
Towards Improving the Resource Usage of SAT

solvers

Norbert Manthey∗

International Center for Computational Logic
TU Dresden, 01062 Dresden, Germany
norbert@janeway.inf.tu-dresden.de

and Ari Saptawijaya
International Center for Computational Logic

TU Dresden, 01062 Dresden, Germany
ari@janeway.inf.tu-dresden.de

Abstract

The paper presents our work on cache analysis of SAT-solving. The aim is to study how
resources are utilized by a SAT solver and to use this knowledge to improve the resource
usage in SAT-solving. The analysis is performed mainly on our CDCL-based SAT solver
and additionally on MiniSAT and PrecoSAT. The measurement is conducted using sample-
based profiling on some industrial benchmark from the SAT competition 2009. During the
measurement the following hardware events are traced: total cycles, stall cycles, L2 cache
hits and L2 cache misses. From the measurement results, our runtime and implementation
analysis unveil that several improvements on resource usage can be done, in particular on
data structures and memory access. These improvements result in about 60% speedup of
runtime performance for our solver.

1 Introduction

The satisfiability problem (SAT) has its importance not only theoretically but also practically.
The active development of SAT solvers in recent years has turned SAT solvers into a powerful
tool to solve SAT-encoded problems in various fields, from model checking to bioinformatics.
Encoding industrial problems often results in large SAT instances with millions of variables and
clauses. Therefore it is important to have appropriate data structures and techniques to handle
them. Driven by the annual SAT competitions and SAT races, many improvements have been
made on SAT solvers. These include improvements on the algorithm and employing various
heuristics and cache-aware data structures.

In this work we study how computing resources are utilized by a SAT solver in solving
industrial problems. In particular, we observe and analyze the use of cache in solving SAT
instances. We aim at an optimal use of cache by a SAT solver as cache allows a faster data
access compared to main memory access. In the end, this leads to the improvement of the
overall solver performance.

We consider a conflict-driven clause learning (CDCL)-based SAT solver in our work. The
solver is based on HydraSAT [3], that is developed in our group. The solver employs components
used commonly in state-of-the-art SAT solvers. The industrial problems in the study are taken
from some benchmark used in the last SAT competition 2009. The measurement is conducted
using the HPCToolkit [1] via sample-based profiling. At each sample point, the performance

∗The author was supported by the European Master’s Program in Computational Logic (EMCL).

28 D. Le Berre (ed.), POS-10 (EPiC Series, vol. 8), pp. 28–40

norbert@janeway.inf.tu-dresden.de
ari@janeway.inf.tu-dresden.de

Towards Improving the Resource Usage of SAT solvers Norbert Manthey and Ari Saptawijaya

counter is accessed using the PAPI library [2]. Using these performance measurement tools, we
observed the following processor events: total cycles, stall cycles, L2 cache hits and L2 cache
misses. Additionally, the number of clause read-access and write-access are collected.

The runtime analysis from the measurement suggests some improvements that can be made
on data structures. The improvements particularly deal with the clause representation and
with prefetching clauses in a watcher list. We propose the use of the slab allocator [5] that,
together with several clause representation schemes, improve the runtime performance of the
solver up to 23% speedup. Two prefetching schemes are also proposed which give about 12%
speedup of runtime performance. Based on the implementation analysis, we also carry out some
experiments to improve memory access. The experiments include reusing data structure vector
in conflict analysis and compressing some data structures, i.e. literals, boolean arrays and the
truth-value assignment. We also consider a scheme to maintain a watcher list lazily, where
the “gap” in the list (due to removing a clause from it) is not closed immediately by moving
subsequent clauses in the list. Instead, this “gap” is only closed once the unit propagation
terminates. This lazy maintenance of watcher list speeds up the solver’s runtime by about 24%.
The most encouraging result is obtained when several improvements are combined, where the
runtime performance of the solver can be improved up to 60% speedup. All the improvements
we consider in this work do not change the search-path in finding a solution. Besides our solver,
we also measure and evaluate the cache performance of MiniSAT 2.0 [7] and PrecoSAT [4].

The paper is organized as follows. The description of the solver is given in Section 2. Then,
in Section 3 we detail how the measurement is conducted. We discuss the measurement results
and the analysis in Section 4. The proposed improvements based on the analysis are examined
in Section 5. Finally, we conclude in Section 6 by discussing related work and some future work.

