
Kalpa Publications in Computing

Volume 21, 2025, Pages 1–7

Proceedings of the 14th and 15th International
Workshops on the Implementation of Logics

A Framework for Running

Reinforcement Learning Experiments in E

Jack McKeown

University of Miami, Miami, Florida, U.S.A.
jam771@miami.edu

Abstract

As machine learning methods for guiding theorem proving become increasingly popular,
it is important that there are frameworks for facilitating rapid development and prototyping
of new machine learning models in this context. This paper describes a framework for
training and testing reinforcement learning models for guiding given clause selection within
the E theorem prover.

1 Introduction

This paper describes a framework for reinforcement learning (RL) with the E theorem prover
[3]. This framework includes one Python script for training and testing, multiple scripts for
analyzing different aspects of testing results, and a modified version of E to support the inter-
action between E’s given clause selection loop and the RL models in Python. E was chosen
because it is a performant and well-known theorem prover. While the framework could be
likely be modified to work with other provers, the details of this would come down to how the
proposed prover implements its proof search and how it could be modified to interact with the
framework.

E normally selects given clauses using a schedule over Clause Evaluation Functions (CEFs).
This schedule is called a heuristic in E. In E’s --auto mode, the heuristic is chosen based on
properties of the input problem. In the presented framework, a heuristic is provided to E, but
E has been modified to ignore the schedule. Instead of the schedule, E uses a learned RL policy
to select a CEF from the input heuristic based on the current RL state. This happens each
time that E needs to select a given clause, and the CEF chosen by the policy is used to select
the given clause. The available RL actions therefore map to a fixed set of CEFs that are chosen
before training. For the experiments described in Section 5, a set of twenty relevant CEFs was
chosen by considering the CEFs most preferred by E’s --auto mode over the set of problems
being solved.

While many aspects of the framework are generic, the currently implemented RL environ-
ment represents the state of E simply as a list of the following features:

1. The number of given clause selections so far.

2. The number of clauses in the processed set.

K. Korovin, S. Schulz and M. Rawson (eds.), IWIL-2024 (Kalpa Publications in Computing, vol. 21), pp. 1–7



A Framework for Running Reinforcement Learning Experiments in E McKeown

3. The number of clauses in the unprocessed set.

4. The average weight (roughly symbol count1) of clauses in the processed set.

5. The average weight (roughly symbol count) of clauses in the unprocessed set.

The rewards are all zeros for an unsuccessful proof attempt. For a successful proof attempt,
a reward of 1/n is given for every given clause that is in the final proof, where n is the number
of given clauses in the proof. The given clause selections which don’t select a proof clause are
given a reward of zero. The 1/n reward scaling is to prevent learning to prefer longer proofs.

2 Architecture

Figure 1 shows how training and testing of RL models are performed within the framework.
The main entry point for both training and testing is the main.py script. main.py performs
training by default, and is used for testing by providing the --test flag. main.py supports
many command line arguments for customizing its behavior. These command line arguments
are parsed using argparse from the Python standard library.

During training, main.py starts up two subprocesses: a gatherer process that performs
proof attempts using the latest RL policy and a trainer process that learns the policy using
the results of the proof attempts. The subprocesses communicate with each other (and with
their parent process) using Python multiprocessing queue objects. The parent process oversees
the training, saving the proof attempts and latest policy periodically as well as displaying
relevant summary information in the dashboard described in Section 4. RL algorithms are
referred to as on-policy or off-policy depending on whether the policy being learned is the same
as the policy being used to generate training data. When using an on-policy RL algorithm such
as Proximal Policy Optimization (PPO), it is important that the training data is generated
using the latest policy and that the policy is trained using data generated by the latest policy.
This synchronization is handled by the gatherer and the trainer: the gatherer runs only
one training batch of proof attempts using its current policy, and then waits for an updated
policy from the trainer. Likewise, the trainer performs only so many training steps on the
same proof attempts before waiting for new proof attempts (the number of epochs and batches
are hyperparameters of PPO).

During testing, main.py starts only the gatherer, which uses the final policy from training
to guide proof attempts. main.py saves the information from these proof attempts to disk.
This information can be analyzed/visualized using the tools described in Section 6.

3 Modifications to E

In order to support the external guidance for given clause selection, E has been modified to
track the RL state described above. The state is very simple but has the advantage of being
able to be updated in constant time for each iteration of the given clause selection loop: the
average weights are updated whenever a clause is added or removed from the processed and
unprocessed sets instead of being updated by a full pass through these sets before each clause
selection. Each time E needs to select a given clause, it sends this tracked state to the gatherer
via a named pipe. The gatherer responds to E with an action (an unsigned integer) using

1ClauseStandardWeight() in E

2



A Framework for Running Reinforcement Learning Experiments in E McKeown

Figure 1: Training and Testing Architecture

another named pipe. E uses this unsigned integer as an index into the list of CEFs and uses
that CEF to select the given clause.

