|x〉) : n

in

〈y|(y)in(x)|x〉 : nrnn̄l

the

ı(x)|x〉 : n̄nl
sky

sky : n
lE

ı(sky) : n̄
lE〈y|(y)in(ı(sky)) : nrn

lE
(plural(fly(x)|x〉)in(ı(sky)) : n

23

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

flies

〈z|fly(z) : πrs

in

〈y|(y)in(x)|x〉 : srsn̄l
lE〈z|(fly(z))in(x)|x〉 : πrsn̄l

the

ı(x)|x〉 : n̄nl
sky

sky : n
lE

ı(sky) : n̄
lE〈z|(fly(z))in(ı(sky)) : πrs

In the first case flies in the sky is a noun phrase with meaning that there are many flies
in the sky, while in the second case, it is a sentence missing a subject, or verb phrase, with
meaning that something unknown yet is flying in a sky.

The example above also exemplifies how our system can put constraints on the direction
arguments are applied to eachother without help from the syntax. Being order sensitive also
has other advantages that traditional categorial grammars do not have.

Take the transitive verb like for instance. Its semantic representation is now 〈x|(x)like(y)|y〉
– or like in η-reduced form. It is a truth predicate expecting two entities: one coming from the
right and one coming from the left; as opposed to its λ counterpart λx.λy.like(y, x) which takes
both entities from the same side, its object coming first. This has the advantage that a subject
could now be passed to the verb as soon as it is available, something that is not possible
in categorial grammars without resorting to introducing and then eliminating hypotheses or
adding some kind of permutation operator to the system.

John
J : N
J : π

likes

〈x|(x)like(y)|y〉 : πrsol
rE

(J)like(y)|y〉 : sol

John
J : N

likes

λx.λy.like(y, x) : (N \ S)/N
u

u : N
/E

λy.like(y, u) : N \ S
\E

like(J, u) : S
/Iu

λu.like(J, u) : S/N

4.4 Untyped τ-Calculus

Even though the λ-calculus was originally an untyped system [6] and later came a version with
types [7], it will not be possible in our case to have an untyped τ -calculus without some kind
of modifications to the system. It is very easy to see why. For instance, consider the following
terms:

a(x)(y)|y〉|x〉 b(z)|z〉

And consider two of the possible terms resulting from applying the second to the first:

1. a(b(z))(y) |y〉 |z〉 2. a(b(z)|z〉)(y) |y〉

Unless we know their types before the reduction, then we cannot decide which one is the
right one. For suppose we have a : σπlφl, x : φ, y : π, b : φψl, and z : ψ, then we will get:

a(x)(y) |y〉 |x〉 ∈ Termσπlφl b(z)|z〉 ∈ Termφψl

a(b(z))(y) |y〉 |z〉 ∈ Termσπlψl

24

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

which is a valid derivation, but

a(x)(y) |y〉 |x〉 ∈ Termσπlφl b(z)|z〉 ∈ Termφψl

a(b(z)|z〉)(y) |y〉 ∈ Termσπlψl

is not, as a(b(z)|z〉)(y) |y〉 is a term with type σπlφlφψlψψlππl → σπlψlππl which cannot
be reduced to σπlψl.

If instead we had the types a : σπl(φψl)l and x : φψl, then the term resulting from the
application would be second term 2, and 1 would be of the wrong type.

5 Pregroupτ Grammars

We give a brief overview of how to use this new semantic calculus in parallel with the syntax.
For the most part, the way we do semantics will seem very similar to how it is usually done in
type-logical grammars. We:

1. Introduce logical constants in our calculus, which will later on be interpreted in a “higher-
order pregroup” model

2. Assign τ -terms to the lexical items in our dictionary as an addition to their syntactic types,
i.e. pregroup types

3. Perform grammaticality check of a sentence by contracting the syntactic types according
to the elimination rules we defined above

4. In parallel to the grammaticality checks, assemble the meaning of the string of words by
putting together the different semantic terms in accordance with the application rules

Given a string of lexical items we aim to get a tuple s : A corresponding to the grammatical
category A of the expression and its meaning s.

5.1 Logical Constants & (Term, Type) Assignment

We will also use the usual logical connectives in our representations which we will treat as logical
constants; we call them “logical” as their interpretation is the same in all models. Starting from
the two basic types e for entities and p for propositions, we can define, for instance:

• ¬ is a constant of type ppl

• ∧ is a constant of type σrσσl, where σ is any type

• ∀ is a constant of type p(pσl)l, where σ can be any type

From those we can define →, ∨, ∃, ↔ in the usual way, e.g. ∃ = ¬∀(¬P (x)|x〉)|P 〉. One can

check that the resulting type is indeed right (ppl)(p(pσl)l)(pp
l
)(pσl)σσl(pσl)l = p(pσl)l.