2 Description of the Solver

The solver used in this work is based on the conflict-driven clause learning (CDCL) procedure.
It is customized from HydraSAT [3], a solver that is implemented in C++. The solver is compiled
to a 64-bit binary using the GNU Compiler version 4.1.2 with the highest optimization level
-O3.

A literal is implemented using a 32-bit unsigned integer. A clause is implemented by storing
its activity (32-bit floating point), its size (32-bit unsigned integer) and a pointer to the literals
of the clause. In case a clause is used in several solver components, no copy of this clause is
made. Instead, only the address of the clause is shared among the components. Finally, a
formula is implemented as a vector of pointers to clauses it contains. Auxiliary data structures
used in the solver are vectors, stacks, double-ended queues and priority queues. The first three
are adopted from the C++ Standard Template Library. The priority queue is implemented using
a binary heap. We consider the following components for our solver.

• Unit Propagation. The two watched-literal scheme, which is introduced in Chaff [10] to
improve the cache performance, is used for the unit propagation component. As usual, this
scheme is realized by maintaining watcher lists. The implementation handles the binary
clauses separately from the other longer clauses. Unit propagation is performed firstly
on binary clauses and then on longer clauses. Due to the special treatment for binary
clauses, watcher lists for literals of binary clauses are introduced. For binary clauses, the
watcher list of a literal does not only store the pointer to the clauses, but it stores also
the other literal of the clause.

• Conflict Analysis. The first UIP scheme [9] is used for the conflict analysis component.

29

Towards Improving the Resource Usage of SAT solvers Norbert Manthey and Ari Saptawijaya

Additionally, the learnt clause obtained from the conflict analysis is further minimized
using self-subsumption [8].

• Decision Heuristics. The decision heuristic used follows the basic principle of VSIDS [10].
Each variable is assigned an activity and the variable with the highest activity is picked as
a decision variable. Every 1000 decisions an attempt to pick a decision variable randomly
takes place (up to ten attempts). If these attempts fail, a deterministic decision is made
using the activity-based heuristic. Decision variables are assigned negative polarity.

• Restart Event Heuristics. This component manages the scheduling of restart. The first
restart is performed after 100 conflicts. Restart is scheduled according the following
scheme:

noc(t) =

 0 , if t = 0
100 , if t = 1
(noc(t− 1) − noc(t− 2)) · r + con , otherwise

where noc(t) is the number of conflicts needed to restart at time t, r is a constant and
con is the current total number of conflicts. In our solver, the value of r is set to 1.5.

• Removal Heuristics. Removal of learnt clauses is scheduled immediately after a restart.
Hence, there is no need to check whether the clauses to be removed are still actively
participated in the current search. In our solver, the heuristic is to remove:

– learnt clauses with more than six literals, and

– the oldest 55 % of the remaining learnt clauses with more than two literals.

3 Measurement

The measurement is conducted using the HPCToolkit [1] via sample-based profiling. The solver
is run and halted at a specified processor event and the method currently running is analyzed.
Such an event is triggered when a performance counter reaches the maximum of its period.
When the program is halted, the performance counters are read using the PAPI Library [2].
The precision of the measurement is assured due to the long run of the solver. This long run
ensures the collection of lots of samples during the measurement.

In the measurement, four processor events are traced simultaneously: total cycles, stall
cycles, L2 cache hits and L2 cache misses. The sample rate for the total cycles is 106, whereas
the sample rate for the other three events are set to 105. In addition to tracing processor
events, the number of clause read-access and write-access are observed. Observing the behavior
of clause read-access and write-access allows us to learn which among the two accesses is more
frequent. Hence, the more frequent access can be treated differently.

For the measurement, 40 problem instances of the industrial benchmark from the the SAT
competition 2009 are used. These are the instances that are solved within 45 minutes timeout
using the basic version of our solver, i.e. without any improvement which will be discussed
subsequently. Appendix A shows the selected instances together with their solving time and
memory usage. The total runtime for the benchmark is 9.5 hours. The measurement is per-
formed on a hardware with AMD Opteron 285 2.66 GHz processor, 1024 KB Level 2 Cache,
2 GB main memory, 64-byte cache line size. In the subsequent sections, the computation of
runtime, wait rate, L2 cache access, L2 cache miss rate and work cycles is as usual:

• runtime = total cycles× CPU Frequency

30

Towards Improving the Resource Usage of SAT solvers Norbert Manthey and Ari Saptawijaya

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

 0 1 2 3 4 5 6 7 8 9

am
ou

nt

literal index

literal accesses

write accesses
read accesses

Figure 1: Literal accesses in clauses.

