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Abstract 

In 2016, Patel and Mishra introduce the operators which is generalization of well-known Szasz-
Mirakyan operators. In this manuscript, we have discussed Voronovskaja asymptotic of Stancu type 
generalization of the operators defined by Patel and Mishra.   
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1. Introduction 
Using Lagrange’s formula, Patel and Mishra [1] defined the following sequence of positive linear 

operators, for ݂ ∈ ,൫[0ܥ ∞)൯; 0 ≤ ߤ < 1; 1 < ߛ ≤ ݁  as 

௡ܲ
[ఓ,ఊ](݂; (ݔ = ෍ ߱௡,ఊ(݇; ݂(ݔ݊ ൬

݇
݊

൰

ஶ

௞ୀ଴

 
 (1) 

where 

߱௡,ఊ(݇, (ݔ݊ = log)ݔ݊ ݔ݊)௞(ߛ + ௞ିଵ(ߤ݇ (௡௫ା௞ఓ)ିߛ

(݇!)
. 

In particular ߛ = ݁, the operators (1) reduce to Jain operators [2]. Also, if ߛ = ݁ and ߤ = 0 then, the 
operators ௡ܲ

[ఓ,ఊ] equal to the classical Szasz-Mirakyan operators [3]. Approximation properties of the 
Szasz-Mirakyan operators, Jain operators and their generalizations was discussed by many authors. We 
mention that, approximation properties of the integral generalization of Szasz-Mirakyan operators 
discussed in [4, 5] and integral type generalization of Jain operators discussed in [6, 7, 8].  The 
generalization of Szasz-Mirakyan operators based on q-integer was established in [9, 10, 11]. This 
research proved that the Szasz-Mirakyan operators and their generalization have many interesting 
approximation properties.  
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 In 1983, the following type generalization of Bernstein polynomial was established by Stancu in [12] 
and studied the positive linear operators ܵ௡

ఈ,ఉ: ([0,1])ܥ → ݂ defined for any ([0,1])ܥ ∈  as ([0,1])ܥ
follows: 

ܵ௡
ఈ,ఉ(݂, (ݔ = ෍ (ݔ)(௡,௞)݌

௡

௞ୀ଴

݂ ൬
݇ + ߙ
݊ + ߚ

൰ ,   0 ≤ ݔ ≤ 1, 

where ݌(௡,௞)(ݔ) = ቀ
݊
݇ቁ ௞(1ݔ −  ௡ି௞is the Bernstein basis function. After the work of Stancu many(ݔ

researcher work in this direction. The recent work on such type of operators can be found in [13, 14, 15, 
16, 17, 18, 19, 20, 21]. This motivated us to generalize the operators (1) in the following way, for ݂ ∈
,൫[0ܥ ∞)൯; 0 ≤ ߤ < 1; 1 < ߛ ≤ ݁, 0 ≤ ߙ ≤  as  ߚ

௡ܲ
[ఓ,ఊ,ఈ,ఉ](݂; (ݔ = ෍ ߱௡,ఊ(݇; ݂(ݔ݊ ൬

݇ + ߙ
݊ + ߚ

൰

ஶ

௞ୀ଴

, 
 (2) 

where ߱௡,ఊ(݇;  as defined in (3). The above generalization known as Stancu type generalization of (ݔ݊

the operators (1). In particular ߙ = ߚ = 0,  the operators (2) reduce to the operators   ௡ܲ
[ఓ,ఊ]. 

 

2. Some Lemmas 
 
To discuss moments of the operators (2), we need following lemmas: 

Lemma 1([1]). The operators  ௡ܲ
[ఓ,ఊ], ݊ >  1, defined by (1) satisfy the following relations: 

1.  ௡ܲ
[ఓ,ఊ](1, (ݔ = 1;  

2. ௡ܲ
[ఓ,ఊ](ݐ, (ݔ =

௫ ௟௢௚ ఊ

ଵିఓ ௟௢௚ ఊ
; 

3. ௡ܲ
[ఓ,ఊ](ݐଶ, (ݔ =  

௫మ(௟௢௚ ఊ)మ

(ଵିఓ ௟௢௚ ఊ)మ +
௫ ௟௢௚ ఊ

௡(ଵିఓ ௟௢௚ ఊ)య ; 

4.  ௡ܲ
[ఓ,ఊ](ݐଷ, (ݔ =  

௫య(௟௢௚ ఊ)య

(ଵିఓ ௟௢௚ ఊ)య +
ଷ௫మ(௟௢௚ ఊ)మ 

௡(ଵିఓ ௟௢௚ ఊ)ర + 
௫ ௟௢௚ ఊ(ଵାଶఓ ௟௢௚ ఊା ర(௟௢௚ ఊ)యିଶఓర(௟௢௚ ఊ)ర)

