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Abstract

Complex transport mechanism and interaction between fluid and sediment make the
mathematical and numerical modeling of sediment transport very challenging. Different
types of models can lead to different results. This paper investigates a non-equilibrium
sediment transport model based on the total load. In this type of model, it is assumed that
a bed slide will occur if the bed slope reaches a critical angle. This is enabled by means
of a slope failure operator. Existing slope failure operators usually suffer from the high
computational cost and may fail at wet/dry interfaces. The main contribution of this work
is the development of a novel slope failure operator for the total load transport model,
based on a modified mass balance approach. The proposed approach is verified in three
test cases, involving bank failure, dyke overtopping and a two-dimensional bank failure.
It is shown that the proposed approach yields good agreement with analytical results and
measurement data.
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1 Introduction

Sediment transport in the flow is responsible for the erosion and deposition processes. Several
approaches to model sediment transport and morphodynamics exist. In this work, a total load
transport model, which considers both bedload and suspended load transport, is presented.
In this type of models, if the slope angle of a noncohesive bed becomes larger than a certain
critical value, bed slide or avalanche will occur to achieve a new slope approximately equal to
the critical angle [6]. Several operators have been proposed to handle slope failure, cf. e.g.
[16, 13]. These operators mainly focus on the mass balance and dual mesh approaches. The
main idea of the mass balance approach is to calculate the slope in each cell. If the critical
slope is exceeded, then update the bed elevation in a suitable way such that the slope equals to
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the critical slope. Here, once the bed elevation of the cell is updated, it is necessary to check
its neighborhood to ensure that the modification does not cause another slope to exceed the
critical slope. This procedure is repeated until a global stability is reached. In the dual mesh
approach, a second mesh is constructed around cell nodes that stores only the bed elevation
values. Using this second mesh, slopes are calculated in each cell and bed elevations are updated
on this mesh. In this approach, bed elevations are only defined at cell vertices. This approach
comes with additional computational cost and difficulties in treating wet/dry fronts. In the
present work, a mass balance approach-based novel slope failure operator is derived to obtain
an algorithm that is efficient, robust and accurate. The key difference is that no iteration is
needed for calculating the mass balance based on this operator. Instead of simply updating the
bed elevation in the cell under consideration, the mass difference due to bed elevation change
is distributed among neighbor cells.

2 Numerical model

2.1 Hydrodynamic model

Due to the interaction between water flow and river bed, the topography of the river undergoes
continuous morphological changes. In this work, the 2D shallow water-sediment equations are
used to describe the mass and momentum exchanges between sediment-water mixture flow and
bed ([11],[2],[18]). The vertical acceleration is regarded to be negligible, and the pressure is
hydrostatic. Considering the influence of sediment movement, additional terms are added to
represent the effect of the density change and bed level variation.
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where, t, x and y are the time and two dimensional Cartesian coordinates respectively, h is the
water depth and w and v are the velocity along — and y— direction, respectively. (Spq, Sby)
and (Sfz,Sfy) are the bed slope and friction source term, Sy, = —0Z/0x, Sy = —0Zy/0y,
Stz = Cruvu? +v2, Sg, = Crovu? + 02, Cy is the bed roughness coefficient determined by
the Manning coefficient n and h in the form of n?/ h*/3, g represents the gravity acceleration,
0Z /0t represents the rate of the bed elevation change, £ = o/ + (1 — «) is the sediment-to-flow
velocity coefficient for total sediment transport, « is the sediment transport mode parameter in
the range of 0 to 1 which specifies the ratio between the bed load and suspended load, /3 is the
velocity of bed load movement relative to the fluid, values for @ and 8 can be obtained from
[5], p is the porosity of bed material. The last two terms on the right hand sides in Eqgs. (2),
(3) account for the spatial variations in sediment concentration and the momentum transfer
between flow and erodible bed because of the sediment exchange and velocity difference between
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flow and bed.
Pm = psC+ pu(l —c) (4)

in which, ¢ is the depth-averaged volume concentration; p,, is the depth-averaged density of
sediment water mixture, p,, and ps are the density of water and sediment, respectively.