• wait rate = stall cycles/total cycles

• L2 cache access = L2 cache misses + L2 cache hits

• L2 cache miss rate = L2 cache misses/L2 cache access

• work cycles = total cycles− stall cycles

Since L1 cache is not analyzed, in the sequel memory access refers also to L2 cache access.

4 Results and Analysis

Based on the measurement results, two analysis are performed: the runtime analysis and the
implementation analysis. The former involves the analysis on the processor events and data
structure accesses. The latter concerns with the implementation of the solver that suggests
some slight improvements.

4.1 Runtime Analysis

Data structure accesses are important to determine the important part of the solver’s data. This
information cannot be obtained using the HPCToolkit, thus additional runs for measurement
have to be performed. Fig. 1 depicts the literal accesses in clauses. The most frequently accessed
literals are the literal at index 0 (60% read access, 25% write access) and at index 1 (15% read
access, 50% write access) of the literal array. The total number of write accesses is only 17% of
read accesses. Note that, literals are only accessed in the unit propagation and in the conflict
analysis components.

Table 1 shows the distribution of each processor event amongst the solver components. It
can be seen that most of the runtime is spent by the unit propagation. The conflict analysis
component consumes only about 6% of the runtime, whereas the remaining components share

31

Towards Improving the Resource Usage of SAT solvers Norbert Manthey and Ari Saptawijaya

only 2% of the runtime. Most of the L2 cache misses and hits are produced in the unit propa-
gation as well. Hence, this component needs to be optimized in order to obtain a high impact
for the solver’s performance.

Component Total Cycles Stall Cycles L2 Misses L2 Accesses

Decision Heuristics 1.77% 1.59% 3.13% 2.95%
Removal Heuristics 0.31% 0.21% 0.09% 0.21%
Conflict Analysis 5.74% 5.42% 6.27% 7.27%
Restart Event Heuristics 0.00% 1.33% 0.00% 0.00%
Unit Propagation 91.65% 92.62% 90.08% 88.94%

Table 1: Distribution of processor events in solver.
Total Cycles Stall Cycles L2 Misses L2 Accesses

Propagate on binary clauses 5.71% 5.55% 7.95% 5.64%
Propagate on longer clauses 83.86% 85.30% 78.17% 79.78%

Literal read access 45.8% 54.49% 24.07% 12.57%
Maintain watcher list 24.26% 18.59% 2.19% 36.64%

Table 2: Distribution of processor events for Unit Propagation.

Based on the measurement result, the wait rate of the solver, i.e. the part of of the execution
time where the solver waits for a resource, is 82%. This value indicates that the solver does
not use the provided resources well. Computing the L2 cache miss rate, we obtain the value of
40% for our solver.

Analyzing the unit propagation further, we obtain the distribution of each processor event
for the propagation on binary clauses and on longer clauses as shown in Table 2. The result
indicates that the unit propagation spends most of its runtime in propagating unit on longer
clauses than on binary clauses. Furthermore, in propagating on longer clauses most of the
runtime is spent in literal read accesses (45.8%) and maintaining the watcher lists (24.26%).

Following the two watched-literal scheme, the watcher list of the literal to propagate is
accessed and all the clauses in this list are processed sequentially. Visiting these clauses results
in two cache misses, in case the other watched literal is not satisfied. This scheme is considered
expensive. The memory scheme of accessing the first literal of a clause in a watcher list during
propagation is shown in Fig. 2. The first cache miss occurs when the clause head is visited.
The second one results from visiting the first literal afterwards. Note that, the cache misses in
looking up the truth value of a literal are negligible (less than 2%). The cache miss due to the
extracting the watcher list of a literal occurs only once (while propagating this literal). In the
sequel, we refer it as 0th cache miss.

Analysis on MiniSAT 2.0 Our solver implements similar data structures as MiniSAT. This
leads to similar behavior as well. The analysis can only be done on 39 out of 40 problem
instances because MiniSAT fails to solve one instance within the timeout. MiniSAT needs only
80% of the memory accesses compared to our solver. Due to a similar number of L2 cache
misses, the L2 cache miss rate of MiniSAT is 50%. On the other hand, the work cycles of
MiniSAT are comparable to the work cycles of our solver, indicating that the two algorithms
are suited for the benchmark equally well. The wait rate of MiniSAT is equal to our solver.