௡మ(ଵିఓ ௟௢௚ ఊ)ఱ  

5. ௡ܲ
[ఓ,ఊ](ݐସ, (ݔ =  

௫ర(௟௢௚ ఊ)ర

(ଵିఓ ௟௢௚ ఊ)ర +
଺௫య(௟௢௚ ఊ)య 

௡(ଵିఓ ௟௢௚ ఊ)ఱ +  
௫మ(௟௢௚ ఊ)మ (଻ା଼ఓ ௟௢௚ ఊା ర(௟௢௚ ఊ)యିଶఓర(௟௢௚ ఊ)ర)

௡మ(ଵିఓ ௟௢௚ ఊ)ల  

+
ݔ ݃݋݈ ቀ1ߛ + ߤ8 ݃݋݈ ߛ + ݃݋݈)ଶߤ6 ଶ(ߛ + ݃݋݈)ସߤ12) ଷ(ߛ − ݃݋݈)ହߤ16 ସ(ߛ + ݃݋݈)଺ߤ6 ହ)(1(ߛ − ݃݋݈  ቁ( ߛ

݊ଷ(1 − ߤ ݃݋݈ ଻(ߛ . 

Lemma 2.  The operators  ௡ܲ
[ఓ,ఊ,ఈ,ఉ], ݊ >  1, defined by (1) satisfy the following relations: 

1. ௡ܲ
[ఓ,ఊ,ఈ,ఉ](1, (ݔ = 1; 

2. ௡ܲ
[ఓ,ఊ,ఈ,ఉ](t, (ݔ =

௡௫ ୪୭୥ ఊାఈ(ଵିఓ ୪୭ ) 

(௡ାఉ)(ଵିఓ ୪୭ )
;  

3. ௡ܲ
[ఓ,ఊ,ఈ,ఉ](tଶ, (ݔ =

௡మ௫మ(୪୭୥ ఊ)మ

( ௡ାఉ)మ(ଵିఓ ୪୭୥ ఊ)మ −
௡௫ ୪୭୥ (ଵାଶఈ)

(௡ାఉ)మ(ଵିఓ ୪୭୥ ఊ)
+

ఈమ

(௡ାఉ)మ. 

Proof. It is clear that ௡ܲ
[ఓ,ఊ,ఈ,ఉ](1, (ݔ = 1. By simple computation, we get  
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௡ܲ
[ఓ,ఊ,ఈ,ఉ](t, (ݔ = ෍ ߱௡,ఊ(݇; (ݔ݊ ൬

݇ + ߙ
݊ + ߚ

൰

ஶ

௞ୀ଴

=
݊

݊ + ߚ ௡ܲ
ఓ,ఊ(ݐ, (ݔ +

ߙ
݊ + ߚ

=
ݔ݊ log ߛ + 1)ߙ − ߤ log  (ߛ

(݊ + 1)(ߚ − ߤ log (ߛ
. 

Now, ௡ܲ
[ఓ,ఊ,ఈ,ఉ](tଶ, (ݔ = ∑ ߱௡,ఊ(݇; (ݔ݊ ቀ

௞ାఈ

௡ାఉ
ቁ

ଶ
ஶ
௞ୀ଴  

=
nଶ

(݊ + ଶ(ߚ ௡ܲ
[ఓ,ఊ](ݐଶ, (ݔ +

݊ߙ2
(݊ + ଶ(ߚ ௡ܲ

[ఓ,ఊ](ݐ, (ݔ +
ଶߙ

(݊ +  ଶ(ߚ

=
݊ଶݔଶ(log ଶ(ߛ

( ݊ + ଶ(1(ߚ − ߤ log ଶ(ߛ −
ݔ݊ log ߛ (1 + (ߙ2

(݊ + ଶ(1(ߚ − ߤ log (ߛ
+

ଶߙ

(݊ +  ,ଶ(ߚ

we have the desired result. 

Remark 1. For all  ݉ ∈  ℕ, 0 ≤ ≥ ߙ   we have the following recursive relation for the images of ;ߚ 

the monomials ݐ௠ under ௡ܲ
[ఓ,ఊ,ఈ,ఉ](݉ݐ, in terms of ௡ܲ (ݔ

[ఓ,ఊ](ݐ௝ , ,(ݔ ݆ = 0,1,2, … , ݉ as 

௡ܲ
[ఓ,ఊ,ఈ,ఉ](݉ݐ , (ݔ = ෍ ቀ

݉
݆ ቁ

݊௝ߙ௠ି௝

(݊ + ௠(ߚ ௡ܲ
[ఓ,ఊ](ݐ௝ , (ݔ

௠

௝ୀ଴

. 