While the current representations of states and actions are very simple, this framework can
also be adapted to work with different representations. In order to do so, it would be necessary
to:

1. Decide upon new representations for states and actions.

2. Define how to serialize states in E (written in C) and deserialize them in Python.

3. Define how to serialize actions in Python and deserialize/interpret them in E.

4. Redefine the RL models accordingly.

4 UI Dashboard

It is helpful to track information during long-running experiments for a variety of reasons.
Metrics such as the different PPO loss components can be tracked over time to give insights
into the training process, and obvious issues that require a restart of the experiment are dis-
covered early. Platforms like Tensorboard2 and Weights & Biases3 are mature tools for doing
this. While these platforms are great for tracking certain supported metrics, tracking custom
information is sometimes difficult. They also use a web interface that is tricky to use if the
experiments are being run over SSH on a remote server as was the case here — see Section 5.
For these reasons, I opted for a more custom terminal-based approach. The rich library4 in
Python was used to create a text-based dashboard. Rich supports the creation of titled boxes
called panels. Panels can contain text or other panels. Text and panels can both be easily
colored to create a visual distinction between dashboard elements.

A Dashboard class was created in Python to hold and render all the information being
tracked. The class has a master render method to print the full dashboard. This method calls

2https://www.tensorflow.org/tensorboard/
3https://wandb.ai/
4https://github.com/Textualize/rich

3



A Framework for Running Reinforcement Learning Experiments in E McKeown

other methods to return individual panels, and determines a layout for the panels to form the
full dashboard. Most of these constituent panel render methods have a corresponding update

method for updating the dashboard with information to be accessed during rendering. The
constituent update methods are called by the trainer and gatherer processes and the render
methods are only called by the master render method, which itself is called in their parent
process.5 In order to make better use of screen space, the panels can be alternated across calls
to render.6

Line plots are often helpful for visualizing changes to key metrics such as the different
components of the PPO loss and the average proof attempt success rate. Termplotlib7 is a
simple library for producing line plots as ASCII strings using syntax that is familiar to users
of matplotlib. While these plots have poor resolution because they are rendered in text, they
are still informative.

A dashboard screenshot from a run of main.py is shown in Figure 3. The top panel shows
the hyperparameters of the current run. This information is pulled from the argparse object
that stores all of the command line arguments to main.py. The various loss components
and a running average of them are shown in the upper left panel. The current sizes of the
multiprocessing queues used for communication are shown in the lower middle of the dashboard.

The currently implemented line plot panels show the three different components of the PPO
loss and the proof attempt success rate over time. A very generally useful panel is shown at the
bottom in the middle. This panel prints arbitrary strings sent from the gatherer or trainer
with timestamps, acting as a log for important events. The panel in the upper left summarizes
the loss information for the latest training batch as well as an exponentially smoothed average of
this information over time. A custom Python context manager for profiling is used throughout
main.py. This profiler simply keeps track of how much time is spent in various regions of code
within the gatherer and trainer and this information is available as a panel (but it is not
included in Figure 3). This profiling information is helpful for debugging and also for estimating
hyperparameters that reduce the time that the gatherer and trainer spend waiting for each
other.

The dashboard is fairly straightforward to modify. Custom dashboard panels can easily be
made by implementing a method for rendering (it must return a rich Panel object) as well
as an optional method for updating any relevant state for that panel. The main dashboard
render method has to be adjusted to use that newly created panel in its layout. For instance,
adding a loss graph to a dashboard could be done by creating updateLossGraphInfo(info)

and renderLossGraph(). The result of calling renderLossGraph() has to be incorporated into
the full dashboard formed by the main render method.

5 Initial Experimentation

This framework has been used to run experiments training policies using PPO in PyTorch [2].
The details of these experiments are provided in the cited paper. The data for the experiments
comes from the “bushy” problems of the MPTPTP2078 dataset, which is a TPTP-compliant
[4] version of the MPTP2078 dataset [1]. A round-robin schedule over this set of chosen CEFs
was evaluated as a baseline. For these experiments, a remote server was used because it had
many CPU cores that could each be used for different calls to E in parallel for generating

5Because different processes do not share memory, the updates from the dashboard copies in trainer and
gatherer are sent to the parent process using Python multiprocessing queues.