32

Towards Improving the Resource Usage of SAT solvers Norbert Manthey and Ari Saptawijaya

Analysis on PrecoSAT PrecoSAT is much faster on the given benchmark than the other
two solvers. Similarly to MiniSAT, PrecoSAT solves 39 instances but it uses only 33% of our
solver’s runtime. The 37% work cycles indicate that PrecoSAT implements a better algorithm,
but the solver does not seem to utilize hardware much better than MiniSAT or our solver.
PrecoSAT’s L2 cache miss rate is 36% and it spends 77% of the execution time waiting for
resources.

4.2 Implementation Analysis

We review the implementation of the solver and we observe three flaws in the implementation.

The amount of memory accessed during solving instances can be reduced by compressing
data, especially boolean arrays and the truth-value assignment of the solver. Applying the
assignment compression [6] saves 75% compared to the original size, because four ternary truth
values (positive, negative, undefined) can be stored in a byte. A similar approach can be applied
to boolean arrays, which saves about 88% of its original size. Nevertheless, the compression of
boolean arrays has a cost as it requires additional instructions that are executed every time the
array is accessed.

To enable the phase-saving heuristic in choosing the polarity of a decision variable [11],
the truth-value assignment also stores for every variable the backup polarity (i.e. the polarity
previously assigned but erased due to backtracking). This polarity is stored next to the current
polarity. Thus, reading only an assignment loads every second byte (that stores the backup
polarity) unnecessarily into the cache. In fact, this byte that stores the backup polarity is used
only when the variable is assigned undefined.

Memory accesses can be avoided in the implementation by reusing data structures. A newly
created vector without specifying a size results in a vector with no allocated storage capacity.
Enlarging a vector allocates a new piece of memory and copies the content of the old piece of
memory to the new one. Afterwards, the old piece of memory is freed. On the other hand,
clearing a vector keeps its allocated capacity. Thus, copying memory can be avoided by clearing
and reusing a vector, instead of deleting the vector and creating a new one.

Watched lists

Watched list
for literal 2

¬1

¬2

1

¬3

¬4

3

4

5

¬5

¬6

6

2

Clause Head

Activity

Literals

Size

Clause Body

¬2

¬5

¬6

Figure 2: Accessing the first literal of a clause using the two watched-literal scheme.

33

Towards Improving the Resource Usage of SAT solvers Norbert Manthey and Ari Saptawijaya

5 Improvements

The analysis from Section 4 suggests some improvements with the goal to reduce cache misses
and improving data locality. The main reason for cache misses is the separation of the clause
head and the clause body. We discuss several improvements that can be done and their evalu-
ation, in this section.

5.1 Clause Access Improvements

The first idea is to move literals from the clause body to the clause head. This improvement
is called cache clause. By moving four literals, we obtain up to 19% of runtime speedup. This
result is similar to clause packing improvement in [6]. The number of L2 cache misses is reduced
by 32%. Choosing to access the local stored literals or the clause body increases the work cycles
by 3%.

With the cache clause improvement, the size of the clause head becomes 32-byte, so that
two clause heads fit exactly on one cache line. Since all clauses are allocated using the memory
allocator malloc, 8-byte additional storage (for system information) is added to every alloca-
tion. This storage prevents the system to place two clause heads compactly on a single cache
line. Using the slab allocator this additional storage can be avoided [5], since it stores the 8-byte
system information only once, allowing the clause heads to be stored compactly. We implement
our own slab allocator for our purpose. In order to handle clauses with variable sizes, one
needs a separate allocator for each size (due to the fixed slab size). Multiple slab allocators of
different sizes are then combined in a wrapper. When an allocation should be done for a clause,
an allocator for the corresponding size (of the clause) is then chosen from the wrapper. The
slab allocator alone does not affect the runtime and main memory accesses, but combining it
with the cache clause leads to a better improvement. Combining the two improvements results
in 23% speedup of the runtime and the number of L2 cache misses is reduced by 26% compared
to the basic version of the solver.

Another approach is to store the clause in an array and to combine the clause head and body
[7]. This improvement is dubbed flattened clause. With this scheme, accessing the size and the
activity of a clause is less flexible, but no additional instruction is needed to determine whether
to access the locally stored literals or the clause body. Fig. 3 shows the implementation and the
memory scheme of the flattened clause improvement. Together with the malloc allocator, this
scheme yields 21% runtime speedup. The L2 cache miss rate is decreased by 20% and 24% of
the L2 cache accesses in the basic version of the solver are caught by the L1 cache. Combining
the flattened clause with the slab allocator improves the runtime by 22%.