Remark 2. We have 

௡ߔ
[ఓ,ఊ,ఈ,ఉ](ݔ) = ௡ܲ

[ఓ,ఊ,ఈ,ఉ](ݐ − ,ݔ (ݔ = ݔ ቆ
݊(log ߛ − 1 + ߤ log (ߛ − 1)ߚ − ߤ log (ߛ

(݊ + 1)(ߚ − ߤ log (ߛ
ቇ +

ߙ
(݊ + (ߚ

; 

௡ߖ
[ఓ,ఊ,ఈ,ఉ](ݔ) = ௡ܲ

[ఓ,ఊ,ఈ,ఉ]((ݐ − ,ଶ(ݔ (ݔ

= ଶݔ ൭
൫1)ߚ − ߤ log (ߛ + ݊(1 − log ߛ − ߤ log ൯(ߛ

ଶ

(݊ + ଶ(1(ߚ − ߤ log ଶ(ߛ ൱

+ ݔ ቌ
ቀ݊൫(1 + ߙ2 + (ߤߙ2 log ߛ − ൯ቁߙ2

(݊ + ଶ(1(ߚ − ߤ log (ߛ
ቍ 

ݔ+ ൬
1)ߚߙ2− − ߤ log (ߛ

(݊ + ଶ(1(ߚ − ߤ log (ߛ
൰ +

ଶߙ

(݊ +   .ଶ(ߚ

 

3. Voronovskaja Type Theorem 
In this section, we establish the asymptotic formula for the operators ௡ܲ

[ఓ,ఊ,ఈ,ఉ]. 

Theorem 1. For ܾ > 0, ௡ߤ ∈ (0,1) such that ݊ߤ௡ → ݈ ∈ ℝ and ߛ௡ ∈ (1, ݁) such that  ߛ௡ → ݁(Euler 
number). Then for every ݂ ∈ ,0])ܥ ܾ]), ݂ᇱ, ݂′′ exists at a fixed  point ݔ ∈ (0, ܾ), we have  

lim
௡→ஶ

݊ ൬ ௡ܲ
[ఓ೙,ఊ೙ ,ఈ,ఉ](݂, (ݔ − ൰(ݔ)݂ = ߙ)   + (݈ − (ݔ)ᇱ݂(ݔ(ߚ +

((݈ଶ + ݔ(ߚ2 + ݔ(1
2

݂ᇱᇱ(ݔ).  

Proof. Let ݔ ∈ (0, ܾ) be fixed. From the Taylor's theorem, we may write 

(ݐ)݂ = (ݔ)݂ + ݐ) − (ݔ)ᇱ݂(ݔ +
1
2

ݐ) − (ݔ)ଶ݂ᇱᇱ(ݔ + ,ݐ)ݎ ݐ)(ݔ −  ,ଶ(ݔ
 (4) 

where ݐ)ݎ, is the peano form of the remainder and lim (ݔ
୲→୶

,ݐ)ݎ (ݔ = 0. 

Applying ௡ܲ
[ఓ,ఊ,ఈ,ఉ]

on the both side of equation (4), we have  
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݊ ൬ ௡ܲ
[ఓ,ఊ,ఈ,ఉ](݂, (ݔ − ൰(ݔ)݂ = ݂݊ᇱ(ݔ)ߔ௡

[ఓ,ఊ,ఈ,ఉ](ݔ) +
1
2

݂݊ᇱᇱ(ݔ)ߖ௡
[ఓ,ఊ,ఈ,ఉ](ݔ). 

In view of Remark 1, we have 

lim
௡→ஶ

௡ߔ݊
[ఓ,ఊ,ఈ,ఉ](ݔ) = ߙ + (݈ −  (5) ;ݔ(ߚ

lim
௡→ஶ

௡ߖ݊
[ఓ,ఊ,ఈ,ఉ](ݔ) = ((݈ଶ + ݔ(ߚ2 +  .ݔ(1

 

(6) 

Now, we shall show that 

lim
௡→ஶ

n ௡ܲ
[ఓ,ఊ,ఈ,ఉ](ݐ)ݎ, ݐ)(ݔ − ,ଶ(ݔ (ݔ  = 0.   

By using Cauchy-Schwarz inequality, we have  

௡ܲ
[ఓ,ఊ,ఈ,ఉ](ݐ)ݎ, ݐ)(ݔ − ,ଶ(ݔ (ݔ ≤ ൬ ௡ܲ

[ఓ,ఊ,ఈ,ఉ](ݎଶ(ݐ, ,(ݔ ൰(ݔ

ଵ
ଶ

൬ ௡ܲ
[ఓ,ఊ,ఈ,ఉ]((ݐ − ,ସ(ݔ ൰(ݔ

ଵ
ଶ

. 
 (7) 

We observe that ݎଶ(ݔ, (ݔ = 0 and ݎଶ(⋅, (ݔ ∈ ,0])ܥ ܾ]). Then, it follows that  

lim
௡→ஶ ௡ܲ

[ఓ,ఊ,ఈ,ఉ](ݎଶ(ݐ, ,(ݔ (ݔ = ,ݔ)ଶݎ (ݔ = 0, (8) 

in view of the fact that ௡ܲ
[ఓ,ఊ,ఈ,ఉ]((ݐ − ,ସ(ݔ (ݔ = ܱ ቀ

ଵ

௡మቁ. 

Now, from (7) and (8), we obtain  

lim
௡→ஶ

݊ ௡ܲ
[ఓ,ఊ,ఈ,ఉ](ݐ)ݎ, ݐ)(ݔ − ,ଶ(ݔ (ݔ = 0. 

From (5), (6) and (9), we get the required result.  
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