6Like those screens at fast-food restaurants...
7https://github.com/nschloe/termplotlib

4



A Framework for Running Reinforcement Learning Experiments in E McKeown

proof attempts quickly. A neural network policy trained using PPO was compared against
this baseline and E’s --auto mode. In addition to this neural network model, a constant
categorical distribution was also learned as a policy. This policy can be distilled into an E
heuristic by translating probabilities into positive integers such that the resulting E heuristic
uses each CEF with roughly the same frequency that would be expected under the random
sampling. The results of evaluating each of these policies is shown in Table 1. Each of the
models is evaluated in terms of the number of problems solved in the testing set, as well as
the number of given clauses required to find the average proof. The results are averaged across
the testing sets of a five-fold cross-validation setup. While this simple RL experiment failed to
solve significantly more problems, the proofs found were found in fewer given clause selections.
This represents a more efficient search for the empty clause.

–auto Round Learned Distilled Neural
Robin Categorical Categorical Network

Problems Solved 228 232 231 232 231

Given Clauses 4407 2329 2377 2262 2013

Fewer Given Clauses than --auto 0 1895 1743 1899 1897

Table 1: Experimental Results: The best result in each row is bolded.

6 Tools for Analysis of Results

During a training or testing run of main.py, a tag is provided to be used as the name of that run.
These tag names dictate where the data is saved. main.py keeps track of the history of proof
attempts using an instance of a custom class called ECallerHistory. After main.py finishes
(and occasionally as it runs) this object is saved using torch.save(). This is a convenient way
to save arbitrary objects since the corresponding call to torch.load() reproduces the object
that was saved with no need for cumbersome manual parsing. While the saved format enables
somewhat quick analysis in IPython or using a Jupyter notebook, a few simple scripts have
been written for summarizing particular aspects of training/testing runs:

• compareArgs.py - takes in run tags as command line arguments and outputs the command
line arguments passed for the corresponding calls to main.py.

• compareProcCount.py - takes in run tags as command line arguments and outputs a ma-
trix showing how many given clause selections are performed (on average) before a proof
is found. Off diagonal numbers are the average number of given clause selections needed
by the run corresponding to the row over problems solved by both the run corresponding
to the row and the run corresponding to the column.

• compareSolved.py - takes in run tags as command line arguments and outputs a matrix
showing the number of problems solved by each run on the diagonal and the size of the
set difference in problems solved on the off-diagonal.

A screenshot of compareProcCount.py and compareSolved.py running is shown in Figure
2.

5



A Framework for Running Reinforcement Learning Experiments in E McKeown

Figure 2: A screenshot of compareProcCount.py and compareSolved.py

7 Conclusion

The framework described in this paper aims to enable future research into how reinforcement
learned policies can guide given clause selection. It is a simple but extensible framework that is
useful for tracking experiments and analyzing results on a remote server. The code is currently
available on github at https://github.com/jackeown/Reinforce E.

The modified version of E is also available at https://github.com/jackeown/eprover in the
branch “reinforcement learning”. While this version of E does not receive automatic updates
from the official eprover repository, there are few enough changes that it should be relatively
easy to merge in future versions of E. The modifications are mostly contained within one source
code file: cco proofproc.c.

References

[1] J. Alama, D. Kühlwein, E. Tsivtsivadze, J. Urban, and T. Heskes. Premise Selection for Mathe-
matics by Corpus Analysis and Kernel Methods. CoRR, abs/1108.3446, 2011.

[2] J. McKeown and G. Sutcliffe. Reinforcement Learning for Guiding the E Theorem Prover. In
A. Ae Chun and M. Franklin, editors, Proceedings of the 36th International FLAIRS Conference,
page To appear, 2023.

[3] S. Schulz, S. Cruanes, and P. Vukmirovic. Faster, Higher, Stronger: E 2.3. In Proceedings of the 27th
International Conference on Automated Deduction, number 11716 in Lecture Notes in Computer
Science, pages 495–507. Springer-Verlag, 2019.

[4] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP
v6.4.0. Journal of Automated Reasoning, 59(4):483–502, 2017.

6

https://github.com/jackeown/Reinforce_E
https://github.com/jackeown/eprover


A Framework for Running Reinforcement Learning Experiments in E McKeown

F
ig
u
re

3
:
U
I
D
a
sh
b
o
a
rd

S
cr
ee
n
sh
o
t

7


	1 Introduction
	2 Architecture
	3 Modifications to E
	4 UI Dashboard
	5 Initial Experimentation
	6 Tools for Analysis of Results
	7 Conclusion
	References