The improvements in clause implementation avoid the second cache miss occurring in visiting
the clauses in a watcher list as discussed in Section 4.1. In [6], some literals of the clauses in
a watcher list are stored directly in the watch list itself in order to avoid the first cache miss.
Unfortunately the search path may change by this improvement.

The first cache miss can also be avoided if the prefetch unit is used to store the clauses of a
watcher list in the cache. The GNU Compiler provides an instruction that tells the prefetcher
the address to fetch into the cache. Since the watcher list is traversed linearly, the clauses it
contains can be prefetched.

To avoid 0th cache miss, the corresponding watcher list is prefetched as soon as another
literal is added to the propagation queue. Prefetching the clauses (effectively the clause heads)
can be done in two ways: either all clauses in the currently visited watcher list are prefetched
(first prefetching scheme) or the clauses from the watcher lists of the first depth literals in the

34

Towards Improving the Resource Usage of SAT solvers Norbert Manthey and Ari Saptawijaya

propagation queue are prefetched (second prefetching scheme). Note that, depth is a parameter
and it refers to the number of consecutive literals in the propagation queue.

The following results are obtained without improving the implementation of clause. The first
prefetching scheme delivers 12% speedup and the stall cycles are reduced to 84%. The results
of the second prefetching scheme depend on the parameter depth. For depth = 10, we gain 4%
speedup of the runtime. This parameter can be tuned further, but this is not considered in the
current work. In both schemes the number of work cycles, cache hits and cache misses increase
because unnecessary clauses are prefetched due to a conflict which stops the unit propagation.
The prefetch unit does not introduce any negative impact on the runtime.

5.2 Reducing Memory Accesses

As shown in Table 2, the maintenance of the watcher lists, i.e. removing elements from the
watcher list, needs almost 25% of runtime. Removing a clause from a watcher list pushes all
subsequent clauses one position forward. As a result, lots of memory accesses are performed.
Using a linked-list instead of a vector for a watcher list reduces the memory accesses by 13%,
but it takes longer runtime (increase by 20%). The negative impact is caused by the high miss
rate of L2 cache, i.e. 71%, which results from the non-linear read access of the list elements.

In the maintenance of a watcher list, in fact there is no need to push all subsequent clauses
immediately to fill in the “gap” (that occurs due to removing a clause from it). The maintenance
of the watcher list can be done lazily. This can be illustrated as follows. Suppose that the first
clause is removed from the list, the pointer of this clause is kept and marked as a gap. This
means, the subsequent clauses are not pushed immediately forward. Suppose that the second
clause has also to be removed, then we leave a wider gap (of two clauses) in the list. If the
third clause is not removed from the list then this clause can be pushed forward to the top of
the list, making the gap in the list smaller. Note that, only this clause is pushed forward, as
the following clauses could be potentially removed as well (thus, leaving a new gap). In the
end, when the propagation stops (e.g. due to a conflict) then all the gaps can be removed at
once from the watcher list. This lazy maintenance of watcher list results in 23% speedup of
the solver’s runtime, decreases the memory accesses by 35% and thus increases the L2 miss
rate by 54%. This scheme also decreases the work cycles by 52%. These results indicate that
the process of maintaining a watcher list is buffered completely in the L2 cache. We refer this
improvement scheme as the lazy maintenance.

Data structures compression may reduce memory accesses further. This compression in-

typedef literal_t* cls;

cls literals;

literal_t literal(cls literals,uint32_t index){

return literals[index];

}

uint32_t size(cls literals){

return ((uint32_t*)literals)[-1];

}

float activity(cls literals){

return ((float*)(&(((uint32_t*)literals)[-1])))[-1];

}

Head

Activity

Size

Literals

Figure 3: The implementation and the memory scheme of the flattened clause.

35

Towards Improving the Resource Usage of SAT solvers Norbert Manthey and Ari Saptawijaya

cludes the compression of the truth-value assignment and boolean arrays. These improvements
are called compressed assignment and compressed boolean arrays, respectively. Our experiment
shows that both compressions do not lead to any impact on the runtime performance. Some
speedup gained from less L2 cache accesses and misses has to compensate the compression and
decompression operations.