We can also define other useful constants, such as ı the definite description operator (we
follow [4]). First, we define ∃2 = ∃(P (x) ∧ Q(x)|x〉)|Q,P 〉, then definite = ∃(∀(P (x) ↔ x =
y|x〉)|y〉)|P 〉, and then finally ı = ∃2(P)(Q) ∧ definite(P)|Q,P 〉

Here are some example term and type assignments. As is tradition in pregroup grammars,
we use lower case for syntactic types. We refer the reader to [12] for more explanation on the
syntactic typing.

Here are some lexical items we will be using in our derivations and their term and type
assignment. They should look familiar to most readers. They are written in non-η-reduced
form for clarity.

25

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

Lexical item Syntactic type Semantic term
Antoine n A
loves πr3so

l 〈x|(x)love(y)|y〉
the n̄nl ı(x)|x〉
cat n cat(x)|x〉
very nnl(nnl)l very(x)(y)|y, x〉

want (inf) ijl 〈x|(x)want(y)|y〉
emphatic n(n)l empathic(x)|x〉
empathic (aal)rnnl 〈y|y(empathic(x))|y〉

to j̄il x|x〉
will πrs1j

l 〈x|will((x)y)|y〉
will q1j

lπl will((x)y)|y, x〉
whom q̄(qôl)l y(x)|x, y〉
every s(πr3s)

lnl ∀(y(z)→ x(z)|z〉)|x, y〉
much n̄0n

l
0 much(x)|x〉

who nr2n2(πr2s)
l 〈y|y ∧ (y)x|x〉

5.2 Semantic Derivations

We show some example sentence derivations in natural deduction forms.

5.2.1 Declarative sentence with transitive verb

Antoine
A : n̄
A : π3

likes

〈x|(x)like(y)|y〉 : πr3so
l

the

ı(x)|x〉 : n̄nl

ı(x)|x〉 : onl

〈x|(x)like(y)|y〉(ı(x)|x〉) : πr3sn
l

(A)〈x|(x)like(y)|y〉(ı(x)|x〉) : snl 1©

very

very(z)|z〉 : nnl(nnl)l
tall

tall(x)|x〉 : nnl

very(z)|z〉(tall(x)|x〉) : nnl
cat

cat : n

very(z)|z〉(tall(x)|x〉)(cat) : n 2©

1© 2©
(A)〈x|(x)like(y)|y〉(ı(x)|x〉)(very(z)|z〉(tall(x)|x〉)(cat)) : s

This last term reduces to

(A)〈x|(x)like(y)|y〉(ı(x)|x〉)(very(z)|z〉(tall(x)|x〉)(cat))

→β (A)like(ı(x))|x〉(very(tall(x))|x〉(cat))
→β (A)like(ı(x))|x〉(very(tall(cat)))

→β (A)like(ı(very(tall(cat))))

The reader can check that there are as many orders of reducing this sentence and extracting
its semantics as there are orders of doing the pregroup reductions alone; the semantic generation
does not add more complexity to the parsing.

For the next examples, we will only show the reduced forms of the terms.

26

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

5.2.2 Interrogative sentence

who

(y)x|y, x〉 : q̄(πr3s)
l

hid

〈x|past((x)hide(z))|z〉 : πr3s2o
l

〈x|past((x)hide(z))|z〉 : πr3so
l

past((y)hide(z))|z〉 : q̄ol

the

ı(x)|x〉 : n̄nl
chips

chips(x)|x〉
ı(chips(x)|x〉) : n̄

ı(chips(x)|x〉) : o

past((y)hide(ı(chips(x)|x〉))) : q̄

5.2.3 Declarative sentence with quantifiers

Let’s now look at a sentence involving quantifiers: Somebody danced.

somebody

∃(person(y)→ (y)x|y〉)|x〉 : s(πr3s)
l

danced

〈x|past((x)dance) : πr3s2

〈x|past((x)dance) : πr3s

∃(person(y)→ past((y)dance)|y〉)) : s

Our system also allows us to get multiple readings for quantified sentences such as Everybody
loves somebody. Two different readings are possible for this one: 1) everybody has a special
someone, and those special someones can all be different from one another or 2) there is one
specific person who is loved by everybody.