2.2 Morphodynamic model
The bed elevation is updated as

0z db — Qbx
— =la———+4+(1—-a)(D-E)]/(1 -

= =22 (- a)(D - B/ -p), (5)
and the sediment concentration is calculated by,
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where D and E are the deposition and entertainment fluxes representing the settling and
entrainment of sediment respectively due to the suspended load transport. ¢, is the bed load
sediment transport rate (m?/s); gp« is the bed load transport capacity (m?/s). Based on
the non-equilibrium assumption, L is the adaptation length of sediment transport, which is a
characteristic distance for sediment to evolve from non-equilibrium transport into equilibrium
transport whose calculation can be found in Wu [17]. The suspended load transport coefficients
D and E are calculated by using the equation from Van Rijn [15]. The bed load transport
capacity gps is calculated by Meyer-Peter and Miiller [10].

2.3 Numerical approach

The full system of Egs. (1), (2), (3) and (6) is solved on a triangular mesh. The monotone
upstream-centered scheme for conservation laws (MUSCL) scheme from [20] is used to modify
the original Godunov discretization [4] to have the second-order accuracy, and a Harten, Lax,
and van Leer Riemann solver with the contact wave restored (HLLC) [14] is used for solving the
Riemann problem at the cell interfaces. The variables in a cell are updated using the two-stage
explicit Runge-Kutta scheme [8, 9, 7]. Friction source term Sy is discretized in a splitting point
implicit way [1] to avoid instabilities, the slope source term Sy is calculated based on the slope
flux calculation method regarding the density slope from [19], which is added into flux term
across the edges. In this work, the Courant-Friedrichs-Lewy condition is followed for maintain-
ing the stability, with CFL = 0.5.

The bottom elevation is updated by integrating Eq. (5) over the cell. The sediment concen-
tration flux is located at the interface is calculated by the contact middle wave. All empirical
relationships can be found in Sec. 2.2.

3 Slope failure operator

In the cell-centered finite volume approach, cell-averaged values of the water elevation and
bottom elevation are stored at the cell center. At the cell edges, values are reconstructed from
the cell-averaged values from the adjacent cells. A different value is reconstructed from the cells
located at the left and right hand-side of the edge, which means that the water and bottom
elevations at the vertex cannot be unique in a cell-centered finite volume framework. The basic
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principle is to conduct a continuity plane for the vertices in the computational cells. In this
work, the bottom elevation is only influenced by the integration of the source term like presented
in Eq. (5). After updating the bottom elevation, the vertex will be adapted to the new cell
averaged bottom elevation, using the mean value of the surrounding cells and corresponding
influence area

Figure 1: Primary cells surround- Figure 2: Vertex adjusting for satisf-
ing vertex A. ing critical slope.

>(2i4i/3)
>o(Ai/3)
Here, z, and z; are the bottom elevation of vertex and cell respectively, and i is the index of

cell. As shown in Fig. 1, the grey area around vertex A is its influence area, the dashed lines
are the lines through the center of gravity and the middle point of edges,
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where, j represents the index of vertex, and NN, is the total number of vertices, as every cell
has 3 vertices, the right side of Eq. (8) can be changed to szvc (#2:A;), where N, is the total
number of cells. By applying Eq. (7), the cell averaged bottom column will switch to a vertex
averaged bottom column. The mass conservation is guaranteed by this approach as shown in
Eq. (8). This approach can be extended to unstructured meshes besides triangular meshes.

The angle between horizontal plane and the plane composed by the vertices of the cell can
be calculated by mathematical manipulations. If the angle is larger than the critical angle, the
following slope failure operator would be used, combined with Fig. 2, the processes are shown
as follows:

1. Assume that vertex A is the highest vertex, and C' is the lowest one. ¢ is the angle of the
plane ABC and the horizontal plane passes by the lowest vertex C, DFEA is the plane
perpendicular to the horizontal and ABC' plane.

2. Adjust A to A’ to satisfy the critical angle o, as the plane is treated as a rotation around
line CE, the shape of ABC will stay constant. It can be derived that zp/24 = BF/AF =

B'F/A'F = zp/ /24, therefore, zp can be calculated.