The assignment can be stored more compactly by storing the backup polarities from the
currently used ones separately, rather than storing both polarities next to each other (cf. Sec-
tion 4.2). The assignment is partitioned in two halves, albeit stored in a single array (it can
alternatively be realized using two separate arrays). The half partition of backup polarities
is identified by indexing the assignment with the negative variable. The number of memory
accesses is reduced by 1% using this scheme and the runtime is slightly better than the runtime
of the above compressing schemes. This improvement is called the negative index assignment.

Compressing the literals as it is done in siege [12] is also analyzed in this work. The
compression is able to store three literals in a 64-bit integer and reduces the storage needed
by 33% in the best case. The maximum number of variables in the formula is reduced to 220,
because the representation of one compressed literal is stored in 21-bit. The number of L2
cache misses reduces by 3%, but the number of work cycles increases by 17%. As a result, the
runtime does not change. The number of memory accesses decreased by almost 1%.

The implementation of the conflict analysis needs three vectors. The first one stores the
literals of the learnt clause. The second vector stores a backup of the first one during minimizing
the learnt clause. The last vector stores temporary literals that have to be processed. Clearing
and reusing these vectors lead to 4% runtime improvement and the number of memory accesses
decreases by 3%. This improvement is called the vector reuse.

5.3 Combination of Improvements

Most of the improvements described previously can be combined. Table 3 gives the results of
the six combinations with respect to the total cycles, L2 accesses, L2 miss rate and wait rate.
Note that, the values for total cycles and L2 accesses of each combination are relative to those
of the basic version, whereas the values for the L2 miss rate and wait rate are absolute. The
following acronyms are used in defining the combinations: CC, slab, VR, P1, NA, CBA, CA
and LM refer to the cache clause (with four local literals), slab allocator, vector reuse, the
first prefetching scheme, the negative index assignment, the compressed boolean arrays, the
compressed assignment and the lazy maintenance improvement, respectively.

All combinations result in a runtime improvement of almost 60%. Combinations with slab,
VR, P1, LM together with a clause improvement (CC or FC), as in combination 1 and 2, serve
as the core of optimizations. The performance drops significantly when only slab, VR, P1 and
LM are considered (without any clause improvement), where we obtain 64.49% total cycles,
73.92% L2 accesses, 55.42% L2 miss rate and 84.45% wait rate. The gained improvement does
not interfere with compressing data structures much. We only further analyze the combination
with the best runtime improvement, viz. Combination 6. Table 4 shows the distribution of
its runtime and work cycles. It also lists the amount of improvement obtained by comparing
its absolute runtime (and work cycles) to the runtime (and work cycles, respectively) of the
basic version. Compared to the basic version of the solver (Table 1), the distribution of the
total cycles moves from the unit propagation to other components. The conflict analysis now
needs 13% of the runtime. The work cycles change mainly for the unit propagation. The
major improvement is achieved in propagating longer clauses. The runtime improvement of
this part is caused by the improvement of the literal read access (16%) and the lazy watcher

36

Towards Improving the Resource Usage of SAT solvers Norbert Manthey and Ari Saptawijaya

Configuration Total Cycles L2 Accesses L2 Miss Rate Wait rate

Basic Version 100.0% 100.0% 40.94% 81.12%
Combination 1 40.93% 56.3% 47.68% 75.56%
Combination 2 39.91% 56.72% 48.7% 75.88%
Combination 3 41.01% 56.01% 48.05% 75.82%
Combination 4 40.9% 56.51% 48.86% 76.14%
Combination 5 40.69% 54.56% 48.25% 74.86%
Combination 6 39.7% 51.71% 49.3% 72.21%

Table 3: Results of improvement combinations. In this table, Basic refers to the basic version
of the solver, Combination 1 = CC + slab + VR + P1 + LM, Combination 2 = FC + slab +
VR + P1 + LM, Combination 3 = Combination 1 + NA, Combination 4 = Combination 2 +
NA, Combination 5 = Combination 3 + CBA and Combination 6 = Combination 1 + CA +
CBA.

Total Cycles Improvement Work Cycles Improvement
total cycles work cycles

Combination 6 100% 60.31% 100% 42.62%
Decision Heuristic 4.28% 0.07% 4.52% -0.02%
Removal Heuristic 0.68% 0.04% 2.33% -0.58%
Conflict Analysis 13% 0.58% 15.97% -1.99%
Restart Event Heuristic 0% 1.33% 0.01% 1.33%
Unit Propagation 80.87% 59.55% 74.48% 44.56%

Propagate on binary clauses 14.42% -0.01% 13.07% -1.08%
Propagate on longer clauses 61.47% 59.46% 54.14% 46.32%

Literal read access 9.17% 16.04% 8.34% -3.87%
Maintain watched list 0.22% 24.18% 0.34% 49.51%
Prefetch memory 23.14% -9.18% 3.46% -1.98%

Table 4: Comparing cycles distribution of basic version and combined improvements.

list maintenance (24%). The newly introduced prefetching scheme consumes about 9% of this
improvement.