everybody

∀((person(z)→ (z)x|z〉))|x〉 : s(πr3s)
l

loves

〈x|(x)love(y)|y〉 : πr3so
l

somebody

〈z|∃((person(y)→ z(y))|y〉) : (sol)rs

〈x|∃((person(y)→ (x)love(y))|y〉) : πr3s

∀((person(z)→ ∃((person(y)→ (z)love(y))|y〉))|z〉) : s

The term is simply a more detailed way of saying ∀z.∃y.(z)love(y). The second reading,
∃x.∀z(z)love(x), follows.

everybody

∀((person(z)→ (z)x|z〉))|x〉 : s(πr3s)
l

loves

〈x|(x)love(y)|y〉 : πr3so
l

∀((person(z)→ (z)love(y)|z〉))|y〉 : sol
somebody

〈z|∃((person(x)→ z(x))|x〉) : (sol)rs

∃((person(x)→ ∀((person(z)→ (z)love(x)|z〉)))|x〉) : s

6 Conclusion

In this article, we proposed a novel way of doing semantics within pregroup grammars that
is simple and shares many similarities with other semantic frameworks already in place. The
calculus we created can be used at the same time as doing grammaticality checks through
pregroup reductions and does not seem to be adding too much complexity to the overall system.

One of the down sides of our approach is that we had to restrict the format of pregroup
types it could be used with, but as we explained, we feel that those types and relations left
behind do not bear significant linguistic relevance.

This was a first step towards what we hope could become a standard way of doing pregroup
grammars semantics and still have a lot of work ahead of us to investigate the system’s properties
in more depth. It is also not quite clear what those differences in directionality and reduction
strategies will imply for the semantic analysis of sentences and how powerful the system really
is.

27

Bidirectional Functional Semantics for Pregroup Grammars Gabriel Gaudreault

References

[1] Y. Bar-Hillel. A quasi-arithmetical notation for syntactic description. Language, 29(1):47–58,
1953.

[2] W. Buszkowski. Sequent systems for compact bilinear logic. Mathematical Logic Quarterly,
49(5):467–474, 2003.

[3] W. Buszkowski and A. Mickiewicz. Lambek calculus and substructural logics. Linguistics Analysis,
36(1):15–48, 2003.

[4] B. Carpenter. Type-Logical Semantics. MIT Press, 1998.

[5] C. Casadio and J. Lambek. A tale of four grammars. Studia Logica, 71, 2002.

[6] A. Church. A set of postulates for the foundation of logic. Annals of Mathematics, 33(2):346–366.

[7] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5(2):56–68,
1940.

[8] S. Clark, B. Coecke, and M. Sadrzadeh. A compositional distributional model of meaning. In
Proceedings of the Second Quantum Interaction Synposium, pages 133–140, 2008.

[9] B. Coecke, E. Grefenstette, and M. Sadrzadeh. Lambek vs. lambek: Functorial vector space seman-
tics and string diagrams for lambek calculus. Annals of Pure and Applied Logic, 164(11):1079–1100,
2013.

[10] J. Lambek. The mathematics of sentence structure. American Mathematics Monthly, 65:154–169,
1958.

[11] J. Lambek. Type grammar revisited. In G. Perrier A. Lecomte, F. Lamarche, editor, Logical
Aspects of Computational Linguistics, volume 1582 of Lecture Notes in Computer Science, pages
1–27. Springer Berlin Heidelberg, 1999.

[12] J. Lambek. From Word to Sentence: A Computational Algebraic Approach to Grammar. Polimetra,
2008.

[13] R. Moot and C. Rétoré. The Logic of Categorial Grammars: A Deductive Account of Natural
Language Syntax and Semantics, volume 6850 of Theoretical Computer Science and General Issues.
Springer-Verlag Berlin Heidelberg, 2012.

[14] A. Preller. Category theoretic semantics for pregroup grammars. In Logical Aspects of Compu-
tational Linguistics, volume 3492 of Lecture Notes in Computer Science, pages 238–254. Springer
Berlin Heidelberg, 2005.

[15] A. Preller. Toward discourse representation via pregroup grammars. Journal og Logic, Language
and Information, 16(2):173–194, 2007.

[16] A. Preller and M. Sadrzadeh. Semantic vector models and functional models for pregroup gram-
mars. Journal of Logic, Language and Information, 20(4):419–443, 2011.

28

	Motivations
	Pregroups & Pregroup Grammar
	Definition of a Pregroup
	Pregroup Grammars

	Proof Theory
	Using Pregroup Types for Semantics
	Inference Rules

	-Calculus
	System Description
	Annotated Proof Theory
	Linguistic Justifications
	Untyped -Calculus

	Pregroup Grammars
	Logical Constants & (Term, Type) Assignment
	Semantic Derivations
	Declarative sentence with transitive verb
	Interrogative sentence
	Declarative sentence with quantifiers

	Conclusion