3. Inorder to guarantee the mass balance, the mass loss from vertex A and B will be averaged
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Figure 3: Initial water and bottom elevation(left); final water and bottom elevation(middle);
numerical result compared with theoretical critical angle (right).

to the horizontal plane height dzj,
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za = (zar — 2¢) + 6zn, 2B = (2B — 20) + 021, 20 = 20 + Oz, (10)
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here, A%, AP A¢ are the influence area of vertex A, B, C, respectively.

4. Finally, the bottom elevation of the cell under consideration and the cells adjacent to its
vertices are updated using the modified elevation at the vertices.

inew R (5ZA+(5§B+(5ZC (11>

zZ

bza, 02, 0z¢ are the difference between the adjusted bottom elevation and the original
bottom elevation at vertex A, B, C, respectively.

This slope operator may not yield a final critical slope in each time step, as the adjacent cell
will influence the vertex bottom elevation and thus the critical slope will be influenced. In this
work, the adjusted treatment will be thought as an approximation to the real physical process.

4 Numerical tests

The proposed slope failure operator is validated in three test cases: one case dealing with bank
failure, the second case dealing with overtopping of a dyke [3] and the last test case considering
a two-dimensional bank failure in trapezoidal channel [12].

4.1 Ideal bank failure

This test case is set for validating the above algorithm for the slope operator. A sand cylinder
with 2 m diameter is set at the middle of a 10 m x 10 m square domain, part of the cylinder is
submerged under the water level (0.5 m) and the critical frication angle for wet and dry sand
is 30° and 60°, respectively.

The simulation runs for 10 s until the water level becomes stable, as shown in Fig. 3, the
final result can reflect the critical angle properly, but it can be observed that the bottom higher
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Figure 4: Simulated bed elevation at t = 30 s (left) and ¢ = 60 s (right).
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Figure 5: Sketch of dam break through trapezoidal channel: plan view (a), cross section (b)
(cm) (after [12]).

than the final water level also obtains a friction angle for wet sand, which is caused by the slip
of the bank leading to a wave propagation and the water climbing on the sand cone before the
final steady state.

4.2 Dyke erosion due to flow overtopping

Flow overtopping dyke can cause serious erosion and even wash out the structures. Further
complex processes involving outburst flow, supercritical flow and steady flow make the sediment
movement even more difficult.

The proposed model will be tested against an experiment presented by Chinnarasri et al.
[3]. The experimental flume is 35 m long and 1 m wide. A 0.8 m high and 1 m wide dyke is
located at the middle of the flume, with a crest width of 0.3 m. The upstream and downstream
slope of the dyke are set to be 1 : 3 and 1 : 2.5, respectively. The details of the experiment
set-up and the parameters can be found in Chinnarasri et al. [3]. The friction angle is set to
30°. A comparison of measured and simulated bottom profiles at 30 and 60 s is shown in Fig.
4. The simulated results underestimate a little bit erosion when compared to the measured
data at t = 60 s, while they agree well with each other at ¢t = 30 s.

4.3 Bank failure in a trapezoidal channel

Simulated bed profiles are compared with the laboratory data measured by Soares-Frazao et al.
[12]. Parameters can be found in [12]. The friction angle for submerged and dry sand are both
37°, and for the humid sand is 87°. As shown in Fig. 6, the bed profiles can be well captured
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Figure 6: Comparison between numerical results and measurement for bed cross sections at
x=0.5,10matt=3,5s.

for the cross section at x = 1.5 m. However, for the cross section at x = 0.5 m, the slope is
steeper than the measurement, which may be because the overestimated erosion of the main
river channel leads to a stable angle closer to the trapezoidal river bank.

5 Conclusions

In this work, a total load transport model with a novel slope failure operator is developed with
high efficiency, robustness and accuracy. The proposed operator does not perform additional
iterations until global stability is reached, which gives a better computational efficiency. It is
suspected, that such iterations are not necessary as the time step in explicit numerical methods
is relatively small. The small time steps guarantee an approximately physical slope failure
process. Good agreements between model results and measurement data also support this
claim, however it will be further investigated in future research.
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