The unit propagation still remains at the heart of the solver and is the part where further
improvements concerning the resource usage should be applied. The usage of the prefetch
function seems to offer some space for the optimization of the solver, since it requires only
about 4% of the work cycles but consumes about 23% of the total runtime.

6 Conclusion and Future Work

In this paper we have described our study on how computing resources are utilized by a mod-
ern SAT solver in solving several industrial problems. The aim is to improve the resource
usage in SAT-solving and the overall performance of SAT solvers. We perform cache analysis
of our CDCL-based SAT solver via sample-based profiling measurements on some industrial
benchmark from the SAT competition 2009. The analysis of the measurements suggests several
improvements, which include efficient representations of clauses, the use of the slab allocator
and clause-prefetching schemes in two watched-literal propagation. Additionally, compression

37

Towards Improving the Resource Usage of SAT solvers Norbert Manthey and Ari Saptawijaya

schemes of several data structures and lazy maintenance of watcher list are also considered. By
combining several improvements, the runtime performance of the solver can be improved up to
60% speedup.

The idea of cache clause improvement and compressed assignment is also considered in [6],
to improve MiniSAT. MiniSAT also enjoys lazy maintenance of watcher lists, similar to what
we describe here. There is also some similarity between the idea of the flattened clause and
the clause representation described in [13], where the clause head and body are combined and
stored in an array. Differently from [13], the additional clause offsets array is not needed,
since we do not store the whole clause database in a single array. We also record in our
clause representation the activity of clause instead of the number of watched literals. Cache
performance of SAT solvers has also been studied in [14]. Compared to [14], we do not study
the cache performance on various unit propagation schemes. Instead, we consider only the
two watched-literal propagation, which is commonly used in recent solvers, and study some
improvements that can be done on it further. We also examine the cache performance of some
recent solvers, viz. MiniSAT and PrecoSAT (as well as our own solver), using measurement
tools different from [14]. In addition to that, our measurements are conducted on more SAT
instances, taken from the recent benchmark of SAT competition. This is important in order to
validate our analysis better. Our work is an extension of the above mentioned previous work,
as we also examine several other improvements. These improvements include the slab memory
allocator and the clause-prefetching schemes in two watched-literal propagation, that combined
with some other improvements, increase the solver’s performance significantly.

As a future work, we would like to study further improvement through Translation Lookaside
Buffer (TLB). A preliminary study shows that using 2 MBytes page size (instead of 4 KBytes
page size) our cache-optimized solver obtains up to 10% performance speedup. For this result,
the benchmark is run on an Intel Core i7 860 CPU with 8 MBytes L2 cache and a clock
frequency of 2.80 GHz. Using the 2 MByte pages decreased the runtime of both the basic and
the improved version of the solver. This kind of improvement requires that the underlying
machine supports huge page size. It is also interesting to study the impact of the slab allocator
and various prefetching schemes in some other solvers, e.g. MiniSAT or PrecoSAT. Another
direction for the future work is to study improvements that affect the search path. In this line
of work, a metric to compare search paths has to be defined in order to evaluate the results of
the measurement correctly.

Acknowledgment The authors would like to thank Julian Stecklina, Hermann Härtig and
Steffen Hölldobler, for many fruitful discussions during this work.

References

[1] HPCToolkit. http://hpctoolkit.org/.

[2] PAPI library. http://icl.cs.utk.edu/papi/.

[3] C. Baldow, F. Gräter, S. Hölldobler, N. Manthey, M. Seelemann, P. Steinke, C. Wernhard, K. Win-
kler, and E. Zenker. HydraSAT 2009.3 solver description. SAT 2009 Competitive Event Booklet,
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf.

[4] A. Biere. PrecoSAT system description. http://fmv.jku.at/precosat/preicosat-sc09.pdf.

[5] J. Bonwick. The slab allocator: an object-caching kernel memory allocator. In Proceedings of the
USENIX Summer 1994 Technical Conference, 1994.

[6] G. Chu, A. Harwood, and P. J. Stuckey. Cache conscious data structures for boolean satisfiability
solvers. JSAT, 6:99–120, 2009.

38

Towards Improving the Resource Usage of SAT solvers Norbert Manthey and Ari Saptawijaya

[7] N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. 6th SAT, LNCS 2919, 2004.

[8] N. Eén and N. Sörensson. Minisat - a SAT solver with conflict-clause minimization. Poster - 8th
SAT, 2005.

[9] J. P. Marques-Silva and K. A. Sakallah. GRASP: A new search algorithm for satisfiability. In
International Conference on Computer-Aided Design, 1996.

[10] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient SAT
solver. Design Automation Conference, pages 530–535, 2001.

[11] K. Pipatsrisawat and A. Darwiche. A lightweight component caching scheme for satisfiability
solvers. In Proc. 10th SAT, LNCS 4501, 2007.

[12] L. O. Ryan. Efficient algorithms for clause learning SAT solvers. Master’s thesis, Simon Fraser
University, Canada, 2004.

[13] A. van Gelder. Generalizations of watched literals for backtracking search. In Seventh International
Symposium on AI and Mathematics, 2002.

[14] L. Zhang and S. Malik. Cache performance of SAT solvers: a case study for efficient implementation
of algorithms. In Proc. 6th SAT, LNCS 2919, 2003.

39

Towards Improving the Resource Usage of SAT solvers Norbert Manthey and Ari Saptawijaya

A Problem Instances Used in the Measurement

Instances Solving Time Memory Usage Satisfiable?
(seconds) (KB)

ACG-10-5p0.cnf 169.062565 170968 no
AProVE09-20.cnf 1756.697786 203888 yes
UCG-15-5p0.cnf 476.773796 321968 no
UCG-20-5p1.cnf 1226.080625 474164 yes
UR-15-5p0.cnf 574.231887 338256 no
UTI-10-10p0.cnf 607.533968 388956 no
UTI-15-10p0.cnf 1027.736229 601984 no
blocks-4-ipc5-h22-unknown.cnf 570.543656 269496 no
cmu-bmc-longmult15.cnf 130.956184 26744 no
countbitswegner064.cnf 2585.413578 266988 no
eq.atree.braun.8.unsat.cnf 256.244014 30292 no
gss-16-s100.cnf 243.911243 38484 yes
gss-17-s100.cnf 357.822362 40828 yes
gss-20-s100.cnf 705.240074 51040 yes
gus-md5-07.cnf 121.45559 98880 no
gus-md5-09.cnf 820.299265 102548 no
manol-pipe-c10nidw s.cnf 820.53928 625660 no
manol-pipe-c6bidw i.cnf 257.124069 175516 no
manol-pipe-c6nidw i.cnf 273.521094 181600 no
manol-pipe-g10id.cnf 812.70279 339084 no
manol-pipe-g10nid.cnf 2334.201878 570644 no
mizh-md5-47-3.cnf 814.090877 275084 yes
mizh-md5-47-4.cnf 668.657788 246784 yes
mizh-sha0-35-3.cnf 219.293705 153244 yes
ndhf xits 20 SAT.cnf 393.776609 252364 yes
post-c32s-gcdm16-22.cnf 998.362393 257068 yes
q query 3 L60 coli.sat.cnf 336.085004 240176 yes
q query 3 L70 coli.sat.cnf 561.367083 285092 yes
q query 3 l44 lambda.cnf 2024.402517 135872 no
q query 3 l45 lambda.cnf 1767.374454 133816 no
q query 3 l48 lambda.cnf 2068.153251 136716 no
rbcl xits 06 UNSAT.cnf 415.165946 32620 no
schup-l2s-abp4-1-k31.cnf 448.384022 69608 no
schup-l2s-guid-1-k56.cnf 2439.468457 306456 no
schup-l2s-motst-2-k315.cnf 344.433525 561832 yes
simon-s02b-dp11u10.cnf 1189.330328 80564 no
uts-l05-ipc5-h27-unknown.cnf 353.102067 163212 no
uts-l06-ipc5-h31-unknown.cnf 1186.990182 284108 no
vmpc 24.cnf 659.017186 73148 yes
vmpc 26.cnf 539.513717 84628 yes

40

	Introduction
	Description of the Solver
	Measurement
	Results and Analysis
	Runtime Analysis
	Implementation Analysis

	Improvements
	Clause Access Improvements
	Reducing Memory Accesses
	Combination of Improvements

	Conclusion and Future Work
	Problem Instances Used in the Measurement

